
ADV  MATH
SCI  JOURNAL

Advances in Mathematics: Scientific Journal 10 (2021), no.1, 83–91
ISSN: 1857-8365 (printed); 1857-8438 (electronic)
https://doi.org/10.37418/amsj.10.1.8 Special Issue on SMS-2020

HOMODERIVATIONS OF σ−PRIME Γ−RINGS

SH.K. SAID HUSAIN1 AND K.K. DEY

ABSTRACT. Let M be a sigma-prime Gamma-ring with an additive mapping σ :

M → M is called an involution on M . Let h be a homoderivation on M where
h is also an additive mapping h : M → M . In this paper, the commutativity
properties of M admitting a homoderivation satisfying hσ = σh are proven.

1. INTRODUCTION

In this paper, M represents as a Γ−ring with center of Z(M) and for any a ∈M ,
if 2a = 0 implies a = 0 then M is called 2-torsion free [10]. The commutator
and anticommutator of M are defined as for any x, y ∈ M and α ∈ Γ such that
[x, y]α = xαy − yαx and 〈x, y〉α = xαy + yαx, respectively. An additive mapping
σ is said to be an involution on M if σ : M → M satisfies these two conditions:
σ(xαy) = σ(y)ασ(x) and σ(σ(x)) = x [10]; and such M will be called as a σ −
Γ−ring. The set Sα(M) = {x ∈ M |σ(x) = ±x} is called the set of symmetric and
skew symmetric elements of M and suppose I ⊆ M such that σ(I) = I then an
ideal I of M is said to be a σ−ideal [5].

Definition 1.1. Let M be a σ − Γ−ring. M is called a σ−prime if xΓMΓy = 0 =

xΓMΓσ(y) (or xΓMΓy = 0 = σ(x)ΓMΓy) implies x = 0 or y = 0, for all x, y ∈M .
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In general, from Definition 1.1, we conclude that every prime σ − Γ−ring is
σ−prime but the converse is not true. However, if M is a σ−prime Γ−ring such
that for all x ∈M and xΓMΓx = 0, then xΓMΓxΓσ(x) = 0.Since M is σ−prime, it
implies that x = 0 or xΓMΓσ(x) = 0. Now, if xΓMΓσ(x) = 0, then xΓMΓx = 0 =

xΓMΓσ(x) implies x = 0, by M is σ−prime. Therefore, every σ−prime Γ−ring is
a semiprime Γ−ring [6–8].

Works on homoderivations have been done by Melaibari et. al [2], Al-Kenani et.
al [1] and Boua [3] in the cases of prime rings, 3-prime near-rings and ∗−prime
rings, respectively. They used the concept of homoderivation on ring which was
introduced by El Sofy Aly [4]. In this paper, we extend the work to commutativity
of sigma-prime Gamma-ring.

Definition 1.2. Let M be a σ−prime Γ−ring and h be an additive mapping h :

M → M . For all x, y ∈ M and α ∈ Γ, then h is called a homoderivation on M if
h(xαy) = h(x)αh(y) + h(x)αy + xαh(y).

As example, let h(x) = g(x) − x for all x ∈ M where g is an endomorphism on
M . A mapping f : M →M is centralizing on S where S ⊆M , if [x, f(x)]α ∈ Z(M)

for all x ∈ S and α ∈ Γ. If f(S) ⊆ S and for each x ∈ S, there exists a positive
integer n(x) > 1 such that fn(x)(x) = 0, then f is called zero-power valued on S.

2. SIGMA-PRIME GAMMA-RING

This section begin with the following lemma.

Lemma 2.1. Let M be a σ−prime Γ−ring and I be a nonzero σ−ideal of M . For all
x, y ∈ M , if xΓIΓy = 0 = xΓIΓσ(y) (or xΓIΓy = 0 = σ(x)ΓIΓy), then x = 0 or
y = 0.

Proof. Let a, b ∈ M . Suppose a 6= 0, there exists some x ∈ I and α ∈ Γ such
that aαx 6= 0. Indeed, otherwise aΓMΓx = 0 and aΓMΓσ(x) = 0 for all x ∈ I,
therefore a = 0. Since aΓIΓMΓb = 0 and aΓIΓMΓσ(b) = 0, then aΓxΓMΓb =

aΓxΓMΓσ(b) = 0 is obtained. In view of the σ−primeness of M this yields b =

0. �

Now the following lemmas need to be proven to launch in achieving our main
results in the next section.
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Lemma 2.2. Let M be a σ−prime Γ−ring and I be a nonzero σ−ideal of M . Let h
be a nonzero homoderivation on M such that hσ = σh. For all x ∈ I and α ∈ Γ, if
[x,M ]αΓIΓh(x) = 0, then M is commutative.

