

Advances in Mathematics: Scientific Journal **10** (2021), no.1, 583–588 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.10.1.57

CHARACTERIZATION OF THE SET OF INVOLUTORY ELEMENTS OF (Z_n, \oplus_n, \odot_n)

C. Prameela Rani¹ and M. Siva Parvathi

ABSTRACT. For a positive integer $n, Z_n = \{0, 1, 2, \dots n-1\}$ is a ring of integers modulo n. Let I_v denotes the set of all involuntary elements in Z_n . In this paper, characterization of I_v depending on the positive integer n is discussed and the results are presented.

1. INTRODUCTION

Let $Z_n = \{0, 1, 2, ..., n-1\}$ where n is a positive integer, be a set of equivalence class modulo n, the (Z_n, \oplus_n) be an abelian group of order n, where \oplus_n denotes the addition modulo n. Let I_v denotes the set of all involuntary elements in Z_n . It is easy to see that I_v is a symmetric subset of the group (Z_n, \oplus_n) and the (I_v, \odot_n) is a multiplicative subset of the semigroup (Z_n^*, \odot_n) , where $Z_n^* = Z_n - \{0\}$, and \odot_n denotes multiplication modulo n. In this study we have followed Apostol [1] for Number theory terminology. Venkata Anusha et al. [2] defined involutory Cayley graph on the ring of integers modulo n and some basic properties are studied. Motivated by this, in this paper, for various values of n, we have characterized the set of involutory elements of Z_n .

¹corresponding author

2020 Mathematics Subject Classification. 05C25.

Key words and phrases. Ring of integers modulo n, Involutory set, Symmetric set.

Submitted: 27.12.2020; Accepted: 11.01.2021; Published: 24.01.2021.

C. Prameela Rani and M. Siva Parvathi

2. Involutory set of (Z_n, \oplus_n, \odot_n)

Definition 2.1. Let (Z_n, \oplus_n, \odot_n) be a ring of integers modulo n. An element $m \in Z_n$ such that $m^2 \equiv 1 \pmod{n}$ is considered as an involutory element in Z_n . Then the set of involutory elements is denoted by I_v and therefore $I_v = \{m \in Z_n : m^2 \equiv 1 \pmod{n} \}$.

Lemma 2.1. If (Z_n, \oplus_n, \odot_n) is a ring of integers modulo n. Then the set I_v of Involutory elements of (Z_n, \oplus_n, \odot_n) is symmetric.

Proof. Let $Z_n = \{0, 1, 2, ..., n-1\}$ be a ring of integers modulo n with respect to \bigoplus_n, \bigoplus_n . Suppose $m \in I_v \Rightarrow m^2 \equiv 1 \pmod{n} \Rightarrow m^2 - 1$ is divisible by n, that means $m^2 - 1 = nx$, for some integer x.

Consider $(n-m)^2 - 1 = n^2 + m^2 - 2mn - 1 = n^2 - 2mn + nx = n(n-2m+x) = n$ (some integer). Therefore $(n-m)^2 - 1$ is divisible by n hence $(n-m) \in I_v$. Therefore I_v is symmetric.

3. Characterization of Involutory set I_v of (Z_n, \oplus_n, \odot_n)

In this section, the number of elements in the involutory set of the ring (Z_n, \oplus_n, \odot_n) of integers modulo *n* is categorized for different values of *n*.

Theorem 3.1. If $n = 2^{\alpha}$, where $\alpha \ge 3$ and I_v is the set of involutory elements of ring of integers modulo n, then $|I_v| = 4$.

