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ON CENTRAL EXTENSION OF THREE DIMENSIONAL ASSOCIATIVE
ALGEBRAS

N.AB. RAHMAN, W. BASRI 1, SH.K. SAID HUSAIN, AND F. YUNOS

ABSTRACT. One of the methods to investigate the classification of algebras is the
Skjelbred-Sund method. In order to use this method, some extension invariants
are needed. In this paper, seven invariant classes of three dimensional nilpotent
associative algebras are provided.

1. INTRODUCTION

The classification of associative algebra is categorized in an old problem which
there are lot of researchers have been study about them before. Many other pub-
lications related to the problem have appeared. It was follows by others works
such as Hazlett [1] studied on nilpotent algebras of dimension ≤ 4 over C, Maz-
zola [2, 3] has investigated the associative unitary algebras of dimension 5 over
algebraically closed fields of characteristic not 2 and the nilpotent commutative
associative algebras of dimension≤ 5, over algebraically closed fields of character-
istic not 2, 3 and recently, respectively. Poonen [4] studied nilpotent commutative
associative algebras of dimension ≤ 5, over algebraically closed fields.

Extension of Lie groups theory arise in several ways, for instance by using the
central extension. A bijective correspondence between all central extensions of
fixed Lie algebra and certain orbits in the set of all k-dimensional subspaces in the
second cohomology group under the canonical action of automorphism group is
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established by Skjelbred and Sund [5]. A method for classifying nilpotent associa-
tive algebras is described by Graaf [6] in 2010. That is, analogous to Skjelbred-
Sund method for classifying nilpotent Lie algebras.

In general, the central extension is used to enlarge from algebra dimension n

to algebra dimension n + 1. As an application, the set of all three-dimensional
associative algebras are described.

2. PRELIMINARY

In this section some basic concepts regarding associative algebra are presented.

Definition 2.1. [6] An associative algebraAs is a vector space over a fieldK equipped
with a bilinear map f : As×As→ As satisfying the associative identity, f(f(x, y), z) =

f(x, f(y, z)), for all x, y, z ∈ As.

An algebra A is said to be nilpotent, if there exist an integer s ∈ N , such that
As = 0. The smallest integer s for that As = 0 is called the nilindex of A. [7]

Definition 2.2. [6] Let As be an associative algebra and V be a vector space over
K. Then the bilinear maps, θ : As × As → V with θ((xy), z) = θ(x, (yz)) for all
x, y, z ∈ As are called associative cocycle.

In [8], an associative algebra As over field K is called center of associative
algebra if its binary map satisfies the following properties, C(As) = {a ∈ As|a ·
As = As · a = 0}.

Definition 2.3. [6] Let A be an algebra over field K for θ ∈ Z2(A, V ). The set θ⊥ is
called radical of algebra if its binary map satisfies the following properties:

θ⊥ = {a ∈ A|θ(a, b) = θ(b, a) = 0}, for all b ∈ A.

An algebra A over field K is called maximum commutative subalgebra, Com(A)

and maximum abelian subalgebra, nA if its binary map satisfies xy = yx and
xy = 0, respectively for all x, y ∈ A.

The following statements are stated in [8]. Let A be an arbitrary algebra over a
field K. The centroid of A, Γ(A) is defined by

Γ(A) = {φ ∈ End(A)|φ(xy) = φ(x)y = xφ(y),∀x, y ∈ A}.
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A derivation of an algebra A is a K-linear transformation d : A→ A satisfying

d(x · y) = d(x) · y + x · d(y),∀x, y ∈ A.

The set of all derivations of an algebra A is denote as Der(A).

Lemma 2.1. Let As be n-dimensional associative algebra and let {e1, e2, . . . , em} be
a basis of As<2>. Then B2(As,K) = 〈δe∗1, δe∗2, . . . , δe∗m〉 where e∗i (ej) = δij and δij is
the Kronecker delta.

This lemma is modified from [9] in Jordan algebra case to associative algebra,
where B2(As,K) is coboundary of associative algebras.

We need a list of non-isomorphism algebra in two-dimensional before apply-
ing the Skjelbred-Sund method by using central extension to extend in three-
dimensional algebras form.

Theorem 2.1. [6] In two-dimensional associative algebras, there are the following
non-isomorphism algebra.
As12 : abelian; As22 : e1e1 = e2;
As32 : e1e1 = e1, e1e2 = e2; As42 : e1e1 = e1, e2e1 = e2;
As52 : e1e1 = e1, e1e2 = e2e1 = e2; As62 : e1e1 = e1, e2e2 = e2.

