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ON MULTIVARIATE SPATIO-TEMPORAL TIME SERIES MODELS AND
CAUSALITY TEST USING COVID-19 DATA

Madjda Amrani and Halim Zeghdoudi1

ABSTRACT. The purpose of this article is to illustrate the development of patient-
specific GSTAR models using spatio-temporal time series data of number of
confirmed cases of covid-19 in four countries to test spatial causality between
them.

1. INTRODUCTION

In the spatio-temporal time series, the definition of the spatial weight matrix
is the key for our study on causality in the sense of the barn. In spatio-temporal
models such as STARMA, STAR and STMA the right choice of the spatial weight
matrix is characterized in light of the range and limitations of the study in dif-
ferent ways. the weight matrices are exogenous, they are defined a priori by the
modeler taking into account his knowledge of the relationships and interactions
between the spatial units.

Two types of matrix were chosen: the uniform weight matrix and the distance
weight matrix, then we define the notion of spatial causality in relation to the
two types of main concept matrix used for this study it is the causality of barn
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Uniform weight matrix is most often used as spatial weight. The disadvantages
of a uniform spatial weight matrix are the following not taking into account
spatial dynamics and heterogeneity and the trainee fails to grasp spatial hetero-
geneity (Kelejian and Prucha 2010, [9]) and porating instrumental variables in
the first step (for more details see Boudjellaba and Dufour 1992 [3], Cliff and
Ord 1969, [4]). COVID-19 is a new type of coronavirus that is infecting people
around the world. Coronaviruses are very common, and typically cause coughs
and colds. In rare cases, coronaviruses can cause severe infections like SARS.

In December 2019, there was a novel coronavirus called SARS-CoV-2. Novel
means it has never been seen in humans. In people who get infected by the
virus, there is a range of illness, and the illness that you get from the virus
is called COVID-19 for Corona Virus Disease-2019. COVID-19 poses a serious
threat to health, and the situation is changing every day. The risk varies within
the same community, and from one community to another.

The rest of this paper is organized as follows. Section 2 describes the theoreti-
cal model, including the spatio-temporal time series model (STARMA, STAR and
GSTAR). Furthermore, Section 3 deals with the causal structure with a GSTAR
model. Finally, the last section presents the conclusion.

2. THEORETICAL MODEL

2.1. STARMA model. An extension of the well-known ARMA model to deal
with space–time dependency is the STARMA(p,λ1,...,λp , q,,δ1,...,δp ) model proposed
by Cliff and Ord (1975), Dufour(1989, 1990) Dufour and Renault (1998)and
Pfeifer and Deutsch (1980a, b), see [5–8,10,11] which is expressed as :

zt =

p∑
k=1

λk∑
j=0

φk,,jwjzt−k −
q∑

k=1

δk∑
j=0

θk,jwjεt−k + εt,

where

- p and q are the lags of autoregressive and moving average components,
respectively;

- λk is the degree of spatial dependency within the kth autoregressive lag
component;

- δk is the degree of spatial dependency within the kth moving average lag
component;
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- φk,j are the parameters of the autoregressive components;
- θk,j are the parameters of the moving average component.

Two particular models are derived from STARMA(pλ, qδ) models: STAR(pλ)

models with only spatiotemporal autoregressive components, and STMA(qδ)

models with only spatio-temporal moving average components. The
STARMA(pλ, qδ) model has two special subclasses. When models that con-
tain no autoregressive term p = 0 are considered as Space Time Moving Aver-
age STMA(qδ) model. When q = 0 the class is considered as Space Time Auto
Regressive STAR(pλ) model.

2.2. STAR Model. Space Time Autoregressive (STAR) is one of space time mod-
eling. That’s model includes combining elements of time and location depen-
dencies. the STAR model of autoregressive order p and spatial orders λ1, . . . , λp
(STAR(pλ1,...,λp)) is defined as:

zt =

p∑
s=1

λs∑
k=1

Φskw
(k)zt−s + εt, t = 0,±1,±2, . . . .