Proof. Let Z_n be the ring of integers modulo n and $n = 2^{\alpha}, \alpha \ge 3$. Then $Z_n = \{1, 2, 3, 2^2, \ldots 2^3, \ldots 2^{\alpha-1}, \ldots 2^{\alpha} - 1\}$. It is clear that $1^2 \equiv 1 \pmod{n}$, it implies $1 \in I_v$ and $n - 1 = 2^{\alpha} - 1 \in I_v$. If $m = 2^{\alpha-1} - 1$, then $(m - 1)(m + 1) = (2^{\alpha-1} - 2)(2^{\alpha-1}) = 2^{\alpha}(2^{\alpha-2} - 1)$, is divisible by n. It implies $m^2 \equiv 1 \pmod{n}$ and $m = 2^{\alpha-1} - 1 \in I_v$. If $m = 2^{\alpha-1} + 1$, then $(m - 1)(m + 1) = (2^{\alpha-1})(2^{\alpha-1} + 2) = 2^{\alpha}(2^{\alpha-2} + 1)$, is divisible by n. It implies $m^2 \equiv 1 \pmod{n}$ and $m = 2^{\alpha-1} + 1 \in I_v$. For any other factor 2^{β} , where $\beta < \alpha - 1$, neither $2^{\beta} - 1 \operatorname{nor} 2^{\beta} + 1$ is the involutary element of Z_n .

Therefore $I_v = \{1, 2^{\alpha-1} - 1, 2^{\alpha-1} + 1, n-1\}$ and hence $|I_v| = 4$.

Theorem 3.2. If $n = p^{\alpha}$, where p is a prime and $p \neq 2, \alpha \geq 1$ and I_v is the set of involutory elements of ring of integers modulo n then $|I_v| = 2$.

Proof. Consider the set (Z_n, \oplus_n, \odot_n) the ring of integers modulo n. Let $n = p^{\alpha}$, where p is a prime and $p \neq 2, \alpha \geq 1$. Then $Z_n = \{0, 1, 2, \dots, p, \dots, p^2, \dots, p^{\alpha} - 1\}$. Let I_v be the set of involutory elements of (Z_n, \oplus_n, \odot_n) . Since $1^2 \equiv 1 \pmod{n}$, so that $1 \in I_v$ and also by symmetric property of involutory set of Z_n , $n - 1 = p^{\alpha} - 1 \in I_v$. Any other element $m \in Z_n$ is not an involutory element. For $m = p - 1, (m - 1)(m + 1) = p(p - 2) = p^2 - 2p$, it is not divisible by p^{α} , so $m^2 \not\equiv 1 \pmod{n}$ and for $m = p + 1, (m - 1)(m + 1) = p(p + 2) = p^2 + 2p$, which is not divisible by p^{α} , so $m^2 \not\equiv 1 \pmod{n}$.

Similarly for any other factor p^{β} , $\beta < \alpha$, neither $p^{\beta} - 1$ nor $p^{\beta} + 1$ lies in I_v . Therefore the set I_v contains only two elements 1 and n - 1. Hence $|I_v| = 2$. \Box

Theorem 3.3. If $n = 2^{\alpha}p^{\alpha_1}$ where p is a prime and $\alpha \ge 1$ and I_v is the set of involutory elements of ring of integers modulo n then

$$|I_v| = \begin{cases} 2, if\alpha = 1, \\ 4, if\alpha = 2, \\ 8, if\alpha \ge 3. \end{cases}$$

Proof. Consider the set (Z_n, \oplus_n, \odot_n) , the ring of integers modulo n. Let I_v be the set of involutory elements of (Z_n, \oplus_n, \odot_n) .

Let $n = 2^{\alpha}p^{\alpha_1}$, p is a prime and $\alpha_1 \ge 1$. Then there are three possible cases arise.

Case 1: Suppose $\alpha = 1$. Then $n = 2p^{\alpha_1}$, p is a prime, $\alpha_1 \ge 1$ and the ring $Z_n = \{0, 1, 2, \dots, p, \dots, 2p^{\alpha_1} - 1\}$. It is clear that 1 and n - 1 are the involutory elements of Z_n , since $1^2 \equiv 1 \pmod{n}$, $1 \in I_v$ and $n - 1 = 2p^{\alpha_1} - 1 \in I_v$. Also any other factor p^{β} , $\beta < \alpha_1$, neither $p^{\beta} - 1$ nor $p^{\beta} + 1$ lies in I_v . Therefore $|I_v| = 2$.