3. CLASSIFICATION OF THREE-DIMENSIONAL ASSOCIATIVE ALGEBRAS

In this section, by using algebraically approach, we give a list of classification
of three-dimensional associative algebras. The group of automorphism for asso-
ciative algebras in dimension two (see Theorem 2.1) are needed to obtain the
following results:

Lemma 3.1. Automorphism groups of two-dimensional associative algebras over C
has in the following form:

Aut(As12) =

[
a11 a12

a21 a22

]
, where dim(Aut(As12)) = 4;

Aut(As22) =

[
a11 0

a21 a211

]
, where dim(Aut(As22)) = 2;

Aut(As32) =

[
1 0

a21 a22

]
, where dim(Aut(As32)) = 2;
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Aut(As42) =

[
1 0

a21 a22

]
, where dim(Aut(As42)) = 2;

Aut(As52) =

[
1 0

0 a22

]
, where dim(Aut(As52)) = 1;

Aut(As62) =

[
1 0

0 1

]
,

[
0 1

1 0

]
, where dim(Aut(As62)) = 0.

Proof. Let {e1, e2} be a basis of two-dimensional associative algebra, As2 and φ =[
a11 a12

a21 a22

]
be a nonsingular matrix where φ ∈ Aut(As2). Suppose {e′1, e′2} be a

new basis that obtain by simply multiplying φ with the basis i.e.,[
e′1
e′2

]
=

[
a11 a12
a21 a22

]T [
e1
e2

]
Thus, {e′1, e′2} can be written as follows

(3.1) e′1 = a11e1 + a21e2, and e′2 = a12e1 + a22e2.

Now consider the algebra As22 : e1e1 = e2. By applying the new basis (3.1) to
the algebra we get the following table of multiplications:

e′1e
′
1 = a211e2 = a12e1 + a22e2, e′1e

′
2 = a11a12e2 = 0,

e′2e
′
1 = a11a12e2 = 0, e′2e

′
2 = a212e2 = 0.

Then we have the system a211 = a22, a11a12 = 0, a12 = 0 and a21 is any. By solving
the system, we obtain the group of automorphism for As22 as follows

Aut(As22) =

[
a11 0

a21 a211

]
, where a311 6= 0.

Since {a11, a21} is a basis of Aut(As22), therefore dim(Aut(As22)) = 2.

By applying the similar method for other algebras in Theorem 2.1, we get all
the list of automorphism groups as in Lemma 3.1. �

Now we want to classify three dimensional associative algebra by using Skjel-
bred Sund method. To apply this method, we need to find second cohomology of
two dimensional associative algebras, H2(As2,C) as a quotient group of cocycle,
Z2(As2,C) and coboundary, B2(As2,C). The cocycles and coboundaries of As2
(see in Table 1) can be found directly by applying Definition 2.2 and Lemma 2.1
to the list of algebras in Theorem 2.1.
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TABLE 1. Cocycles and coboundaries of two dimensional associative algebras

IC Cocycle, Z2 dim(Z2) Coboundary, B2 dim(B2)

As12 {411,412,421,422} 4 {} 0
As22 {411,412 +421} 2 {411} 1
As32 {411,412} 2 {411,412} 2
As42 {411,421} 2 {411,421} 2
As52 {411,412 +421} 2 {411,412 +421} 2
As62 {411,422} 2 {411,422} 2

The analogous of the Skjelbred Sund method is applied to classify three-dimensional
associative algebras into three parts.

1. One dimensional Central Extension of As12
From Table 1, we have H2(As12,C) = span{411,412,421,422}. Furthermore, the
center, C(As12) = span{e1, e2} and θ⊥ = {}. Suppose that θ ∈ H2(As12,C):

θ =

[
a b

c d

]
= a411 + b412 + c421 + d422 such that θ⊥ ∩ {e1, e2} = 0.

Let φ = (aij) ∈ Aut(As12). When φ act on θ, we get

φ · θ = a∗411 + b∗412 + c∗421 + d∗422.

We write a = a∗, b = b∗, c = c∗, d = d∗. Futhermore, φ =

[
a11 a12
a21 a22

]
. Thus, the φ

acts on θ as follows

φ(θ·φT ) =

[
a11(aa11 + ba12) + a12(ca11 + da12) a11(aa21 + ba22) + a12(ca21 + da22)

a21(aa11 + ba12) + a22(ca11 + da12) a21(aa21 + ba22) + a22(ca21 + da22)

]
.

Based on the action above, we describe the following relations :

a∗ = a11(aa11 + ba12) + a12(ca11 + da12), b∗ = a11(aa21 + ba22) + a12(ca21 + da22),

c∗ = a21(aa11 + ba12) + a22(ca11 + da12), d∗ = a21(aa21 + ba22) + a22(ca21 + da22).

We consider two cases : a 6= 0 and a = 0.