Proof. For all x ∈ I and α, β, γ ∈ Γ we have [x,M ]αβIγh(x) = 0. Assume that
t = x − σ(x) ∈ I, for any x ∈ I and follows by the above expression, we get
[t,m]αβIγh(t) = 0 for all m ∈ M . Since σ(t) = σ(x − σ(x)) = σ(x) − x = −t, we
find
σ([t,m]α)βIγh(t) = σ(tαm−mαt)βIγh(t) = (σ(m)ασ(t)− σ(t)ασ(m))βIγh(t)

= (−σ(m)ασ(t) + tασ(m))βIγh(t) = [t, σ(m)]αβIγh(t) = 0.

Therefore, [t,m]αβIγh(t) = 0 = σ([t,m]α)βIγh(t). According to Lemma 2.1, we
have [x,M ]α = 0 or h(t) = 0. Thus, for each x ∈ I and α ∈ Γ, we get either
[x,M ]α = [σ(x),m]α or h(x) = h(σ(x)).

In case [x,m]α = [σ(x),m]α. For all m ∈M and α, β, γ ∈ Γ, we observe that

σ([x,m]α)βIγh(x) = σ(xαm−mαx)βIγh(x)

= (σ(m)ασ(x)− σ(x)ασ(m))βIγh(x) = [σ(m), σ(x)]αβIγh(x)

= [σ(m), x]αβIγh(x) = −[x, σ(m)]αβIγh(x) = 0.

Thus, [x,m]αβIγh(x) = 0 = σ([x,m]α)βIγh(x) and by Lemma 2.1, we obtain
h(x) = 0 or [x,m]α = 0. While in case h(x) = h(σ(x)), since h commutes
with σ and h(x) = σ(h(x)). For all m ∈ M and α, β, γ ∈ Γ, we find that
0 = [x,m]αβIγh(x) = [x,m]αβIγσ(h(x)). Thus, by Lemma 2.1 we get h(x) = 0 or
[x,m]α = 0.

Both cases above show that for each x ∈ I, either h(x) = 0 or x ∈ Z(M). The
sets of x ∈ I in these two cases are additive subgroups of I whose union is I.
Known that a group cannot be the union of two of its proper subgroups, therefore
we obtain either h(I) = 0 or I ⊆ (M).

Consider the case h(I) = 0. Then for all x ∈ I, we have h(x) = 0 and it
implies that 0 = h(xαm) = h(x)αh(m) + h(x)αm + xαh(m) = xαh(m), for all
m ∈ M and α ∈ Γ. It follows by IΓh(m) = 0 implies IΓMΓh(m) = 0 =

σ(I)ΓMΓh(m). By σ−primeness of M , h = 0 which is a contradiction. Now,
consider the case I ⊆ Z(M). Let m,n ∈ M , x ∈ I and α, β ∈ Γ, then we ob-
tain mαnβx = mαxβn = nαmβx and [m,n]αβx = 0. Thus, [m,n]αΓI = 0 and
[m,n]αΓMΓI = 0 = [m,n]αΓMΓσ(I). By σ−primeness of M , [m,n]α = 0. Hence,
M is commutative. �
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Lemma 2.3. Let M be a σ−prime Γ−ring and I be a nonzero σ−ideal of M . Let h
be a nonzero homoderivation on M such that hσ = σh. For all x ∈ I and α ∈ Γ, if h
is a zero-power valued on I and [h(x), x]α = 0, then M is commutative.

Proof. Given that [h(x), x]α = 0, for all x ∈ I and α ∈ Γ. Now for all x, y ∈ I and
α ∈ Γ, by linearizing the given expression, we get [h(x), y]α + [h(y), x]α = 0. Take
β ∈ Γ and replaces y = yβx, gives [h(x), yβx]α + [h(yβx), x]α = 0 and it can be
extended as [h(x), y]αβx + [h(y), x]αβh(x) + [h(y), x]αβx + [y, x]αβh(x) = 0. Thus
we have [h(y) + y, x]αβh(x) = 0. Since h is a zero-power valued on I, we can
replace y = y − h(y) + h2(y) + · · ·+ (−1)(n(y)−1)h(n(y)−1)(y) to get [x, y]αβh(x) = 0.

