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REVERSE EDGE MAGIC LABELING OF A CYCLE WITH CHORDS, UNIONS
OF CYCLES AND UNIONS OF PATHS

Kotte Amaranadha Reddy and Shaik Sharief Basha1

ABSTRACT. Reverse edge magic (REM) labeling of the graph G = (V,E) is a bijec-
tion of vertices and edges to a set of numbers from the set, defined byλ : V ∪E →
{1, 2, 3, . . . , |V | + |E|} with the property that for every x, y ∈ E, constant k is the
weight of equals to a xy, that is λ(xy)−λ(x)+λ(y) = k for some integer k. In this
paper, we given the construction of REM labeling for a cycle with chords [c]tcn,

unions of paths mPn, and unions of cycles and paths m(Cn1(2r+1) ∪ (2r + 1)Pn2).

1. INTRODUCTION

Let G be a simple graph with vertex set V and edge set E. Labeling of G is
a bijection f : V ∪ E → {1, 2, 3, . . . , |V | + |E|}. If x, y ∈ V and if e = xy ∈ E,

then the weight w(e) of the edge e is given by w (e) = f (x) + f (y) + f (e) . The
total labeling f is said to be reverse edge-magic (REM) labeling if the weight of
each edge is a constant, and this constant is called the magic constant of the REM
labeling. REM labeling is called reverse super edge magic (RSEM) labeling if the
vertices are labeled using the smallest |V |integers.

In [6] the result for REM labeling of a complete bipartite graph stated by Kotzig
and Rosa. They used the terminology M−valuation, which is now known as EMT
labeling and also stated the preservation an EMT labeling for the odd number of
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copies of certain graphs. They used the term edge-magic to describe a graph that
has REM labeling.

In [9], The method to expand the result in EMT labeling for some families of
graphs is introduced by I. Singgih. In [1] used the results for EMT labeling of 2-
regular graphs for the method of generalize. In this article, we apply the method
to construct a REM labeling for several other families of graphs and section 2 the
main theorem consisting the expansion method is given. The new results for each
familie of graphs are given by the following sections, we given some examples
and describe how the method works. In [8] Marr and Wallis give a definition of
a Kotzig array as d ∗ m grid, each row being a permutation of {0, 1, . . . ,m − 1}
and each column having the same sum. The Kotzig array used in this paper is the
3 ∗ (2r + 1) Kotzig arrayk that is given as an example in [6] after adding each the
entry of the array by one:

k =

 1 2 · · · r + 1 r + 2 . . . 2r 2r + 1

r + 1 r + 2 . . . 2r + 1 1 . . . r − 1 r

2r + 1 2r − 1 . . . 1 2r . . . 4 2

.

If we write the first two rows of k as a permutation cycle τ , we have τ = (1, r +

1, 2r+ 1, r, . . . , 3, r+ 3, 2, r+ 2). The difference between two consecutive elements
in τ is equal to τ has taken modulo (2r + 1). Note that τ is a(2r + 1)−cycle. Since
(2r + 1) is an odd number for every nonnegative integer r,then gcd (2, 2r + 1) = 1,

and so we have τ 2 also a (2r + 1)−cycle. This fact plays an important role in pre-
serving the properties of magic labeling of our EMT and SEMT labeling as we
extend the length of cycles. Let k′ be the modified k, where we switched the first
and second row of k′ :

k =

 r + 1 r+ . . . 2r + 1 1 . . . r − 1 r

1 2 . . . r + 1 r + 2 . . . 2r 2r + 1

2r + 1 2r − 1 . . . 1 2r . . . 4 2


It is clear that if we write the first two rows of as a permutation cycle, we have τ−1.
In this section, we will describe first the method that later applied to construct a
REM labeling. This method preserves the REM (RSEM) properties as we extend
the length of cycles, or multiplying the number of paths, by a factor of an odd
number.

Theorem 1.1. [ [8], Lemma 2.3] The complete bipartite graph Kp,q exists for all
p, q ≥ 1, for M−valuation [EMT labeling].
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Theorem 1.2. [8] Say G is a 3-colorable edge-magic graph and His the union of t
disjoint copies ofG, todd. Then H is edge magic.

Theorem 1.3. Let G be a 2-regular graph that has a REM labeling γ. Let G′ be a
2-regular graph obtained by extending the length of each component of G by an odd
factor. Then there exists an REM labeling for G′ that can be obtained by modifying
the REM labeling of G.

Proof. Let γ be a REM labeling for any 2-regular graph G. For every vertex and
edge of G, let λ be the labeling obtained by decreasing the original label by 1, that
is, let λ (v) = γ (v) − 1 and λ (e) = γ (e) − 1. For each cycle Cn in G, construct a
n× 3 table with entries as follows.

