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SUBSEQUENCES OF CESÀRO CONVERGENT SEQUENCES

Leila Miller-Van Wieren

ABSTRACT. Different types of convergence of sequences of real numbers and
their properties have been studied by many authors in recent years. In these
studies, frequently the relationship between the convergence of a sequence and
its subsequences has been in focus. In this paper, we aim to revisit a classical
type of convergence, Cesàro convergence and prove some new results on the
related convergence of subsequences of a sequence.

1. INTRODUCTION

Summability of real valued sequences has been a subject of study for many
mathematicians over the last century and in recent years. Many different types
of convergence including statistical, Cesàro, almost and ideal convergence, and
related properties have been researched. In some studies, the relationship of
a sequence and its subsequences regarding some type of summability was in-
vestigated. For this purpose two different gauges of size were used: Lebesgue
measure and Baire category, yielding many interesting results.

Buck [4] has initiated the study of the relationship between the convergence
of a given sequence and the summability of its subsequences. Agnew [1], Buck
[5], Buck and Pollard [6], Miller [11], Miller and Orhan [12], Zeager [18]
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have studied this relation with respect to some new types of convergence. Later
on, in [2, 8, 9, 13, 14, 16, 17] additional kinds of convergence of a sequence
and the related summability of its subsequences were studied, using Lebesgue
measure as a gauge of the size of the set of convergent subsequences. Also,
similar relations between sequences and their subsequences were studied, using
category, by several authors, ( [3,10,15]).

In this paper we will revisit a familiar type of convergence, known as Cesàro
convergence. Our aim is to study the relationship of a Cesàro summable se-
quence and its subsequences, as it has been done for other types of convergence,
using Lebesgue measure and Baire category as gauges of size. We will prove
some results analogous to earlier results regarding statistical, uniform statistical
and almost convergence ( [11,12,16,17]).

2. PRELIMINARIES

Now let us recall some necessary notions. Let x = {xn} be a sequence of real
numbers. The sequence x is said to be Cesàro convergent to a real number L if∑n

i=1 xi

n
−→ L.

It is well known that the class of Cesàro convergent sequences (strictly) con-
tains the class of convergent sequences.

Let K ⊆ N where N is the set of natural numbers. If m,n ∈ N, by K(m,n) we
denote the cardinality of the set of numbers i in K such that m ≤ i ≤ n. The
numbers

d
¯
(K) = lim inf

n→∞

K(1, n)

n
, d̄(K) = lim sup

n→∞

K(1, n)

n

are called the lower and the upper asymptotic density of the set K, respectively.
If d

¯
(K) = d̄(K) , then it is said that d(K) =d

¯
(K) = d̄(K) is the asymptotic

density of K.

The concept of statistical convergence has been introduced in [7] as follows:
Let x = {xn} be a sequence of real numbers. The sequence x is said to be
statistically convergent to a real number L provided that for every ε > 0 we
have d(Kε) = 0, where Kε = {n ∈ N : |xn − L| ≥ ε} . If x = {xn} converges
statistically to L, then we write st− limx = L.
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It is easy to prove that every bounded statistically convergent sequence is also
Cesàro convergent to the same limit.

Uniform statistical convergence and almost convergence are types of summa-
bility that are similar, but more restrictive than statistical and Cesàro conver-
gence, respectively. Their properties and the related summability of subse-
quences were extensively studied, using Lebesgue measure and category as
gauges of the size of the set of convergent subsequences (see [12,16,17]).

Subsequences of a sequence x can be naturally identified with numbers t ∈
(0, 1] written by a binary expansion with infinitely many 1’s. Thus we can denote
by {x(t)} the subsequence of x corresponding to t.

3. MAIN RESULTS

If a sequence x = {xn} is convergent, then all of its subsequences converge
to the same limit. The summability of subsequences of a sequence was studied
with regards to many types of convergence. One of the classical results of this
kind was proved by Miller in [11].

Theorem 3.1. Suppose x = {xn} is a sequence of reals in (0, 1]. Then x statistically
converges to L if and only if the set of t ∈ (0, 1] for which x(t) statistically converges
to L has Lebesgue measure 1.

Concerning category, in place of measure, Miller proved the next theorem.

Theorem 3.2. Suppose x = {xn} is a divergent sequence of reals. The set of
t ∈ (0, 1] for which x(t) is statistically convergent is meager.

Here we prove an analogue of Theorem 3.1 concerning Cesàro convergence.

Theorem 3.3. Suppose x = {xn} is a bounded sequence of reals in (0, 1]. Then
x is Cesàro convergent if and only if the set of t ∈ (0, 1] for which x(t) is Cesàro
convergent has Lebesgue measure 1. In this case, almost all subsequences of x (in
the sense of Lebesque measure) have the same Cesàro limit as x.

