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A NEW SPECTRAL PARAMETER GRADIENT VECTOR THAT SATISFIED
WEAK SECANT EQUATION FOR SOLVING LARGE SCALE UNCONSTRAINED

OPTIMIZATION

M.I. ISHAK1, S.M. MARJUGI, AND L.W. JUNE

ABSTRACT. This paper presents a new method called LBFGS-QM for line search
selection in the frame of spectral L-BFGS method. Choosing a good line search
can lead to a stable dynamic system and improving the convergence. We embed
a new kind of search direction by large-scale unconstrained optimization prob-
lems to overcome the efficiency of the line search. The process begins with a new
expression of spectral parameter for search direction that satisfied weak-secant
equations. The effectiveness relies on choosing the search direction to design
algorithm with satisfied line sufficient descent conditions. The numerical exper-
iment shows that the performance of our method is more effective in contrast
to the standard initial approximation in terms of number of iteration, number of
function/gradient calls and CPU times.

1. INTRODUCTION

Consider the following large scale unconstrained optimization problem:

min
x∈<n

f(x),

where f(x) : Rn → R twice continuously differentials and n is large. In this paper,
we are interested on unconstrained optimization problem. This is about to finding
the minimum of an objective function that depends on real variables.
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The main purpose of this research is to solve the large-scale unconstrained op-
timization by apply a new spectral of gradient vector via limited-memory Broy-
den–Fletcher–Goldfarb–Shanno (L-BFGS) method. In this large-scale unconstra-
ined optimization problem, we are interest only with a large number of n and we
solve it using L-BFGS method because of its simplicity and low storage require-
ment. L-BFGS method also very competitive due to its low iteration cost. Some
limited memory quasi-Newton formula, such as the compact L-BFGS updating for-
mula, can preserve positive definite property based on some mild conditions [1].
Due to these remarkable advantages of the limited memory quasi-Newton formu-
las, they are widely utilized for large-scale optimization problems. We view the
L-BFGS method as an adaptation of the BFGS method to large problem, and the
implementation is almost identical to the standard BFGS method, the difference is
the inverse Hessian approximation is not formed explicitly. The inverse of Hessian
matrix of f is updated in this method. The L-BFGS method generates a sequence
xk by the following equation:

xk+1 = xk + akdk,

where dk = −∇f (xk) = −Hkgk denotes the gradient vector at xk and ak is the
steplength. The steplength must always have a positive value such that f(x) is
sufficiently reduced. The success of a line search depends on the effective choices
of both the search direction dk and the step size ak. There are a lot of formulas in
calculating the step size, which are divided into an exact line search and an inexact
line search. Meanwhile, Hk approximates the inverse Hessian matrix at xk. At each
iteration, xk is a stationary point in order to get minimum or maximum value, and
any new point depends on dk and ak. We can determine dk first and then compute
ak through search direction and line search procedure. In the L-BFGS method,
instead of forming the matrices Hk, we save the vectors sk and yk that define them
implicitly. H0 is given while Hk is updated according to quasi-Newton condition.

Hkyk = sk,

where sk = xk+1 − xk and yk = gk+1 − gk satisfied.
Our idea is to propose our new spectral parameter of the gradient that we named

as L-BFGS-QM method stand for Qadar, Muhammad Izwan and Mahani to satisfied
weak secant equation. We modified the line search, αdk, by introduced θk as a new
spectral and we also denoted θkI as an approximation of Hessian H at xk. For this
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purpose, we choose to let θk to satisfy the weak quasi-Newton equation of [2]:

yTkHkyk = sTk yk,

yTk (θI)yk = sTk yk = ρk,

where ρk is introduced and H is n × n matrix approximating the Hessian matrix
which act as second derivatives and yTk is n × 1 matrix. We will now derive a
closed-form expression for θk. We let, yk = Gk+1sk, then from the left hand-side
weak secant equation, we obtained,

sTk yk =sTk (Gksk) = sTk (gk+1 − gk) = ρk

Let ρk = L (gk+1, gk, f (xk)), where L is Langrangian, we introduced θk as

θk =
ρk
yTk yk

=
L (gk+1, gk, f (xk))

yTk yk
.

2. METHODOLOGY

In this section, we propose a modification a new spectral parameter of the line
search via L-BFGS method which is θk, that must satisfied weak secant equation in
solving unconstrained optimization. Therefore, the proposed method must possess
an ability to reduce the gradient components to encourage this decreasing together
property, the component of Hk = Dk+1 is required. Precisely, we want to restrict
the components of D−1k under some measure. For this purpose we consider, for
any positive definite matrix D, the function

(2.1) Φ(D) = tr(D)− ln(det(D)),

where ln denotes the natural logarithm and tr is trace of matrix. Note that for all
eigenvalues of D, d1 ≥ d2 ≥ . . . ≥ dn > 0, we have

(2.2) Φ(D) =
n∑

i=1

(di − ln di) > 0.