In the first column: For i = 1, 2, . . . , n, the entry in the ith row is the 3× 1 matrix

Λ =

 λ (vi)

λ (vi+1)

λ (ei+1)

.

In the second column: For y = 1, 2, 3 and z = 1, 2, 3, . . . , (2r + 1) the entry in the
ith row is either k or k′ depending on the value of i, namely k = [kyz], if i ≤

[
n
2

]
+1,

and k′yz, if
[
n
2

]
+ 1 < i ≤ n, where kyz denotes the element on the yth row and

zth column of k. In the third column: for i = 1, 2, . . . ., n, the entry in the ith row is
the matrix

Θi =

{
kyz + (2r + 1)Λy1, if i ≤

[
n
2

]
+ 1

k′yz + (2r + 1)Λy1, if
[
n
2

]
+ 1 < i ≤ n

If we multiply the permutation cycles of k and k′ in the second column, we obtain
τ

n
2 + 1τn−([n2 ]−n+2) = τ 2[

n
2 ]−n+2 If n is odd we have τ (n−1)−n+2 = τ and if n is even

we have τn−n+2 = τ 2.
The cycle Cn(22r+1) is obtained by tracking the numbers on Θ. Let θiyz denote the

elements of Θi in the yth row and zth column. In each Θi, the two numbers θi1z
and θi2z will be the labels of teo adjacent vertices on Cn(22r+1), and θi3z will be the
label of the edge they share. For each i, 1 ≤ i ≤ n, each pair of θi+1

1z and θi+2
2z that

are equal denotes the same vertex on Cn(22r+1) and all pairs θi1z and θi2z represent
labels of adjacent vertices.

Recall that in the second column, τ is a permutation cycle of length 2r + 1.

Both 1 and 2 are relatively prime to 2r + 1 for any integer r, so τ = τ 1 and τ 2 are
also permutation cycles of length 2r + 1. Consequently, we can track the labeling
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of Cn (2r + 1) by connecting these vertices from the third column continuously
until we get a full circle of longer length (not stopping until all numbers in the
third column are used). Since 1 ≤ z ≤ 2r + 1, the result from this process is
the labeled extended cycle Cn (2r + 1). For path component of G we create the
same table, but since there is no relation between the endpoints, when tracking
adjacent vertices in Θi from i = 1 until i = m, we will not be able to go back
to i = 1. Every time we track adjacent vertices from i = 1 until i = m, we
will get one copy of Pm instead. Since we have (2r + 1) columns in each Θi, we
end up with (2r + 1) copies of Pm instead of Pm (2r + 1). Combining all extended
components, we obtain an EMT labeling for G′. �

2. MAIN RESULTS

Cycles with Chords tCnn.
Whole paper tCn denotes a cycle Cn with one chord of length t, while [c] tCn

denotes a cycle Cn with c chords, each of length t. In [6] several results for RSEM
of the cycle with one chord are known and are stated in Theorem 2.1

Theorem 2.1. [6] The following cycles with one chord has RSEM labeling: (a)
tC4m+1 for all t other than t = 5, 9, 4m− 4, 4m− 8, given m ≥ 3. (b) tC4m+1 for
all t ≡ 1 (mod 4) except t = 4m− 3. (c) tC4m for any m and t ≡ 2 (mod 4). (d)
tC4m+2, m ≥ 2 for t = 2, 6 and all odd t other than 5. We apply Theorem 1.2 and
Theorem 1.3 to general cycles with one chord. The cycle part get extended, while the
number of chords multiplied.

Theorem 2.2. If the graph tCn has a REM (RSEM) labeling, then there exist positive
integers h and th such that for every integer r ≥ 0, the graph [(2r + 1)h] thCn(2r+1)h

also has a REM (RSEM) labeling.

Proof. Applying Theorem 1.3 to RSEM labeling of tCn gives SEMT labeling of
[2r + 1] t1 Cn(2r+1) for some value of t1 ∈ N. Applying Theorem 1.3 to the SEMT
labeling of [2r + 1] t1Cn(2r+1) gives RSEM labeling of