(a) For case a 6= 0. Choosing a∗ = 1, by taking a12 = 0, then we have a11 = 1√
a
.

a∗ = 1, b∗ = a21 + ba22,

c∗ = a21 + ca22, d∗ = a221 + ba21a22 + ca21a22 + da222.

Choosing c∗ = 0, by taking a21 = 0, then a∗ = 1, b∗ = ba22, c
∗ = 0, and d∗ = da222.
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For case b = 0. By depending d = 0 or not, we would have two representatives
[1, 0, 0, 0] and [1, 0, 0, 1]. Our algebras are:

As13 : e1e1 = e3, As23 : e1e1 = e3, e2e2 = e3.

For case b 6= 0. We would have a representatives [1, 1, 0, α]. Then the algebra is:
As33 : e1e1 = e3, e1e2 = e3, e2e2 = αe3.

(b) For case a = 0. By taking a12 = 0, we get a∗ = 0, b∗ = ba11a22, c
∗ = ca11a22,

and d∗ = ba21a22 + ca21a22 + da222.

For case b 6= 0. By taking b∗ = 1, we choose a22 = 1, a11 = 1
b
. Then a∗ = 0, b∗ = 1,

c∗ = c, and d∗ = a21(1 + c) + d.

If c = −1, by depending d = 0 or not, we would have two representatives
[0, 1,−1, 0] and [0, 1,−1, α] . Hence, we obtain :
As43 : e1e2 = e3, e2e1 = −e3, As63 : e1e2 = e3, e2e1 = −e3, e2e2 = αe3.

If c 6= −1, by depending d = 0 or not, we would have two representatives
[0, 1, 1, 0] and [0, 1, 1, α] . Our algebras are :
As83 : e1e2 = e3, e2e1 = e3, As73 : e1e2 = e3, e2e1 = e3, e2e2 = αe3.

2. One dimensional Central Extension of As22
In Table 1 gives H2(As22,C) = span{412 +421}. Furthermore, the center,
C(As22) = span{e2} and θ⊥ = {}. Suppose that θ ∈ H2(As22,C):

θ =

[
0 a

a 0

]
= a412 + a421 such that θ⊥ ∩ {e2} = 0.

Let φ = (aij) ∈ Aut(As22). When φ act on θ, we obtain φ · θ = a∗412 + a∗421.

We write a = a∗. Futhermore we have φ =

[
a11 0

a21 a211

]
. Thus, φ acts on θ as

follows:

φ(θ · φT ) =

[
0 aa311

aa311 2aa211a21

]
.

Based on the the action above, we describe the following relations: a∗ = aa311.

We consider the case a 6= 0 and a11 6= 0 , by taking a11 =
1

a3
. Thus, a∗ = 1. There-

fore we obtain the algebra As53 : e1e1 = e2, e2e1 = e3.

3. One dimensional Central Extension of As32, As
4
2, As

5
2, As

6
2.

We consider H2(As32,C) = H2(As42,C) = H2(As52,C) = H2(As62,C) = span{}.
Furthermore, the center, C(As32) = C(As42) = C(As52) = C(As62) = span{} and
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θ⊥ = {}. Suppose that θ ∈ H2(As32,C) = H2(As42,C) = H2(As52,C) = H2(As62,C):
θ = 0 such that θ⊥ ∩ {} = 0.

Since θ = 0, the automorphism group, φ does not act on θ ∈ H2(As32,C) =

H2(As42,C) = H2(As52,C) = H2(As62,C). Thus, there is no central extension of one
dimensional associative algebra for As32, As

4
2, As

5
2, As

6
2.

From the calculation above, we have the following algebras.
As13 : e1e1 = e3; As23 : e1e1 = e3, e2e2 = e3;

As33 : e1e1 = e3, e1e2 = e3, e2e2 = αe3; As43 : e1e2 = e3, e2e1 = −e3;
As53 : e1e1 = e2, e2e1 = e3; As63 : e1e2 = e3, e2e1 = −e3, e2e2 = αe3;

As73 : e1e2 = e3, e2e1 = e3, e2e2 = αe3; As83 : e1e2 = e3, e2e1 = e3.

Now, some isomorphism invariants such as cocycle, coboundary, center, radi-
cal, maximum commutative subalgebra, maximum albelian subalgebra, centroid,
derivation and automorphism are applied to investigate the isomorphishm be-
tween these algebras. The dimension of isomorphism invariants for three dimen-
sional associative algebras presented in Table 2.