Then, we derive an updating scheme for Dk where the components are formu-
lated such that Φ (Dk) is minimized while satisfying to the weak quasi-Newton
relation,

(2.3) min tr (Dk+1)− ln (det (Dk+1))

(2.4) s.t. sTkDk+1sk = sTk yk
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where Dk+1 = diag
(
D

(1)
k+1, . . . , D

(n)
k+1

)
and sk =

(
s
(1)
k , . . . , s

(n)
k

)
. We namely (2.2)

as F (λ). Then, the minimization problem (2.1) and (2.2) becomes

(2.5) min

(
n∑

i=1

D
(i)
k+1

)
− ln

(
n∏

i=1

D
(i)
k+1

)
,

(2.6) s. t

(
n∑

i=1

(
s
(i)
k

)2
D

(i)
k+1

)
− sTk yk = 0.

Thus, the Langrangian corresponding to (2.3) and (2.4) is given by

(2.7) L(D,λ) =

(
n∑

i=1

D
(i)
k+1

)
− ln

(
n∏

i=1

D
(i)
k+1

)
+ λ

[(
n∑

i=1

(
s
(i)
k

)2
D

(i)
k+1

)
− sTk yk

]
,

where λ is the Lagrange multiplier associated with the Lagrange function (2.5).
Differentiating (2.5) partially with respect to each D

(i)
k+1 and setting the partial

derivations to zero gives:

(2.8)
∂L

∂D
(i)
k+1

= 1− 1

D
(i)
k+1

+ λ
(
s
(i)
k

)2
= 0, i = 1, 2, . . . , n,

which yields

(2.9) D
(i)
k+1 =

1

1 + λ
(
s
(i)
k

)2 , i = 1, 2, . . . , n.

Now, by substituting (2.6) into the constraint (2.2), we have

(2.10) F (λ) =
n∑

i=1


(
s
(i)
k

)2
1 + λ

(
s
(i)
k

)2
− sTk yk,

where the Lagrange multiplier λ can be gained by solving the nonlinear equation
F (λ) = 0. Note that F is monotonically decreasing in [0,∞) since F ′(λ) < 0 for
all λ ∈ [0,∞), and reaches its maximum when λ = 0. Thus, (2.7) has a unique
positive solution if sTk sk > sTk yk. A very high precision is neither necessary nor rec-
ommendable in the resolution of this nonlinear equation as it may lead to undesir-
able computation times in the resolution of the nonlinear optimization problem.
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Therefore, when sTk sk > sTk yk the Lagrange multiplier, λk can be approximated by

(2.11)

λk ≈ λ̄− F (λ̄)

F ′(λ̄)

=
sTk sk − sTk yk∑n

i=1

(
s
(i)
k

)4 .
Since λ > 0,we haveD(i)

k+1 < 1 for all i = 1, . . . , nwhenever sTk yk
sTk sk

< 1. Conversely

when sTk sk < sTk yk, a parameter in the form of sT yk
sTk sk

would be effective in enlarging

the components ofDk+1 since sTk yk
sTk sk

> 1. Combining the two occasions, the updating
formula for Dk+1 is given by the following:

(2.12) Dk+1 =

 diag
(
D

(1)
k+1, . . . , D

(n)
k+1

)
sTk sk > sTk yk

sTk yk
s′ksk

I otherwise
,

where D(i)
k+1 is defined by (2.6) with λ given by (2.8).

3. CONVERGENCE ANALYSIS

In numerical analysis, a sequence of an iterative method that generated by the
BFGS algorithm converge for an arbitrary initial approximation is called globally
convergence. Generally, L-BFGS method is globally convergence on uniformly
convex problem and its rate of convergence is <-linear when the identity matrix
is used as initial to restart the updating scheme based on [3]. The convergence
analysis that we used based on [4]. In order to analyze the global convergence
property we also set up an assumptions concerning on objective function where
the matrix of second derivatives of f will denoted byGwhich is the Hessian matrix
of f . Our analysis will proceed under the following assumptions:

Assumption 1

• The objective function f is twice continuously differentiable.
• The level set B = {x ∈ Rn : f(x) ≤ f (x0)} is convex.
• There exist positive constants M1 and M2 such that

(3.1) M1‖z‖2 < zTG(x∗)z < M2‖z‖2,
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for ∀z ∈ Rn and ∀z ∈ B This implies that the objective function f has a
unique minimize x∗ in B.

The next lemma states the boundedness of ‖Dk‖ under the assumption that Do

is taken to be the identity matrix.

