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A MATHEMATICAL MODEL FOR PULSATILE GONADOTROPIN-RELEASING
HORMONE RELEASE FROM HYPOTHALAMIC EXPLANTS OF MALE

MARMOSET MONKEYS COMPARED WITH MALE RATS

R. Kalaiselvi, A. Manickam1, and Mamta Agrawal

ABSTRACT. The present research was conducted to quantify tissues in vitro for
gonadotropin-releasing identified primary culture of marmoset hypothalamic
muscles for 2days to evaluate in vitro GnRH release profiles from testis- in-
tact and gonadectomised males in hypothalamic explants. The Pulsalite GnRH
release profile was readily demonstrated from isolated in vitro hypothalamic
explants of adult male marmost monkeys. On day 1 of cultivation 0 male mar-
mostgonadectomy results from hypothalamic explants to high mean gnrh and
pulse largeness. The largeness of Gnrh pulses increased by day 2 in 67 per
cent of intact testis marmosets hypothalamic explants, indicating release from
an endogenous GnRH regulator. Finally, we conclude that the application part
coincides with a mathematical model and the result is linked to the medical
report. In the future, this paper will be very beneficial in the medicinal field.
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1. INTRODUCTION

Any combined distribution functions by Gompertz (1825) and Verhults (1838,
1845, 1847) during the first half of the 19th century compared traditional hu-
man impermanence tables and reflected impermanence growth [3]:

(1.1) F (s) = (1− qe−sµ)γ for s > 1/µ In p,

where all the positive real numbers are p, µand γ. Only in the twentieth century
Ahuja and Nash (1967) took this definition into account and rendered some
more generalization [1]. The generalized distribution or exponential distribu-
tion is known as a special case of the distribution Gompertz-Verhust (1.1). So,
since q = 1. X is a generic random exponential variable with two parameters, if
it has the distribution function

(1.2) E(z; γ, µ) = (1− p−µz)γ, z > 0.

For γ, µ >0. Here γ and µ parameters.
The three-parameter exponentiated Weibull distribution, suggested by Mud-

holkar and Srivastava (1993) as G(s) = [F(s)]ˆβ, where G(t) is the base line
distribution function [6]. The Authergupta and Kundu (2001) observe that
the generalized exponential distribution of two parameters can be used quit
effectively to evaluate positive lifetime results, especially in place of the two-
parameter Weibull distribution. Therefore all three distributions, namely gen-
eralized exponential, Weibull and gamma, are in various forms all extensions
/ generalizations of the exponential one-parameter distribution. All three dis-
tributions, namely generalized exponential, Weibull and gamma, are therefore
all extensions / generalizations of the exponential one-parameter distribution in
different ways.

(1.3) E(z;m,µ) = (1− p−µz)m, z > 0.

For µ >0, obviously (1.3) the generalized exponential distribution function
with µ = m. Therefore, contrary to the Weibull distribution function,

The generalized exponential distribution function, which describes a sequence
system, is a parallel system for simulation purposes is very significant. Thanks to
the simplicity of the distribution function the generalized exponential random
variable can be generated easily.For example, if U is a uniform random variable
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from [0, 1], then Z = −(1/µ) in (1 − V
1
γ ) has generalized exponential distri-

butions with the distribution function given by (1.2). Both science calculators
or computers already have a standard uniform random number generator, such
that generalized random exponential variance can be conveniently generated
from a uniform random number generator.

This paper’s main purpose is to provide a general introduction to the com-
mon exponential distribution and discuss some of its recent developments.This
unique method has many benefits and presents the professional with another
chance to analyze skewed evidence regarding lifespan. This article will help
practitioners get the appropriate context and connections to this dissemination.

2. MATHEMATICAL MODEL AND ASSUMPTION

If random variable Z has the function of distribution (1.2),

E(z; γ, µ) = γµ
(
1− p−µz

)γ−1
p−µz, z > 0.

For µ, µ > 0 see [4]. Compactness functions may take different forms of wide-
spread exponential distribution. For γ ≤ 1, it’s a decreasing function and for
γ > 1, it’s a Weibull unimodal, distorted, right tail. It is observed that it is not β
For µ = 1, the mode for> 1 is logα and the mode for α ≤ 1 is 0. The median is at
− In

(
1− (0.5)1/γ

)
. The mean median and mode are non-linear vector functions

of the form and, when the vector of the type goes to infinity, they both seem
infinite. The standard, median, and mode for α-large values are roughly equal
to logα but converge at different speeds. It is possible to obtain the different
moments of a generalized exponential distribution by using its momentary gen-
erating function. If Z follows FG(γ, µ), then the moment generating function
N(s) of Z for s < µ, is

N(s) = Fpsz =
Γ(γ + 1)Γ(1− s/µ)

Γ
(
µ− s

µ
+ 1
) .

Therefore, it immediately follows that

F (z) = 1/µ[ψ(γ + 1)− ψ(1)], u(x) = 1/µ2 [ψ(1)− ψ′(γ + 1)] ,

where ψ(z) and its derivatives are the diagram and polygamma functions. The
mean of a generalized exponential distribution is increasing to∞ as γ increase,



632 R. Kalaiselvi, A. Manickam, and Mamta Agrawal

for fixed µ. The Weibull distribution. In the case of gamma distribution, the
variance goes to infinity as the shape parameter increases, whereas in the case of
the distribution, the variance is about π2/6µγ2 for high shape parameter values
γ.