Case 2: Suppose $\alpha = 2$. Then $n = 2^2 p^{\alpha_1}$, p is a prime, $\alpha_1 \ge 1$ and the ring $Z_n = \{0, 1, 2, \dots, p, \dots, 2^2 p^{\alpha_1} - 1\}$. Clearly 1 and n - 1 are the involutory elements of Z_n , since $1^2 \equiv 1 \pmod{n}$, $1 \in I_v$ and $n - 1 = 2^2 p^{\alpha_1} - 1 \in I_v$. Also for $m = 2p^{\alpha_1} - 1$, $(m - 1)(m + 1) = (p^{\alpha_1} - 2)2p^{\alpha_1} = 2^2 p^{\alpha_1}(p^{\alpha_1} - 1)$, it is divisible by n. That means $m^2 - 1$ is divisible by n. It implies $m \in I_v$. And for $m = 2p^{\alpha_1} + 1$, $(m - 1)(m + 1) = 2p^{\alpha_1}(2p^{\alpha_1} + 2) = 2^2 p^{\alpha_1}(p^{\alpha_1} + 1)$, it is divisible by n. It implies $m^2 - 1$ is divisible by n. Therefore $m \in I_v$. Then the set of involutory elements $I_v = \{1, 2p^{\alpha_1} - 1, 2p^{\alpha_1} + 1, 2^2p^{\alpha_1} - 1\}$ and therefore $|I_v| = 4$.

Case 3: Suppose $\alpha = 3$. Then $n = 2^3 p^{\alpha_1}$, p is a prime, $\alpha_1 \ge 1$ and the ring $Z_n = \{0, 1, 2, \dots, 2p^{\alpha_1}, \dots, 2^2p^{\alpha_1}, \dots, 2^3p^{\alpha_1} - 1\}$. It is clear that 1, n-1 are the involutory

C. Prameela Rani and M. Siva Parvathi

elements of Z_n , since $1^2 \equiv 1 \pmod{n}$, $1 \in I_v$ and $n - 1 = 2^3 p^{\alpha_1} - 1 \in I_v$. If $m = 2p^{\alpha_1} - 1$, then $(m-1)(m+1) = (2p^{\alpha_1} - 2)2p^{\alpha_1} = 4p^{\alpha_1}(p^{\alpha_1} - 1) = 4p^{\alpha_1}(2x)$, for some positive integer x. Since $p^{\alpha_1} - 1$ is even. It implies $(m-1)(m+1) = 2^3 p^{\alpha_1}(x)$. It is divisible by n. Therefore $2p^{\alpha_1} - 1 \in I_v$ and $n - m = 2^3 p^{\alpha_1} - 2p^{\alpha_1} + 1 \in I_v$.

If $m = 2p^{\alpha_1} + 1$, then $(m-1)(m+1) = (2p^{\alpha_1})(2p^{\alpha_1} + 2) = 4p^{\alpha_1}(p^{\alpha_1} + 1)4p^{\alpha_1}(2x)$, for some positive integer x, since $p^{\alpha_1} + 1$ is even. It implies $(m-1)(m+1) = 2^3p^{\alpha_1}(x)$, it is divisible by n. Therefore $2p^{\alpha_1} + 1 \in I_v$ and $n - m = 2^3p^{\alpha_1} - 2p^{\alpha_1} - 1 \in I_v$.

If $m = 2^2 p^{\alpha_1} - 1$, then $(m - 1)(m + 1) = (2^2 p^{\alpha_1} - 2)2^2 p^{\alpha_1} = 2^3 p^{\alpha_1}(p^{\alpha_1} - 1)$, it is divisible by n. Therefore $2^2 p^{\alpha_1} - 1 \in I_v$.