TABLE 2. Dimension of isomorphism Invariants for three dimen-
sional associative algebras

IC Z2 B2 θ⊥ C φ nAs Com d Γ

As13 5 1 0 2 5 2 3 6 6
As23 4 2 1 1 4 1 3 4 3
As33 4 3 1 1 4 1 1 5 3
As43 4 1 1 1 6 1 1 5 3
As53 2 2 2 1 3 1 1 3 4
As63 4 1 1 1 4 1 1 4 3
As73 4 1 1 1 4 1 3 4 3
As83 4 1 1 1 4 1 3 4 3

From Table 2, there exists two algebras which isomorphic each other which
is As73 ∼= As83. By using Maple Programme (see [10]), we obtain the following
matrix:  a11 0 a13

−1
2
αa22 a22 a23

0 0 a11a22

 .
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Summarizing all the observations above, we have the following list of algebra:

Proposition 3.1. There exist seven explicit isomorphism representatives of three di-
mensional associative algebras over complex given as follows:
As13 : e1e1 = e3; As23 : e1e1 = e3, e2e2 = e3;
As33 : e1e1 = e3, e1e2 = e3, e2e2 = αe3; As43 : e1e2 = e3, e2e1 = −e3;
As53 : e1e1 = e2, e2e1 = e3; As63 : e1e2 = e3, e2e1 = −e3, e2e2 = αe3;
As73 : e1e2 = e3, e2e1 = e3.

The following lemma shows centroids and derivations of three dimensional as-
sociative algebras:

Lemma 3.2. Centroids and derivations of three dimensional associative algebras over
C has the form as in Table 3.

Table 3: Centroid and derivations of three dimensional
associative algebras

IC Centroid, Γ dim Derivation, d dim

As13

a33 0 0

a21 a22 0

a31 a32 a33

 5

a11 0 0

a21 a22 0

a31 a32 2a11

 5

As23

a33 0 0

0 a33 0

a31 a32 a33

 3

a22 −a21 0

a21 a22 0

a31 a32 2a22

 4

As33

a33 0 0

0 a33 0

a31 a32 a33

 3

 a33 − a22 −a(2a22 − a33) 0

2a22 − a33 a22 0

a31 a32 a33

 4

As43

a33 0 0

0 a33 0

a31 a32 a33

 3

a33 − a22 a12 0

a21 a22 0

a31 a32 a33

 6

As53

a22 0 0

0 a22 a23

a31 0 a33

 3

a11 0 0

a32 2a11 0

a31 a32 3a11

 4
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As63

a33 0 0

0 a33 0

a31 a32 a33

 3

a11 0 0

a32 2a11 0

a31 a32 3a11

 4

As73

a33 0 0

0 a33 0

a31 a32 a33

 3

a33 − a22 −αa22 + 1
2
aa33 0

0 a22 0

a31 a32 3a11

 4

Proof. Let {e1, e2, e3} be a basis of three dimensional associative algebras, As3.
For centroid case. By definition of centroid, φ and algorithm in [8], we have
φ ∈ Γ(As3) as follows:

φ =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 where |φ| 6= 0.

Then, we get the centroid for each basis:

φ(e1) = a11e1 + a21e2 + a31e3, φ(e2) = a12e1 + a22e2 + a32e3,

φ(e3) = a13e1 + a23e2 + a33e3.

Similar for derivation. By using the definition of derivation, d as stated in Pre-
liminary section and algorithm in [8], then we have

d =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 where |d| 6= 0.

Thus, the derivation of the basis can be written as follows:

d(e1) = a11e1 + a21e2 + a31e3, d(e2) = a12e1 + a22e2 + a32e3,

d(e3) = a13e1 + a23e2 + a33e3.

Now, since in dimension three we have eiej, where i, j = 1, 2, 3, thus nine cases
are needed to consider.

Here we show detail calculation to find centroid and derivation of As23 only. By
using the algebra As23 : e1e1 = e3, e2e2 = e3 (from Proposition 3.1) in nine cases
into definition of centroid, we obtain a33 = a22 = a11, a12 = a13 = a21 = a23 = 0.
Thus the centroid of As23 is:
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Γ(As23) =

a33 0 0

0 a33 0

a31 a32 a33

 .
For derivation case, element d of the d(As23) are substitute into equation d(eiej) =

d(ei)ej + eid(ej). We build the system of equation that we obtain from nine cases,
then we get: a13 = a23 = 0, a33 = 2a22 = 2a11, a12 = −a21. As a result:

d(As23) =

a22 −a21 0

a21 a22 0

a31 a32 2a22

 .
By using both similar methods for all algebras in Proposition 3.1, we obtain all
centroids and derivations of three dimensional algebras as shown in table above
(see Lemma 3.2). �

From Lemma 3.2 we can conclude the result in the following corollary.

Corollary 3.1. 1. The dimension of centroids for two dimensional complex al-
gebras are three and five.

2. 2. The dimension of derivation for two dimensional complex algebras are
four, five and six.

4. CONCLUSION

In this paper, seven invariant classes of three dimensional associative algebra
are obtained. We also provide centroids and derivations of algebras.
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