Now we provide a stochastic representation of EG(γ, 1) for details see Gupta
and Kundu [4], which can also be used to calculate yarious moments of a gen-
eralized exponential distribution. If α is a positive integer. say n, then the X
distribution is the same as that of

∑m
i=1 Zi/i, wherever Zj’s i.i.d. Random expo-

nential vector with mean 1.
When a isn’t an integer, then Z is the same as

[y]∑
i=1

Xi

i+ (µ)
+ Z.

Here (γ) is the fractional component then the random variable Z follows
EG(γ, 1), irrespective of the X is: Next we think about the generalized expo-
nential distribution’s skewness and kurtosis. The skewhood and kurtosis can be
measured as

√
ω1 = λ3/λ

3/2
3 , ω2 = λ4/λ

2
2.

Here λ2, λ3, and λ4 are respectively the second third and fourth moments and
the digamma and polygamms feature can be described:

λ2 = 1/µ2[ψ′(1)− ψ′(z + 1) + [ψ(z + 1)− ψ(1)]2]

λ3 = 1/µ3[µ′′ (γ + 1)− µ′′(1) + 3(ψ(γ + 1)− ψ(1)(ψ′(1)− ψ′(γ + 1))

+ (ψ(γ + 1)− ψ(1))3]

λ4 = 1/µ4[ψ′′′(1)− ψ′′′(γ + 1) + 3(ψ′(1)− ψ′(γ + 1))2 + 4(ψ(γ + 1)− ψ(1))

(ψ′′(γ + 1)− ψ′′(1)) + 6ψ(γ + 1)− ψ(1))2(ψ′(1)− ψ′(γ + 1) + ψ′′′(1)

− ψ′′′(γ + 1))4].

Both the skewness and kurtosis are independent of scale parameter. It is ob-
served numerically that the function of α is diminished by both skewness and
kurtosis, and that the maximum value of skewness is around 1.139547.

(2.1) αZ(u;γ) =
In
(

1− v
1
γ

)
+ In

(
1−

(
1− v 1

Z

))
− 2 In

(
1−

(
1
2

)1/γ)
In
(

1− v
1
γ

)
− In

(
1− v

1
γ

)
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The plots of the skewness functions (2.1) of the generalized exponential distri-
bution for different values of are presented.

2.1. Hazard function and its properties.

h(z; γ, µ) =
f(z; γ, µ)

1− E(z; γ, µ)
=
γµp−µz(1−p

−µz)
γ−1

1− (1− p(−µz)γ)
As π is the parameter of the scale, the shape of the function does not depend on
ŷ, it depends only on γ. For any set, the generalized exponential distribution hes
an increasing hazard function for y > 1 and has a decreasing danger function for
γ >1 and has a decreasing danger function for γ < 1. It has constant function of
danger to γ = 1. These results are not very hard to prove since the generalized
exponential distribution has γ > 1 log-concave density and α log-convex [4].
The hazard function of the generalized exponential distribution is exactly the
same as that of the gamma distribution hazard function, which is distinct from
the Weibull distribution hazard function [4].

The inverse danger function has recently become popular. extensive exponen-
tial distribution is

P (Z; γ, µ) =
f(z; γ, µ)

E(z; γ, µ)
=

γµp−µz

1− p−µz
.

The inverse hazard function is found to be a decreasing function of z over all
γ-values. By Nanda and Gupta (2001) [7] some other reversed hazard function
properties of a generalized exponential distribution were obtained. Remember
that λµp−z/1 − p−z [7]. The hazard function and the reversed hazard function
can be used to measure the fishing knowledge matrix of the unknown param-
eter, [2]. See [5] for the generalized exponential distribution r(x;α, λ) in a
convenient way and it can easily be used to calculate the Fisher information
matrix.

3. APPLICATION

The hypothalamic decapeptidegonatrotrabine - (GnRH) for regulating the
production of pulsalitegonadotropine through binding in all vertebrates and in
most mammals to pituitary gonadotrabine (1.1). In this regard, the primary
testicular-mediated negative feed back regulation for the anterior pituitary re-
lease of gonadotropin is provided by testosterone (T). The dynamics of GnRH
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release improved from day 0 to day 2, in terms of the pulse amplitude and mean
concentration, in the following four cases (of the following 2 males). GnRH pub-
lishes profiles of two descriptive hypothalamic explants collected from male rats
with intact testis that display invarientsGnRHpulsatility in the 78-h population.
GnRH release dynamics remained constant during the processing, with no signs
of in- or inter-male variation in rats, pulse duration, pulse nadir, incidence val-
ues remaining unbothered during the trial thalamic explants since no evidence
of in-or inter-male variability in rats.
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4. MATHEMATICAL RESULTS

5. CONCLUSION

In this research reveals a robust in vitro model for the observation over 3
days of continuous release of GnRH from marmosthypothamic explants. This
approach would significantly improve the experimental manipulation of each
organism as opposed to the techniques. We are also absorbed by the possible ef-
fects of higher stages of despicable GnRH and GnRH pulse largeness linked with
both gonadectomised marmosets as opposed to testis-intact marmosets and ob-
servations from intact marmosets. Our finding differences with a nonexistence
of gonadectomise outcome on the release of GnRH from hypothalamic explants
on or after male rats. Ultimately, we conclude that the application part coincides
with a mathematical model and the result is linked to the medical report. In the
future, this paper will be very beneficial in the medicinal field.
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