For example, if a number of location is 3 then STAR(11) show as:

zt = φ10zt−1 + φ11w
(1)zt−1 + εt

zt =

 z1,t
z2,t
z3,t

 =

 φ10 0 0

0 φ10 0

0 0 φ10


 z1,t−1

z2,t−1

z3,t−1


+

 φ11 0 0

0 φ11 0

0 0 φ11


 0 w12 w13

w21 0 w23

w31 w32 0


 z1,t−1

z2,t−1

z2,t−1

+

 εx,t
εy,t

εz,t


Φsk = diag(φ

(1)
sk , . . . , φ

(n)
sk ).

2.3. GSTAR model. The GSTAR model is specific form of VAR (Vector Autore-
gressive) model. It reveals linear dependencies of space and time. The main
difference is on the spatial dependent, that in GSTAR model, it is expressed
by weight matrix. Let {zt t = 0,±1,±2, . . .} be a multivariate time series of
N components. In matrix notation, the GSTAR model of autoregressive order
p and spatial orders λ1, λ2, . . . , λp, GSTAR

(
pλ1,λ2,...,λp

)
could be written as (see
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Borovkova et al.(2008), [1]),

zt =

ps∑
s=1

[
Φs0 +

λs∑
k=1

Φskw
(k)zt−s

]
+ εt, t = 0,±1,±2, . . . ,

where, Φs0 = diag(φ
(1)
s0 , . . . , φ

(N)
s0 ) and Φsk = diag(φ

(1)
sk , . . . , φ

(N)
sk ); weights are

choosen to satisfy wkii = 0 and
∑
i 6=j

wkij = 1; εt is residual model that satisfies

identically, independent, distributed with mean and covariance
∑
.

For example, GSTAR model with time and spatial order one for three locations
is as follows: GSTAR(11) with N = 3

zt = Φ10zt−1 + Φ11w
(1)zt−1 + εt

zt =

z1,tz2,t
z3,t

 =


φ10 0 0

0 φ20 0

0 0 φ30


z1,t−1z2,t−1
z3,t−1

+


φ11 0 0

0 φ21 0

0 0 φ31



·


0 ω12 ω13

ω21 0 ω23

ω31 ω32 0


z1,t−1z2,t−1
z2,t−1

+

ε1,tε2,t
ε3,t

 .

Borovkova et al.(2002), [2] stated that several matrices of spatial weights
or w are usually used in GSTAR model, i.e. uniform weight, weight based on
inverse of distance between locations, weight based on normalization of cross
correlation inference, and weight based on normalization of partial cross corre-
lation inference. In general, the number of parameters in VAR is greater than in
GSTAR model.

2.4. Spatial Weight Matrix. A weight matrix is used to quantify neighbour-
hood relationships between points, i.e., to assign a weight to each neighbour.
Structure depends on the concept of neighbourhood chosen. So far, the choice
of spatial weights is subjective, depending on the researcher. There are sev-
eral ways to select the weights to use: with uniform, binary and non-uniform
weight, based on the distance matrix and cross-correlation inference, where
location weighting can be performed by normalizing the cross-correlation am-
plitudes between locations during the corresponding process.
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Definition 2.1 (Spatial Weight Matrix). Let n be the number of spatial units. The
spatial weight matrix, w, a n×n positive symmetric and non-stochastic matrix with
element wij at location i, j. The values of wij or the weights for each pair of loca-
tions are assigned by some preset rules which defines the spatial relations among
locations. By convention, wij = 0 for the diagonal elements. Weight matrices have
been classified into three broad categories, which are often used in practice.Here is
the following diagram:

FIGURE 1. Diagram of different Spatial Weight Matrix

Choose a weight matrix for each category to compare the causality test with
the weight matrix deferens.

2.4.1. Weights Based on Distance. Weights may be also defined as a function of
the distance between region i and j, dij. Let xi an xj be the longitud and yi and
yj the latitude coordinates for region i and j, respectively.

Definition 2.2. (Great Circle Distance). Let two point i and j, with respective
coordinates (xi, yi) and (xj, yj)

dij = r × arccos−1[cos |xi − xj| cos yi cos yj + sin yi sin yj],

where r is the Earth’s radius. The arc distance is obtained in miles with r =

3959 and in kilometers with r = 6371.
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2.4.2. Weights Based on Boundaries.

Definition 2.3. (Spatial Contiguity Weights). The simplest of these weights simply
indicate whether spatial units share a boundary or not. If the set of boundary
points of unit i is denoted by bnd(i) then the so-called queen contiguity weights are
defined by :

wij =

{
1 bnd(i) ∩ bnd(j) 6= ∅
0 bnd(i) ∩ bnd(j) = ∅

.

