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A CUBIC SELF-CENTERED DISTANCE DEGREE INJECTIVE (DDI) GRAPH

Medha Itagi Huilgol1 and V. Sriram

ABSTRACT. A graph is distance degree injective (DDI) graph if no two vertices
have the same distance degree sequence. In this short note we show the ex-
istence of a regular(cubic) self-centered distance degree injective (DDI) graph,
which was an open problem.

1. INTRODUCTION

Distance degree sequence of a vertex in a graph gives a distribution of other
vertices depending on their distance to this vertex. When these sequences are
listed for all vertices of a graph, we get an overall picture of distance distribu-
tion along with the number of vertices. There were two major class of graphs
defined which depended on these sequences, namely, the distance degree reg-
ular (DDR) and distance degree injective (DDI) graphs by Bloom et al. [2].
DDR graphs are highly symmetric in nature by having equal distance degree se-
quences for all vertices and DDI graphs are the ones in which no two distance
degree sequences are equal. Hence this sets up a dual kind of study pattern.
Many researchers have worked in both these classes of graphs viz., [1–3, 6–10]
to cite a few. But characterizations for both classes of graphs are still elusive.
Many open problems still persist.

In this short communication we settle one such open problem on existence of
a DDI graph.
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2. PRELIMINARIES

For all undefined terms we refer Buckley and Harary [4]. Let G = (V,E)

denote a graph with set of vertices V, whose cardinality is the order p and two
element subsets of V, known as the edges forming E, whose cardinality is size q.

Unless mentioned otherwise, in this article, by a graph we mean an undi-
rected, finite graph without multiple edges and self-loops.

The distance d(u, v) from a vertex u of G to a vertex v is the length of a short-
est u to v path. The degree of the vertex u is the number of vertices at distance
one. A graph is said to be regular if all the vertices have the same degree. If the
regularity is three, then the graph is called a cubic graph. The eccentricity e(v) of
v is the distance of a farthest vertex from v. The minimum of the eccentricities is
the radius, rad(G) and the maximum is the diameter, diam(G) of G. A graph is
said to be self centered if all the vertices have the same eccentricity. The distance
degree sequence (dds) of a vertex v in a graph G is a list of the number of vertices
at distance 1, 2, . . . , e(v) in that order, where e(v) denotes the eccentricity of v in
G. Thus the sequence (di0 , di1 , di2 , . . . , dij , . . .) is the distance degree sequence of
a vertex vi in G where dij denotes the number of vertices at distance j from vi.

The p−tuple of distance degree sequences of the vertices of G with entries ar-
ranged in lexicographic order is the distance degree sequence (DDS) of G. A graph
is called a Distance Degree Injective (DDI) graph if no two vertices have the same
distance degree sequence (dds). These were defined by Bloom et al. [2].
Since then there have been open problems being posed on DDI graphs on charac-
terizations and even existence all these years. To cite a few we list the following.
First one was on k-regular DDI graphs as posed by Bloom et al. [2].

Problem 1. [2] Does there exist a non-trivial k-regular DDI graph?

This problem got resolved by the existence of a cubic DDI graph on 24 vertices
and having diameter 10 as found in [8]. The general existence problem was
resolved by Bollobas in [3] where he showed the following.

Theorem 2.1. [3]: Let k ≥ 3 and ε > 0 be fixed. Set k =
⌊
(1/2+ε)(log p)

log(k−1)

⌋
.

Then, as p goes to infinity, the probability tends to one that every vertex vi in a
k-regular labeled graph of order p is uniquely determined by the initial segment
di0 , di1 , di2 , . . . , dij of its distance degree sequence.
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Since the distance degree sequence of a graph is independent of a labeling,
this result shows that almost all k-regular graphs of order p are DDI provided p is
large enough. The problem that remained unresolved is that of finding minimal
DDI regular graphs.

Problem 2. [8] For k ≥ 3 what is the smallest order and/or diameter for which
there exists a k-regular DDI graph?

Martinez and Quintas [7] found a cubic DDI graph having diameter 8 and
order 22, as in Figure 1. They also showed that, if in the graph of Figure 1 the
edges ab and cd are replaced by the graph shown in Figure 2, one can obtain a
cubic DDI graph with 22 + 2m vertices and diameter 8 +m.

FIGURE 1. Cubic DDI graph

FIGURE 2. Bigger cubic
DDI graph

This was further reduced to order 18 and diameter 7 cubic graph by Jiri Volf
[11] by constructing the graph of Figure 3.

From [8], [7], [11], [5] it follows that

FIGURE 3. Smallest cubic DDI graph
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(i) if there is a cubic DDI graph having less than 18 vertices, then its order
must be 16; and

(ii) if there is a cubic DDI graph having diameter less than 7, then its diam-
eter must be 4, 5,or 6.