If $m = 2^2 p^{\alpha_1} + 1$, then $(m-1)(m+1) = (2^2 p^{\alpha_1})(2^2 p^{\alpha_1} + 2) = 2^3 p^{\alpha_1}(p^{\alpha_1} + 1)$, it is divisible by *n*. Therefore $2^2 p^{\alpha_1} + 1 \in I_v$. Hence the set of involutory elements of Z_n , $I_v = \{1, 2p^{\alpha_1} - 1, 2p^{\alpha_1} + 1, 2^2 p^{\alpha_1} + 1, 2^3 p^{\alpha_1} - 2p^{\alpha_1} - 1, 2^3 p^{\alpha_1} - 2p^{\alpha_1} + 1, 2^3 p^{\alpha_1} - 2p^{\alpha_1} - 1\}$ and therefore $|I_v| = 8$.

Case 4: Suppose $\alpha > 3$. Then $n = 2^{\alpha}p^{\alpha_1}$, p is a prime, $\alpha_1 \ge 1$ and the ring $Z_n = \{0, 1, 2, \ldots, 2^{\alpha}p^{\alpha_1} - 1\}$. It is clear that 1, n - 1 are the involutory elements of Z_n , since $1^2 \equiv 1 \pmod{n}$, $1 \in I_v$ and $n - 1 = 2^{\alpha}p^{\alpha_1} - 1 \in I_v$. Then the number of distinct partitions of $\{2^{\alpha-1}, 2, p^{\alpha_1}\}$ is 3 and in each partition, there exist two involutory elements. Hence the total number of involutory elements is 8. \Box

Theorem 3.4. If $n = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot p_3^{\alpha_3} \cdot \cdots \cdot p_k^{\alpha_k}$ where each p_i is a prime number and $\alpha_1, \alpha_2, \ldots, \alpha_k \ge 1$ and I_v is the set of involutory elements of ring of integers modulo n, then $|I_v| = 2^k$.

Proof. Consider the set (Z_n, \oplus_n, \odot_n) the ring of integers modulo n. Let I_v be the set of involutory elements of Z_n . Let $n = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot p_3^{\alpha_3} \dots \cdot p_k^{\alpha_k}$ where each p_i is a prime number and $\alpha_1, \alpha_2 \dots, \alpha_k \ge 1$. Consider any two random partitions on distinct prime powers of n, let $P_1 = \{p_1^{\alpha_1}, p_2^{\alpha_2}, \dots, p_i^{\alpha_i}\}$ and $P_2 = \{p_{i+1}^{\alpha_{i+1}}, p_{i+2}^{\alpha_{i+2}}, \dots, p_k^{\alpha_k}\}$ and $P_1 \cap P_2 = \phi$. Then there exist two positive integers x and y such that $|(p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot \dots \cdot p_i^{\alpha_i})x - (p_{i+1}^{\alpha_{i+1}} \cdot p_{i+2}^{\alpha_{i+2}} \dots \cdot p_k^{\alpha_k})y| = 2$, where $1 \le x \le p_{i+1}^{\alpha_{i+1}} \cdot p_{i+2}^{\alpha_{i+2}} \dots \cdot p_k^{\alpha_k}$ and $1 \le y \le p_1^{\alpha_1} \cdot p_2^{\alpha_2} \dots \cdot p_i^{\alpha_i}$. If $m = \frac{(p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot \dots \cdot p_i^{\alpha_i})x - (p_{i+1}^{\alpha_{i+1}} \cdot p_2^{\alpha_2} \cdot \dots \cdot p_k^{\alpha_k})y}{2}$ then

586

$$(m-1)(m+1) = (p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot \dots \cdot p_i^{\alpha_i}) x \cdot (p_{i+1}^{\alpha_{i+1}} \cdot p_{i+2}^{\alpha_{i+2}} \cdot \dots \cdot p_k^{\alpha_k}) y$$

= $(p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot p_3^{\alpha_3} \cdot \dots \cdot p_k^{\alpha_k}) xy.$

It is divisible by n. Therefore $m^2 \equiv 1 \pmod{n}$ and $m \in I_v$ and $n - m \in I_v$. From each partition, we get two involutory elements and the number of distinct random partition of these k prime powers of n is

$$\frac{\binom{k}{1} + \binom{k}{2} + \binom{k}{3} + \dots + \binom{k}{k-1}}{2} = \frac{\binom{k}{0} + \binom{k}{1} + \binom{k}{2} + \dots + \binom{k}{k} - \binom{k}{0} - \binom{k}{k}}{2} = \frac{2^k - 2}{2}.$$

From all the possible partitions, there exists $2\left(\frac{2^k-2}{2}\right) = 2^k - 2$ involutory elements of Z_n . Since for any n, 1 and $n - 1 \in I_v$. Therefore the total number of elements in I_v is $2^k - 2 + 2 = 2^k$.