Now, for arbitrary m ∈ M and take γ ∈ Γ and by replacing y = mγy, we find
0 = [x,mγy]αβh(x) = [x,m]αγyβh(x), which can imply [x,m]αγyβh(x) = 0, for all
x ∈ I and α, β, γ ∈ Γ. It is prove that by Lemma 2.2, M is commutative. �

Lemma 2.4. Let M be a σ−prime Γ−ring and let I be a nonzero σ−ideal of M . If
x ∈M and x centralizes I, then x ∈ Z(M).

Proof. Let x ∈ M . For all u ∈ I and α ∈ Γ such that [x, u]α = 0. Then, for
arbitrary m ∈ M and β ∈ Γ, we obtain 0 = [x,mβu]α = [x,m]αβu which can
implies [x,M ]αΓI = 0. Therefore, we get [x,M ]αΓMΓI = 0 = [x,M ]αΓMΓα(I).
Since M is α−prime, then [x,M ]α = 0. Thus x ∈ Z(M). �

3. THE COMMUTATIVITY OF M ADMITTING CENTRALIZING HOMODERIVATIONS

Motivated by the work in [1], the concept of homoderivations on σ−prime
Γ−rings are presented in the following theorems.

Theorem 3.1. Let M be a 2 torsion-free σ−prime Γ−ring and I be a nonzero
σ−ideal of M . Suppose that h is a nonzero homoderivation on M such that hσ = σh.
If h is centralizing and a zero-power valued on I, then M is commutative.

Proof. Given for all x ∈ I and α ∈ Γ, we have [h(x), x]α ∈ Z(M). Now, for all
x, y ∈ I, α ∈ Γ and by linearizing the given expression above, we find [h(x), y]α +

[h(y), x]α ∈ Z(M). Take β ∈ Γ and replaces y = xβx to obtain [h(x), xβx]α +

[h(xβx), x]α ∈ Z(M). By extending this expression, we get

xβ[h(x), x]α + [h(x), x]αβx+ h(x)β[h(x), x]α + [h(x), x]αβh(x)

+ [h(x), x]αβx+ xβ[h(x), x]α ∈ Z(M).
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The above expression can be simplified as (4x + 2h(x))β[h(x), x]α ∈ Z(M). Thus,
it becomes (2x+h(x))β[h(x), x]α ∈ Z(M), since M is 2 torsion-free. Therefore, for
arbitrary m ∈M , we have

[(2x+ h(x))β[h(x), x]α,m]α = [2x+ h(x),m]αβ[h(x), x]α = 0.

In particular, for all x ∈ I and α, β ∈ Γ, we find

[2x+ h(x), x]αβ[h(x), x]α = [h(x), x]αβ[h(x), x]α = 0.

Since every σ−prime Γ−ring is semiprime and since the center of semiprime
Γ−ring contains a no nonzero nilpotent elements [9]. Then for all x ∈ I and
α ∈ Γ, we obtain that [h(x), x]α = 0. Hence by Lemma 2.3, M is commutative. �

Theorem 3.2. Let M be a 2 torsion-free σ−prime Γ−ring and I be a nonzero
σ−ideal of M . Suppose that h is a nonzero homoderivation on M such that hσ = σh.
If h is a zero-power valued on I and a ∈ Sσ(M) such that [aβh(x), x]α = 0 for all
x ∈ I and α, β ∈ Γ. Then a = 0 or M is commutative.

Proof. Given for all x ∈ I and α, β ∈ Γ, we have

(3.1) [aβh(x), x]α = 0.

Now, for all x, y ∈ I and α, β ∈ Γ, we get [aβh(x), y]α + [aβh(y), x]α = 0. Take
γ ∈ Γ and replaces y = yγx, we obtain

[aβh(x), yγx]α + [aβh(y)γh(x), x]α + [aβh(y)γx, x]α + [aβyγh(x), x]α = 0,

which is equivalent to

yγ[aβh(x), x]α + [aβh(x), y]αγx+ aβh(y)γ[h(x), x]α + [aβh(y), x]αγh(x)

+[aβh(y), x]αγx+ aβyγ[h(x), x]α + aβ[y, x]αγh(x) + [a, x]αβyγh(x) = 0

or

aβh(y)γ[h(x), x]α + [aβh(y), x]αγh(x) + aβyγ[h(x), x]α

+ aβ[y, x]αγh(x) + [a, x]αβyγh(x) = 0.