Proof. First, suppose that x Cesàro converges to L. Observe the independent
random variables Xn, n = 1, 2, . . ., where Xn takes on the values xn, 0 with

equal probability
1

2
. Clearly E(Xn) =

xn

2
, and V ar(Xn) =

x2
n

8
for n ∈ N.
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Since Xn are independent and V ar(Xn) are uniformly bounded, by the Kol-
mogorov strong law of large numbers:

X1 + X2 + · · ·+ Xn

n
−→ x1 + x2 + · · ·+ xn

2n

almost surely, i.e.,

(3.1) P

(
lim
n→∞

∑n
i=1Xi

n
−
∑n

i=1 xi

2n
= 0

)
= 1.

Since limn→∞

∑n
i=1 xi

n
= L, from (3.1) we get

(3.2) P

(
lim
n→∞

∑n
i=1Xi

n
− L

2
= 0

)
= 1.

Let N denote the set normal numbers in (0, 1], i.e. the set of t ∈ (0, 1], t =

0.t1, t2, . . . , tn, . . . (binary representation with infinitely many 1′s) for which the
asymptotic density of 1′ s (0′s) is exactly 1

2
. It is well known that m(N) = 1.

Now, suppose that t ∈ N . Let mn ≤ n denote the number of 1′s among the
first n digits of t. Then∣∣∣∣∑mn

i=1(x(t))i
2mn

−
∑mn

i=1(x(t))i
n

∣∣∣∣ =

∣∣∣∣ n

2mn

− 1

∣∣∣∣ · ∣∣∣∣∑mn

i=1(x(t))i
n

∣∣∣∣ .
Since

∑mn
i=1(x(t))i

n
is bounded and since t ∈ N implies that

∣∣∣ n
2mn
− 1
∣∣∣ −→ 0 we have

that ∣∣∣∣∑mn

i=1(x(t))i
2mn

−
∑mn

i=1(x(t))i
n

∣∣∣∣ −→ 0

as n→∞. Since t ∈ N was arbitrary and m(N) = 1, we conclude that

(3.3) m

(
{t ∈ (0, 1] : lim

n→∞

∑mn

i=1(x(t))i
2mn

−
∑mn

i=1(x(t))i
n

= 0}
)

= 1,

where mn is defined as earlier (the number of 1′s among the first n digits of t).
We can rewrite equation (3.2) as:

(3.4) m

(
{t ∈ (0, 1] : lim

n→∞

∑mn

i=1(x(t))i
n

− L

2
= 0}

)
= 1.

Combining equations (3.3) and (3.4) we conclude that

m

(
{t ∈ (0, 1] : lim

n→∞

∑mn

i=1(x(t))i
2mn

− L

2
= 0}

)
= 1,
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i.e.,

m

(
{t ∈ (0, 1] : lim

n→∞

∑mn

i=1(x(t))i
mn

− L = 0}
)

= 1.

This completes the proof in one direction.
Now, for the other direction, suppose that x(t) is Cesàro convergent for almost

all t ∈ (0, 1].
Let X denote the set of t ∈ (0, 1] for which x(t) is Cesàro convergent. Then

X has measure 1. Since m(X) = 1 implies that m(1 − X) = 1 where 1 − X =

{1− t : t ∈ (0, 1]}, and m(N) = 1, we can fix some t ∈ X ∩ (1−X) ∩N .
Now, t and 1 − t are both normal and x(t) and x(1 − t) are both Cesàro

convergent. Let L1 = limn→∞

∑n
i=1(x(t))i

n
and L2 = limn→∞

∑n
i=1(x(1−t))i

n

Now suppose n is arbitrarily fixed. Let n1 denote the number of 1′s among the
first n indices of t, and n2 the number of 0′s among the first n indices of t.

Then,

lim
n→∞

∑n
i=1 xi

n
= lim

n→∞

∑n1

i=1(x(t))i
n

+ lim
n→∞

∑n2

i=1(x(1− t))i
n

=

lim
n→∞

∑n1

i=1(x(t))i
n1

· n1

n
+ lim

n→∞

∑n2

i=1(x(1− t))i
n2

· n2

n
.

Now, if we let n → ∞, we have that n1 → ∞, n2 → ∞, and that n1

n
→ 1

2
,

n2

n
→ 1

2
.

From the above we can conclude that

lim
n→∞

∑n
i=1 xi

n
=

L1 + L2

2
.

Hence x is Cesàro convergent. From the first part of the proof, consequently
almost all subsequences have the same Cesàro limit as x, so the proof is com-
plete. �

Next we prove an analogue of Theorem 3.2 for Cesàro convergence.

Theorem 3.4. Suppose x = {xn} is a divergent sequence of reals. The set of
t ∈ (0, 1] for which x(t) is Cesàro convergent is meager.