Theorem 3.5. If $n = 2^{\alpha} \cdot p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot \ldots p_k^{\alpha_k}$ where p_i is a prime and $\alpha_i \ge 1, \forall i$ and I_v is the set of involutory elements of ring of integers modulo n then

$$|I_v| = \begin{cases} 2^k, & if \ \alpha = 1, \\ 2^{k+1}, & if \ \alpha = 2, \\ 2^{k+2}, & if \ \alpha \ge 3. \end{cases}$$

Proof. Consider the ring of integers modulo n and $n = 2^{\alpha} \cdot p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot \ldots \cdot p_k^{\alpha_k}$ where each p_i is a prime and $\alpha_i \ge 1, \forall i$ Then there are three possible cases arise.

Case 1: Suppose $\alpha = 1$. Then $n = 2^{\alpha} . p_1^{\alpha_1} . p_2^{\alpha_2} p_k^{\alpha_k}$. Consider two partitions as $\{2\}$ and $\{p_1^{\alpha_1} . p_2^{\alpha_2} p_k^{\alpha_k}\}$ on the prime powers of n. Since each p_i is odd, neither $(p_1^{\alpha_1} . p_2^{\alpha_2} p_k^{\alpha_k}) - 2$ nor $(p_1^{\alpha_1} . p_2^{\alpha_2} p_k^{\alpha_k}) + 2$ is divisible by 2. With this reason, no involutory elements exists. So we consider $2p_i^{\alpha_i}$ for any i, as a single number. Now we have $(2p_i^{\alpha_i} . p_1^{\alpha_1} . p_2^{\alpha_2} ... , p_{i-1}^{\alpha_i-1} . p_{i+1}^{\alpha_i+1} ... , p_k^{\alpha_k})$ are k distinct factors of n. By the Theorem 3.4, the number of elements in I_v is 2^k .

Case 2: Suppose $\alpha = 2$. Then $n = 2^2 \cdot p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot \cdots \cdot p_k^{\alpha_k}$. Now we have $2^2 \cdot p_i^{\alpha_i} p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot \cdots \cdot p_k^{\alpha_k}$ are k + 1 distinct factors of n. By the Theorem 3.4, the number of elements in I_v is 2^{k+1} .

Case 3: Suppose $\alpha \geq 3$. Then $n = 2^{\alpha} \cdot p_1^{\alpha_1} \cdot p_2^{\alpha_2} \dots \cdot p_k^{\alpha_k}$. Now the k + 2 numbers, $2^{\alpha-1}, 2 \cdot p_1^{\alpha_1}, p_2^{\alpha_2} \dots \cdot p_k^{\alpha_k}$ are distinct factors of n. By the Theorem 3.4, $|I_v| = 2^{k+2}$.

C. Prameela Rani and M. Siva Parvathi

References

- [1] T. M. APOSTAL: *Introduction to Analytical Number Theory*, Springer International, Student Edition, 1989.
- [2] M. VENKATA ANUSHA, M. SIVA PARVATHI: Properties of the Involutory Cayley graph of (Z_n, \oplus, \odot) , AIP Conference Proceedings 2246, (2020), ID020065.

DEPARTMENT OF APPLIED MATHEMATICS SRI PADMAVATI MAHILA VISVAVIDYALAYAM TIRUPATI, ANDHRA PRADESH, INDIA *Email address*: c.prameela7@gmail.com

DEPARTMENT OF APPLIED MATHEMATICS SRI PADMAVATI MAHILA VISVAVIDYALAYAM TIRUPATI, ANDHRA PRADESH, INDIA *Email address*: parvathimani2008@gmail.com

588