The last expression above can be written as

aβ(h(y) + y)γ[h(x), x]α + [a, x]αβ(h(y) + y)γh(x) + aβ[h(y) + y, x]αγh(x) = 0.
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Since h is a zero-power valued on I, for all x, y ∈ I and α, β, γ ∈ Γ, we have
aβyγ[h(x), x]α+[a, x]αβyγh(x)+aβ[y, x]αγh(x) = 0. Now, take λ ∈ Γ. By replacing
y = aλy we obtain

aβaλyγ[h(x), x]α + [a, x]αβaλyγh(x) + aβaλ[y, x]αγh(x) + aβ[a, x]αλyγh(x) = 0.

Thus, we get [a, x]αβaλyγh(x) = 0, which implies

(3.2) [a, x]αβaΓIΓh(x) = 0.

Clear that for x ∈ I ∩ Sσ(M) we have σ(x) = x. Therefore, since h commutes with
σ it implies that σ(h(x)) = h(σ(x)) = h(x). Then we find

[a, x]αβaΓIΓh(x) = 0 = [a, x]αβaΓIΓσ(h(x))

and by Lemma 2.1, it follows that [a, x]αβa = 0.
Now consider y ∈ I. Since (y + σ(y)) ∈ I ∩ Sα(M), we have [a, y + σ(y)]αβa = 0

or h(y + σ(y)) = 0. We need to consider two cases:
Case 1: Let [a, y + σ(y)]αβa = 0. Since (y − σ(y)) ∈ I ∩ Sσ(M), we have either

h(y − σ(y)) = 0 or [a, y − σ(y)]αβa = 0. If h(y − σ(y)) = 0, then by a similar
approach from above, we get [a, y]αβa = 0 or h(y) = 0. If [a, y − σ(y)]αβa = 0,
then [a, y−σ(y)]αβa+ [a, y+σ(y)]αβa = 0 which can be reduced to 2[a, y]αβa = 0.
Since M is 2-torsion free, we obtain [a, y]αβa = 0.

Case 2: Let h(y+ σ(y)) = 0. Then h(y) = −h(σ(y)) = −σ(h(y)). Thus, by (3.2),
gives 0 = [a, y]αβaΓIΓh(y) = [a, y]αβaΓIΓσ(h(y)) and by Lemma 2.1, it shows that
[a, y]αβa = 0 or h(y) = 0.

Clearly, both cases show that for each y ∈ I then [a, y]αβa = 0 or h(y) = 0.
Similar approach as in the proving of Lemma 2.2, we have either [a, I]αβa = 0 or
h(I) = 0. Now we consider two cases again.

First case: Let h(I) = 0, then h(x) = 0 for all x ∈ I. For arbitrary m ∈ M

and µ ∈ Γ, we obtain 0 = h(mµx) = h(m)µh(x) + h(m)µx + mµh(x) = h(m)µx.
Therefore, we have h(m)ΓI = 0 and h(m)ΓMΓI = 0 = h(m)ΓMΓσ(I) that implies
h = 0, since σ−primeness of M . This is contradictory.

Second case: Let [a, I]αβa = 0. Then we have [a, x]αβa = 0 for all x ∈ I and
α, β ∈ Γ. Now, take µ ∈ Γ and by replacing x = xµy yields [a, x]αµyβa = 0. Thus,
[a, x]αµIβa = 0. As a ∈ Sσ(M), then 0 = [a, x]αΓIβa = [a, x]αΓIβσ(a) for all x ∈ I
and α, β ∈ Γ. By Lemma 2.1, a centralizes I or a = 0 and by Lemma 2.4, a ∈ Z(M)
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or a = 0. If 0 6= a ∈ Z(M), then by (3.1) we find

0 = [aµh(x), x]α = aµ[h(x), x]α + [a, x]αµh(x) = aµ[h(x), x]α.

Since a ∈ Z(M), aΓMΓ[h(x), x]α = 0 and a ∈ Sσ(M) then for all x ∈ I and
α ∈ Γ, we obtain that 0 = aΓMΓ[h(x), x]α = σ(a)ΓMΓ[h(x), x]α. As a 6= 0, then
σ−primeness of M implies [h(x), x]α = 0 for all x ∈ I and α ∈ Γ. It follows from
Lemma 2.3 that M is commutative. �

The following theorems investigate the identities on homoderivations.