Proof. If limn→∞ xn =∞ or −∞, then all of its subsequences have the same limit
and hence are not Cesàro convergent so the theorem holds in this case. Now
suppose that x has at least two distinct limit points. First consider the case when
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x has two distinct finite limit points, a and b. For t ∈ (0, 1] we define x(t) to be

the sequence of means of x(t), i.e. x(t)n =

∑n
i=1(x(t))i

n
.

Let

Xa,ε,m = {t ∈ (0, 1] : there exists n > m, x(t)n ∈ (a− ε, a + ε)}.

Define Xb,ε,m analogously. We will show that Xa,ε,m, Xb,ε,m are comeager for m,
ε.

Let m and ε be fixed. Let xnj
, j = 1, 2 . . ., denote a subsequence of x with limit

a.
Let t = (t1, t2, . . . , td) be an arbitrary fixed finite sequence of 0′s and 1′s. Sup-

pose there are exactly k 1′s among them, we can assume WLOG that k ≥ 1. It
is sufficient to show that there exists a finite extension t∗ of t such that every
t ∈ [0, 1) starting with t∗ is in Xa,ε,m. Let M = |y1 + y2 + · · ·+ yd| where yi = xi

if ti = 1 and yi = 0 if ti = 0.
Let g denote a fixed positive integer large enough that k

k+g
|a| < ε

4
, k + g > m

and M
k+g

< ε
2
.

Now fix j0, such that nj0 > d and
∣∣xnj
− a
∣∣ < ε

4
for j ≥ j0.

Consider the following extension of t

t∗ = (t1, t2, . . . , td, . . . , tnj0
, . . . , tnj0+g−1

)

where for i > d: ti = 1 for i = nj, j0 ≤ j ≤ j0 + g − 1 and xi = 0, otherwise.
Then for every t ∈ [0, 1) that extends t∗ we have that:∣∣∣x(t)n − a

∣∣∣ =

∣∣∣∣∑n
i=1(x(t))i

n
− a

∣∣∣∣ ≤
∣∣∣∣∣
∑d

i=1 yi
n

∣∣∣∣∣+

∣∣∣∣∣
∑g−1

i=0 xnj0+i
− ga

n

∣∣∣∣∣+
∣∣∣g
n
− 1
∣∣∣ · |a|

<
ε

2
+

ε

4
+

ε

4
= ε

for n = k + g. Hence every t ∈ [0, 1) that extends t∗ is in Xa,ε,m.
This proves that Xa,ε,m, and likewise Xb,ε,m is comeager for any ε, m. Let

Xa =
⋂
j,m

Xa, 1
j
,m, Xb =

⋂
j,m

Xb, 1
j
,m. Then Xa represents the set of all t ∈ (0, 1]

for which a is a limit point of x(t)n and Xb represents the set of all t ∈ (0, 1] for
which b is a limit point of x(t)n. Clearly Xa and Xb are both comeager and hence
Xa ∩ Xb is also comeager. But this means that the set of all t ∈ (0, 1] for which
x(t)n has both a and b as limit points and hence is not convergent is comeager,
so the theorem is proved in this case.
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In the case of x having two distinct limit points of which one or both are
infinite, an analogous construction can be made, proving the theorem in that
case. �

4. SEQUENCES OF 0′S AND 1′S

Finally we give our attention to sequences of 0′s and 1′s. Here we are able
to prove a few simple but revealing facts connecting statistical convergence and
Cesàro convergence.

Theorem 4.1. Suppose x = {xn} is a sequence of 0′ s and 1′s. Then x Cesàro
converges to l, l ∈ [0, 1], if and only if d({n : xn = 1}) = l.

Proof. Suppose x is Cesàro convergent to l ∈ [0, 1]. Then

lim
n→∞

∑n
i=1 xi

n
= l,

which means that

lim
n→∞

|{i : 1 ≤ i ≤ n, xi = 1}|
n

= l.

Hence d({n : xn = 1}) = l. The converse also follows, considering the above
equations. �

Theorem 4.2. Suppose x = {xn} is a sequence of 0′s and 1′s. Then x statistically
converges to 0 (1) if and only if x Cesàro converges to 0 (1).

Proof. We treat the case when the limit is 0. Suppose x statistically converges
to 0. From the definition, then clearly d({n : xn = 1}) = 0. Hence by Theorem
4.1, x Cesàro converges to 0. Conversely if x Cesàro converges to 0, by Theorem
4.1, d({n : xn = 1}) = 0. Consequently since x contains only 0′s and 1′s,
d({n : |xn| > ε}) = 0 for each ε > 0, so x statistically converges to 0. The case
when the limit is 1 works analogously, so the proof is complete. �

We also mention that from Theorem 4.1 it is clear that all normal sequences
of 0′s and 1′s Cesàro converge to 1

2
, which implies that almost all (in the sense

of Lebesgue measure) sequences of 0′s and 1′s have Cesàro limit 1
2
.
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