So all these cases are considered and proved by Itagi Huilgol et al. [10] that
there does not exist a cubic DDI graph of order 16 with diameter 4, 5, 6.

Theorem 2.2. [10]: There does not exist a cubic DDI graph of order 16 with
diameter 4,5,6.

So the graph of order 18 as in [11] shown in Figure 3 is the smallest order
cubic DDI graph. One more problem was posed by Itagi Huilgol [9] as follows:

Problem 3. Does there exist a self-centered, k-regular DDI graph?

Addressing the above problem we have constructed a 3−regular self-centered
DDI graph hence by proving it true.

3. MAIN RESULTS

Theorem 3.1. There exists a cubic self-centered distance degree injective (DDI)
graph.

Proof. Follows from the example below. Let H be the graph with vertex set
V = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38}
and edge set

{{1, 9}, {1, 24}, {1, 33}, {2, 7}, {2, 25}, {2, 34}, {3, 5}, {3, 11}, {3, 23},
{4, 6}, {4, 14}, {4, 18}, {5, 28}, {5, 37}, {6, 9}, {6, 23}, {7, 10}, {7, 37},
{8, 12}, {8, 30}, {8, 38}, {9, 17}, {10, 17}, {10, 22}, {11, 15}, {11, 16},
{12, 21}, {12, 37}, {13, 18}, {13, 20}, {13, 35}, {14, 20}, {14, 35},
{15, 29}, {15, 34}, {16, 32}, {16, 36}, {17, 22}, {18, 31}, {19, 24},
{19, 36}, {19, 38}, {20, 26}, {21, 28}, {21, 32}, {22, 33}, {23, 31},
{24, 29}, {25, 27}, {25, 30}, {26, 30}, {26, 38}, {27, 28}, {27, 32},
{29, 36}, {31, 35}, {33, 34}}.

The distance degree sequences of all the vertices is given by
dds(1) = (1, 3, 6, 7, 10, 9, 2); dds(2) = (1, 3, 6, 11, 8, 5, 4);
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FIGURE 4. H: Cubic self-centered DDI graph

dds(3) = (1, 3, 6, 12, 11, 4, 1); dds(4) = (1, 3, 6, 4, 8, 10, 6);
dds(5) = (1, 3, 6, 9, 11, 7, 1); dds(6) = (1, 3, 6, 9, 9, 8, 2);
dds(7) = (1, 3, 6, 9, 8, 7, 4); dds(8) = (1, 3, 5, 9, 8, 10, 2);
dds(9) = (1, 3, 6, 8, 10, 6, 4); dds(10) = (1, 3, 4, 6, 10, 9, 5);
dds(11) = (1, 3, 6, 10, 10, 7, 1); dds(12) = (1, 3, 6, 8, 8, 9, 3);
dds(13) = (1, 3, 4, 4, 5, 9, 12); dds(14) = (1, 3, 5, 4, 6, 10, 9);
dds(15) = (1, 3, 6, 8, 11, 6, 3); dds(16) = (1, 3, 6, 8, 9, 7, 4);
dds(17) = (1, 3, 4, 6, 10, 11, 3); dds(18) = (1, 3, 5, 3, 6, 11, 9);
dds(19) = (1, 3, 5, 8, 11, 9, 1); dds(20) = (1, 3, 5, 5, 7, 11, 6);
dds(21) = (1, 3, 5, 7, 7, 7, 8); dds(22) = (1, 3, 4, 5, 8, 12, 5);
dds(23) = (1, 3, 6, 8, 13, 5, 2); dds(24) = (1, 3, 5, 8, 9, 10, 2);
dds(25) = (1, 3, 6, 10, 10, 6, 2); dds(26) = (1, 3, 5, 8, 11, 7, 3);
dds(27) = (1, 3, 5, 9, 8, 8, 4); dds(28) = (1, 3, 5, 7, 8, 10, 4);
dds(29) = (1, 3, 5, 6, 11, 8, 4); dds(30) = (1, 3, 5, 9, 10, 8, 2);
dds(31) = (1, 3, 5, 4, 7, 14, 4); dds(32) = (1, 3, 5, 9, 6, 6, 8);
dds(33) = (1, 3, 6, 6, 9, 9, 4); dds(34) = (1, 3, 6, 10, 9, 5, 4);
dds(35) = (1, 3, 4, 3, 5, 9, 13); dds(36) = (1, 3, 5, 7, 10, 8, 4);
dds(37) = (1, 3, 6, 10, 8, 8, 2); dds(38) = (1, 3, 5, 8, 13, 7, 1).

From the above sequences it is clear that H is a 3−regular self-centered DDI
graph on 38 vertices and 57 edges. Hence Proved. �
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