Theorem 3.3. Let M be a σ−prime Γ−ring and I be a nonzero σ−ideal of M .
Suppose that h is a nonzero homoderivation on M such that hσ = σh. For all
x, y ∈ I and α ∈ Γ, if h satisfies either h([x, y]α) = 0 or h(〈x, y〉α) = 0 then M is
commutative.

Proof. We start with the first condition. For all x, y ∈ I and α ∈ Γ, we have
h([x, y]α) = 0. Take β ∈ Γ and by replacing y = yβx, we get

0 = h([x, yβx]α) = h([x, y]αβx) = h([x, y]α)βh(x) + h([x, y]α)βx+ [x, y]αβh(x),

which implies

(3.3) [x, y]αβh(x) = 0.

Now for arbitrarym ∈M and γ ∈ Γ, replaces y = mγy, the expression [x,mγy]αβh(x) =

[x,m]αγyβh(x) = 0 is obtained.
Next in second condition. For all x, y ∈ I and α ∈ Γ, we have h(〈x, y〉α) = 0.

Again, take β ∈ Γ and replaces y = yβx, gives

0 = h(〈x, yβx〉α) = h(〈x, y〉αβx) = h(〈x, y〉α)βh(x) + h(〈x, y〉α)βx+ 〈x, y〉αβh(x).

Thus 〈x, y〉αβh(x) = 0 which is equivalent to

(3.4) xαyβh(x) = −yαxβh(x).

For arbitrary m ∈M and γ ∈ Γ, we replace y = mγy in xαyβh(x) = −yαxβh(x) to
obtain xαmγyβh(x) = −mγyαxβh(x) which can implies xαmγyβh(x) =

mαxγyβh(x). Therefore [x,m]αγyβh(x) = 0.
From the both conditions, we can conclude that for all x ∈ I, α ∈ Γ and by

Lemma 2.2, the expression [x,M ]αΓIΓh(x) = 0 implies M is commutative. �
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Theorem 3.4. Let M be a 2 torsion-free σ−prime Γ−ring and I be a nonzero
σ−ideal of M . Suppose that h is a nonzero homoderivation on M such that hσ = σh.
For all x, y ∈ I and α ∈ Γ, if h satisfies these two conditions either h([x, y]α) = [x, y]α
or h(〈x, y〉α) = 〈x, y〉α, then M is commutative.

Proof.
Condition 1: Given for all x, y ∈ I, α ∈ Γ and h([x, y]α) = [x, y]α. By tak-

ing β ∈ Γ and replaces y = yβx gives h([x, y]αβx) = [x, y]αβx. Then we have
h([x, y]α)βh(x)+h([x, y]α)βx+[x, y]αβh(x) = [x, y]αβxwhich implies 2[x, y]αβh(x) =

0. Since M is 2 torsion-free, we get (3.3). By a similar approach as the proving in
Theorem 3.3 for first condition, we have [x,m]αγyβh(x) = 0.

Condition 2: Given for all x, y ∈ I, α ∈ Γ and h〈x, y〉α) = 〈x, y〉α. Again,
take β ∈ Γ and replaces y = yβx, gives h(〈x, y〉αβx) = 〈x, y〉αβx. Then we get
h(〈x, y〉α)βh(x)+h(〈x, y〉α)βx+〈x, y〉αβh(x) = 〈x, y〉αβxwhich implies 2〈x, y〉αβh(x) =

0. Since M is 2 torsion-free, the expression 〈x, y〉αβh(x) = 0 is equivalent to (3.4).
By a similar approach as the proving in Theorem 3.3 for second condition, we can
show that [x,m]αγyβh(x) = 0.

From the conditions above, clearly that for all x ∈ I, α ∈ Γ and by Lemma 2.2,
the expression [x,M ]αΓIΓh(x) = 0 implies M is commutative. �

4. CONCLUSION

From Theorems 3.1 and 3.2, we prove that sigma-prime Gamma-ring is com-
mutative if a homoderivation is centralizing and a zero-power valued on sigma-
ideal. While Theorems 3.3 and 3.4 show that the commutativity of sigma-prime
Gamma-ring admitting a homoderivation satisfies some conditions of commutator
dan anticommutator of sigma-prime Gamma-ring.
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