[
(2r + 1)2

]
t2Cn(2r+1)2 for each

of t2 ∈ N . Performing this h times for any finite number h, we get RSEM labeling
for [(2r + 1)] t1Cn(2r+1)h. The pattern of how the length of the chord changes is still
unknown. However, we do know the location of the chords. Suppose tCn has a
chord connecting the vertices labeled λ (va) and λ (vb) whereva, vb ∈ V . Denote
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these vertices with the pair notation (λ (va) , λ (vb)). Applying Theorem 1.3 to tCn,
we get [2r + 1] t1C(2r+1)n. The set of (2r + 1) chords written in the pair notation
is {(2r + 1) (λ (va)− 1) + κ1j, (2r + 1) (λ (vb)− 1) + κ2j} Since we can use differ-
ent κ and κ′ combination in the second column of the table, the number of the
expanded graph is not unique. If we arrange the second column in the table in
such a manner that we have τa where a 6= 1, a 6= 2 and a is relatively prime to
n, then we can obtain differently expanded graphs. In the following example, we
use both the proposed τ 4 (τ−1)

3
= τ and the possible alternative τ 4 (τ−1)

0
= τ 7

for expanding 2C7. �

FIGURE 1. RSEM labeling for 2C7

Example 1. 2C7 → [5] 9C35 and 2C7 → [3] 5C21 The RSEM labeling for 2C7 with
k = 3 as given in [6] is shown in Figure 1. We expand using the factor 2r + 1 = 3.
The table for the chord is given in Table 1.

TABLE 1. Table for the chord on both 2C7 → [5] 9C35 and 2C7 → [3] 5C21

Λ κ or κ′ θi

4 1 2 3 13 14 15
6 2 3 1 20 21 19
14 3 1 2 45 43 44

The distinct tables using different κ and κ′ combination of the cycle is given in
Table 2. The second column of the left table is as defined in the proof of Theorem
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TABLE 2. Table for the chord on both 2C7 → [3] 9C21 (left) and
2C7 → [3] 5C21(right)

Λ κ or κ′ θi

0 1 2 3 1 2 3
5 2 3 1 17 18 16
9 3 1 2 30 28 29
5 1 2 3 16 17 18
4 2 3 1 14 15 13
13 3 1 2 42 40 41
4 1 2 3 13 14 15
2 2 3 1 8 9 7
10 3 1 2 33 31 32
2 1 2 3 7 8 9
6 2 3 1 20 21 19
12 3 1 2 29 27 28
6 1 2 3 19 20 21
1 2 3 1 5 6 4
11 3 1 2 36 34 35
1 1 2 3 4 5 6
3 2 3 1 11 12 10
8 3 1 2 27 25 26
3 1 2 3 10 11 12
0 2 3 1 2 3 1
7 3 1 2 24 22 23

Λ κ or κ′ θi

0 1 2 3 1 2 3
5 2 3 1 17 18 16
9 3 1 2 30 28 29
5 1 2 3 16 17 18
4 2 3 1 14 15 13
13 3 1 2 42 40 41
4 1 2 3 13 14 15
2 2 3 1 8 9 7
10 3 1 2 33 31 32
2 1 2 3 7 8 9
6 2 3 1 20 21 19
12 3 1 2 29 27 28
6 2 3 1 20 21 19
1 1 2 3 4 5 6
11 3 1 2 36 34 35
1 2 3 1 5 6 3
3 1 2 3 10 11 12
8 3 1 2 27 25 26
3 2 3 1 11 12 10
0 1 2 3 1 2 3
7 3 1 2 24 22 23

2.2. The original cycle is Cn = C7, so the first
[
n
2

]
+ 1 = 4 rows use the array κ,

while the other rows use the array κ′. The right table, on the other hand, use κ for
every row. Both tables work, but they give different expanded graphs.

From the tables get a RSEM for [3] 9C21 and for [3] 5C21 with k = 10 , as shown
in Figure 2 and Figure 3.

3. UNIONS OF CYCLE PATHS mPn

In [2], [3] and [4], several results for SEMT of unions of paths are known:
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FIGURE 2. RSEM labeling for [3] 9C21

FIGURE 3. RSEM labeling [3] 5C21

Theorem 3.1. The following graph has SEMT labeling:
(a) [2] The graph F ∼= Pm ∪ Pn, iff (m, n) 6= (2, 2) or (3, 3) .

(b) [3] mPn, if m is odd.
(c) [3] P3 ∪mP2, for all m.
(d) [3] m(P2 ∪mPn), if m is odd and.
(e) [4] 2Pn iff n is not.
(f) [4] 2P4n has SEMT labeling for all n.

Note that Theorem 3.1 (e) is a special case of Theorem 3.1(a) whenm = n. Applying
Theorem 1.3 to Theorem 3.1 above we can summarize our new results in Theorem
3.2

Theorem 3.2. The following graph has RSEM labeling:
(a) (2r + 1) (Pm ∪ Pn), for any r, if (m, n) 6= (2, 2) , or



578 K. A. Reddy and S. S. Basha

(b) (2r + 1) (P3 ∪ P2) for any m and r,
(c) mPn for even values of m, m ≡ 2 (mod 4), ifn 6= 2, 3,
(d) mP4n for even value of m, m ≡ 2 (mod 4) and all n ≥ 2.