Lemma 3.1. Let x0 be a starting point such that f satisfies Assumption 1, and Do =

I, where I is the n×n identity matrix. Then, for Dk+1 defined by (2.9), the sequence
‖Dk‖ is bounded by some positive constants c1 and c2.

Proof. See Liu and Nocedal [5]. �

Lemma 3.2. Suppose that the assumptions in Lemma 3.1 hold. Then there exist
positive constants c3 and c4 such that

(3.2) dTk gk ≤ −c3 ‖gk‖
2 and ‖dk‖2 ≤ c4 ‖gk‖4 ,

where dk = −D−1k gk where Dk defined by (2.9).

A prominent feature of the updating formula (2.9) is that it generates search
directions that satisfy (3.1), independent of any line search techniques. The first
theorem is partly due to [6] and the second one is essentially established by [7]
and can be found by [8].

Proof. Lemma 3.2 is direct result of Lemma 3.1. Thus, see Liu and Nocedal [5]. �

Theorem 3.1. Under Assumption 1 there exist positive constants c1 and c2 such that,
for any xk and any dk with gTk dk < 0, the steplength λk produced by Backtracking
line search (BTA) Algorithm will satisfy either

(3.3) f (xk + λkdk)− f (xk) ≤ −c1
(
gTk dk

)2
‖dk‖2

,

or

(3.4) f (xk + λkdk)− f (xk) ≤ c2g
T
k dk.

Furthermore, if dk satisfies the following conditions:

(3.5) gTk dk ≤ −c3 ‖gk‖
2
and ‖dk‖ ≤ c4 ‖gk‖

for some positive constants c3 and c4, then

(3.6) lim inf
k→∞
‖gk‖ = 0.
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Proof. The first part of Theorem 3.1 is equal to Lemma 4.1 in [6]. In addition, if
(3.4) hold for any dk, then (3.2) and (3.3) become

(3.7) f (xk + λkdk)− f (xk) ≤ −c1c
2
3

c24
‖gk‖2

and

(3.8) f (xk + λkdk)− f (xk) ≤ −c2c3 ‖gk‖2 ,

since f is bounded below, we have lim infk→∞ f (xk + λkdk) − f (xk) = 0, which
also implies (3.5). �

Theorem 3.2. Under Assumption 1, let xk be a sequence generated by Nonmonotone
Line Search (NLMS) algoritm where the considered search direction dk satisfied the
following conditions:

(3.9) gTk dk ≤ −c1 ‖gk‖
2
and ‖dk‖ ≤ c2 ‖gk‖ ,

where c1 and c2 are some positive constants. Then

• the sequence xk remains in D and every limit point x∗ satisfies g (x∗) = 0;
• no limit point of xk is a local maximum of f ;
• if the number of stationary points of f in D is finite, the sequence xk con-

verges.

4. RESULTS AND DISCUSSION

The performance of our new spectral parameter gradient vector that we pro-
posed in weak secant equation for solving unconstrained optimization problem
has been examined. We are using selected 20 test problems in Table 1 for our
proposed new parameter to analyse the performance of the method. The L-BFGS
routine utilized as a part of this investigation was produced by [9] with the execu-
tion of the standard L-BFGS strategies for [5]. By using Wolfe condition, the step
length ak can be find as

f (xk + akdk) ≤ f(x) + c1akg (xk)T dk

g (xk)T dk ≥ c2g (xk)T dk,
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with the choice c1 = 10−4 and c2 = 0.9. The stopping condition has been set up as
the number of function and gradient evaluation exceed 2000. Terminations of all
the runs are active when ‖g (xk)‖ ≤ 10−4 ×max (1, ‖(xk)‖) .

The performance profile [10] for a solver is the cumulative distribution function
for a matrix. It is an instrument for bench-marking optimization software to access
and look at the execution of optimization technique. For example, there are ns

solvers running on np problem, p and solver s,we determined as fs,p as the number
of function/gradient evaluations needed to solve the problem. The number of
problems in the model test set is denote as p and ns. The performance are define
by [9] as,

rs,p =
fs,p

min (fs,p : 1 ≤ s ≤ ns)
.

The performance profile function is defined as,

ρs(τ) =
1

np

size (p : 1 ≤ s ≤ np, log (rs,p ≤ τ))

where ρs(τ) is the probability for solver s that the performance ratio rs,p is within a
factor τ of the best possible factor. The probability that the solver will win over all
the others is when τ = 1. In order to get a better comparison between the results,
user has to consider the value of ρs(1). In the test, the result create by running out
adjusted algorithm as the solver on the test problems and record the information
in terms of number of iterations, number of function/gradient evaluation and the
CPU time in second.

In this section, we will discuss about the performance of our new parameter gra-
dient vector in LBFGS-QM method with LBFGS-I and LBFGS-MI. We have chosen
two indicator in order to see the performance of our comparison which is:

1. n = 5000,m = 3, 5

2. n = 10000,m = 3, 5

where n is the number variable while m is the number of storage that we obtained.
From the above indicator, we compared the performance profile based on number
of iterations, number of function/gradient and CPU time in seconds.