Binary Contiguity.

a) Rook criterion (Common Border)
1 red2 3
red4 5 red6
7 red8 9

Common border: 2,

4, 6,8

b) Bishop criterion (Common Vertex)
red1 2 red3
4 5 6
red7 8 red9

Common vertex: 1,

3, 7, 9

c) Queen criterion (Either common border or vertex)
red1 red2 red3
red4 5 red6
red7 red8 red9

Com-

mon vertex and border: 1, 2, 3, 4, 6, 7, 8, 9.

3. CAUSALITY

The test in the sense of Granger (1969), used in econometric studies of causal-
ity, is constructed in a simple way on the following idea: If a phenomenon is the
cause of another phenomenon, called "effect", then the latter cannot precede
the cause. In other words, Granger considers that there is a causal relation-
ship between two variables if the presence of the past of a variable z provides
information in the explanation of the present.

Looking behind Granger causality(ref)

Definition 3.1. Let zi,t and zj,t be two time series in zt. Let zi. collect all lagged
variables of zi,t, i.e. zi. = (zi,t−1, zi,t−2, . . .) and similarly xj. collect all lagged
variables of xj,t. We say xj,t is not a bivariate Granger cause for xi,t if and only if
conditional on xi..xi,t is independent of xj.. If conditional on xi., xi,t is dependent
of xj., we say zj,t is a bivariate Granger cause of zi,t .
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The multivariate Granger causality can be defined similarly.

Definition 3.2. Let zi,t and zj,t be two component in zt. Let zj. collect all lagged
variables of zj,t, i.e. zj. = (zj,t−1, zj,t−2, . . .), and let zj. collect all lagged variables of
zt except zj., i.e. zj = (z1, z2, . . . , zj−1, zj, zj+1, . . . , zN) . We say zj,t is not a multi-
variate Granger cause for zi,t if and only if conditional on Zj , Zi,tis independent of
zj.. If conditional on zj , zi,t is dependent of zj., we say zj,t is a multivariate Granger
cause of zi,t

3.1. Instant non-causality. Instantaneous non-causation is a different concept
from Granger non-causation. It looks to see if for a given instant of time, that is
to say at t, two or more variables evolve in a independent. That is, if a shock on
one variable has no instantaneous repercussion on the other variables. We guess
without it being necessary to do any mathematical developments that this will
be the case if the innovations of the process are independent. More precisely,
there will be no instantaneous causality between z1,t and z2,t if εt and ε2t are
uncorrelated, i.e. if E (εtε2t) = 0.

Granger (1969) proposed the concepts of causality and exogeneity: the vari-
able z2t is the cause of z1t, if the predictability of z1t is improved when z2t infor-
mation is incorporated into the analysis. Either the model STAR(p) for which
the variables z1t and z2t are stationary:

zt =

(
z1,t
z2,t

)
=

(
a0
b0

)
+

(
a11 b11
a21 b21

)(
z1,t−1
z2,t−1

)

+ · · ·+

(
a1p b1p
a2p b2p

)(
z1,t−p
z2,t−p

)
+

(
ε1,t
ε2,t

)
The variable block (z2t−1, z2t−2, . . . , z2t−p) is considered exogenous by relation

to variable block (z1t−1, z1t−2,...,z1t−p) if adding the block z2tdoes not significantly
improve the determination of the variables z1t.This consists in carrying out a
restriction test on the coefficients of the variables z2t of the STAR representation
z2t does not cause z1t if the following hypothesis is accepted
H0 : b11 = b12 = · · ·h = b1p
z1t does not cause z2t if the following hypothesis is accepted
H0 : a21 = a22 = · · · = a2p

3.2. Determination of the causal structure with a GSTAR model. In this sub-
section, we give some examples.
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Example 1. Application to the case of a V AR(1) with n = 2

zt = a+ φ11zt−1 + εt

zt =

(
z1,t
z2,t

)
=

(
a1
a2

)
+

(
φ11 φ12

φ21 φ22

)(
z1,t−1

z2,t−1

)
+

(
ε1,t
ε2,t

)
The z2,t variable does not cause the z1,t variable if and only if: φ12 = 0.