Proof. Apply Theorem 1.3 to Theorem 3.1. �

Theorem 3.3. [2] The following graph has SEMT labeling:
(a) C3 ∪ Pn2 , if n2 ≥ 6.
(b) C4 ∪ Pn2, if n2 6= 3.
(c) C5 ∪ Pn2, if n2 ≥ 4.
(d) Cn1 ∪ Pn2, if n2 is even and n2 ≥ n1

2
+ 2.

Theorem 3.4. (a) m(C3(2r+1) ∪ (2r + 1)Pn2, for anyr ≥ 0, odd m, and n2 ≥ 2.
(b) m(C3(2r+1) ∪ (2r + 1)Pn2, for anyr ≥ 0, odd m, and n2 6= 3.
(c) m(C5(2r+1) ∪ (2r + 1)Pn2, for anyr ≥ 0, odd m, and n2 ≥ 6.
(d)m(Cn1(2r+1)∪(2r + 1)Pn2 , for any r ≥ 0, oddm, and n1 ≥ 4 and n2 ≥ n1

2
+2.

Proof. Apply Theorem 1.2 to Theorem 3.3 �

Lemma 3.1. For any non-negative integer r, odd m and any positive integer n2, the
graphm(Cn1(2r+1) ∪ (2r + 1)Pn2 has an SEMT labeling when n1 = 4, 5, 5, 8 or 10,
unless (n1, n2)=(4,3),(5,1),(10,1).

Example 2. C4 ∪ P2 → C20 ∪ 5P2.

RSEM labeling for C4 ∪ P2 as given in [2] is shown in Figure 4.

FIGURE 4. RSEM labeling for C4 ∪ P2

We expand using the factor 2r + 1 = 5. The tables are given in Table 2. For
the table for Cn = C4(left table), the first

[
n
2

]
+ 1 = 3 rows use the array κ, while

the fourth row use the array κ′. The table for path P2(right table) use the only κ
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since there is only one row.

More Results.

Theorem 1.3 is, in fact, applicable to any graph that has REM or RSEM labeling.
The expanded graphs, however, either overlapped with results that already known,
or might have little to none regularity that is of interest in magic labeling.

Example 3. C4 ∪ P2 → C20 ∪ 5P2

Figure 5 shows the SEMT labeling for C20 ∪ 5P2 with k = 12.

FIGURE 5. RSEM labeling C20 ∪ 5P2

Applying Theorem 3.1 to a SEMT labeling Cartesian product of P2 � Pn (ladder
graph) that is given in [9] gives SEMT labeling of the union of an odd number of
ladders (P2 � Pn)for any odd values of m. However, ladder graphs are 3-colorable
so the preservation of its SEMT labeling is already guaranteed by Theorem 2.2.
In [8], application of Theorem 3.1 to other families such as fans, wheels, um-
brellas, tadpoles, braids and many other families of graphs are given. One of the
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interesting possibilities of this work is to find a way to apply Theorem 3.1 using
a certain combination ofκ, κ′, and probably other variations of Kotzig arrays, to
solve the open problem of finding the EMT or SEMT labeling of unions of the odd
number of wheels.

In [2], Enomoto et al. checked all wheels up to n = 29 and found that Wn

has EMT labeling if n 6= 3 mod 4. The construction of EMT labeling of Wn for all
other cases are given in [5, 7]. When n is even wheels Wn are 3-colorable, so the
existence of EMT labeling of tWn for odd t and even n is guaranteed by Theorem
2.1. Also, it is given in [7] that tWn does not have EMT labeling when t is odd and
n ≡ 3 (mod 4).

4. UNIONS OF PATHS mPn

Figure 6 shows the RSEM labeling for P4 ∪ P2 with k = 1.

FIGURE 6. RSEM labeling P4 ∪ P2

TABLE 3. Tables for P4 ∪ P2 → 3 (P4 ∪ P2)

Λ κ or κ′ θi

1 1 2 3 4 5 6
3 2 3 1 11 12 10
6 3 1 2 21 19 20
3 1 2 3 10 11 12
4 2 3 1 14 15 13
9 3 1 2 30 28 29
4 1 2 3 13 14 15
2 2 3 1 8 9 7
8 3 1 2 27 25 26

Λ κ or κ′ θi

0 1 2 3 1 2 3
5 2 3 1 17 18 16
7 3 1 2 24 22 23

From the tables, we get an RSEM labeling for 3 (P4 ∪ P2) with k = 4. As shown
in Figure 7.
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FIGURE 7. RSEMT labeling for 3 (P4 ∪ P2)
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