Figures 1-6 show the performance profile in different terms of various area of
interest consist of number of iterations, number of function/gradient and CPU
time in seconds.

Firstly, we will focus on the number of iteration graphs. When we tested the
problem with m = 3 and n = 5000 in Figure 1, it is clearly showed that our new
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TABLE 1. Selected 20 test problems for comparing our proposed new
parameter, LBFGS-QM with LBFGS-Identity (LBFGS-I) and LBFGS-
Multiple Identity (LBFGS-MI).

Raydan 2
Extended Tridiagonal 1

Diagonal 5
Extended Maratos

Extended Cliff
Quadratic Diagonal Perturbed

Extended Wood
Exrended Quadratic Penalty QP2

Extended EP1
TRIDIA (CUTE)

ARWHEAD (CUTE)
NONDLA (CUTE)

NONQUAR (CUTE)
DQDRTIC (CUTE)

Partial Pertubed Quadratic PPQ1
Tridiagonal Pertubed Quadratic

LIARWHD (CUTE)
Diagonal 6

SINQUAD (CUTE)
Scaled Quadratic SQ2

parameter LBFGS-QM have a better performance in term of number of iteration
where it take less number of iterations calls as compared to the LBFGS-MI and
LBFGS-I. When the number of storage, m change to 5 it showed that LBFGS-QM
have a good performance compared to LBFGS-MI and LBFGS-I. However, when
the number of n increase up to 10000 at Figure 2, our new parameter is obviously
showed the best performance among the existing LBFGS-MI and LBFGS-I at m = 3

and m = 5.
Next, we continued our analysis in term of number of function/gradient calls.

The number of function evaluation is equal to the number of gradient evaluation
because it can measure as the identical quantity as gradient is called whenever
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FIGURE 1. Performance profile of LBFGS-QM, LBFGS-I, and LBFGS-
MI based on number of iteration for n = 5000.

FIGURE 2. Performance profile of LBFGS-QM, LBFGS-I, and LBFGS-
MI based on number of iteration for n = 10000.

function is called. In this case, Figure 3 show when m = 3 and n = 5000 is be-
ing used it present that LBFGS-QM is more steepest and gives good performance
such require less number of function/gradient calls as compared to LBFGS-MI and
LBFGS-I. When m = 3 and n = 10000, the performance is poorly at the beginning
but it begin to improve after certain test problem and it is still the better perfor-
mance compare to the LBFGS-MI and LBFGS-I. Next, when the m change to 5, the
performance of LBFGS-QM only needs less number of function/gradient calls as
compare to the LBFGS-MI and LBFGS-I while for n = 10000, the performance a
little bit slower at the beginning, but enhanced it performance after the certain
test problems.
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FIGURE 3. Performance profile of LBFGS-QM, LBFGS-I, and LBFGS-
MI based on number of function/gradient for n = 5000.

FIGURE 4. Performance profile of LBFGS-QM, LBFGS-I, and LBFGS-
MI based on number of function/gradient for n = 10000.

Apart from the number of iteration and the number of function/gradient evalu-
ation, we also focus on CPU time in seconds. The CPU time is analyzed based on
second and its duration includes times needed to generate search direction with
specific end goal to perform line search and convergence test. Figure 5 showed
that the performance of our LBFGS-QM take a shorter time to converge com-
pared with LBFGS-MI and LBFGS-I. In addition, same goes with Figure 6 when
we change n from 5000 to 10000, LBFGS-QM only required shorter time as com-
pare to LBFGS-MI and LBFGS-I.
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The experiment shows that our proposed parameter have an excellent perfor-
mance over existing LBFGS-MI and LBFGS-I. The figures evidently display the per-
formance profile of our proposed parameter that are in outstanding state com-
pared to the existing LBFGS-MI and LBFGS-I. These demonstrate that our new
parameter is the best performer compared to the LBFGS-MI and LBFGS-I.

FIGURE 5. Performance profile of LBFGS-QM, LBFGS-I, and LBFGS-
MI based on CPU times for n = 5000.

FIGURE 6. Performance profile of LBFGS-QM, LBFGS-I, and LBFGS-
MI based on CPU times for n = 10000.
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5. CONCLUSION

In this paper, we interested to evaluate our new spectral parameter which is
LBFGS-QM. These variant of spectral parameter are able to display it efficiency and
effectiveness in reducing the number of iterations, number of function/gradient
and CPU time in seconds. It will be interesting if we diversify the scope to use
larger number of storage such as n = 50000 and compared the result with the
current research and find the way to increase the effectiveness of the research.
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