The z1,t variable does not cause the z2,t variable if and only if: φ21 = 0.If we are
led to accept the two hypotheses that z1,t causes z2,t and z2,t causes z1,t, we speak of
a feedback loop "feedback effect".

Example 2. For a STAR(11) with n = 2, the condition of Granger causality is
immediate to obtain:

zt = φ10zt−1 + φ11w
(1)zt−1 + εt[

z1,t
z2,t

]
=

[(
φ
(1)
10 0

0 φ
(2)
10

)
+

(
φ
(1)
11 0

0 φ
(2)
11

)(
0 w12

w21 0

)][
z1,t−1
z2,t−1

]
+

[
ε1,t
ε2,t

]
[
z1,t
z2,t

]
=

(
φ
(1)
10 φ

(1)
11 w12

φ
(2)
11 w21 φ

(2)
10

)[
z1,t−1
z2,t−1

]
+

[
εx,t
εy,t

]
z1,t = φ

(1)
10 z1,t−1 + φ

(1)
11 w12z2,t−1 + ε1,t

z2,t = φ
(2)
11 w21z1,t−1 + φ

(2)
10 z2,t−1 + ε2,t.

The z2,t variable does not cause the z1,t variable if and only if φ
(1)
11 w12 = 0 =⇒

φ
(1)
11 = 0 or w12 = 0.

The z1,t variable does not cause the z2,t variable if and only if φ(2)
11 w21 = 0 =⇒

φ
(2)
11 = 0 or w21 = 0.

**In the case of a weight matrix is sympatric and wij = 0 therefore there is
Bidirectional not causality zi,t 9 zj,t and zj,t 9 zi,t (zi,t 9 zj,t)

Example 3. For a STAR(22) with n = 2, the condition of Granger causality is
immediate to obtain:

zt = φ10zt−1 + φ11w
(1)zt−1 + φ12w

(2)zt−2 + εt

zt =

[
z1,t

z2,t

]
=

[(
φ10 0

0 φ10

)
+

(
φ11 0

0 φ11

)(
0 w

(1)
12

w
(2)
21 0

)][
z1,t−1
z2,t−1

]

+

[(
φ12 0

0 φ12

)(
0 w

(2)
12

w
(2)
21 0

)][
z1,t−2
z2,t−2

]
+

[
ε1,t
ε2,t

]
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zt =

[
z1,t
z2,t

]
=

(
φ10 φ11w12

φ11w21 φ10

)[
z1,t−1

z2,t−1

]

+

[(
0 φ12w

(2)
12

φ12w
(2)
21 0

)][
z1,t−2
z2,t−2

]
+

[
ε1,t
ε2,t

]
z1,t = φ10z1,t−1 + φ11w12z2,t−1 + φ12w

(2)
12 z2,t−2 + ε1,t

z2,t = φ11w
(1)
21 z1,t−1 + φ10z2,t−1 + φ12w

(2)
21 z1,t−2 + ε2,t

The z2,t variable does not cause the z1,t variable if and only if φ11w
(1)
12 = 0 =⇒

φ11 = 0 or w(1)
12 = 0 and φ12w

(2)
12 = 0 =⇒ φ12 = 0 or w(2)

12 = 0.
The z1,t variable does not cause the z2,t variable if and only if φ(2)

11 w21 = 0 =⇒
φ
(2)
11 = 0 or w21 = 0 and φ12w

(2)
21 = 0 =⇒ φ12 = 0 or w(2)

21 = 0.

4. RESULTS AND DISCUSSIONS

Data was collected from World Health Organization. Data is from 2020-01-23
to 2020-08-29 from 4 countries (Canada, United States, Mexico, Greenland).
confirmed cases of COVID-19 per day were used in our studie

The series following were used in our study
Z1 : number of coronavirus cases in Canada
Z2 : number of coronavirus cases in United States
Z3 : number of coronavirus cases in Mexico
Z4 : number of coronavirus cases in Greenland

TABLE 1. Summary descriptive statistics for the number of con-
firmed cases of covid-19

Canada United States Mexico Greenland
Min 0 1 0 0

1st Qu 478 6141 93 0
Median 71264 1352962 36327 13
Mean 60732 1794162 142583 9

3rd Qu 107394 2891124 256848 13
Max 129639 5961094 591712 14



1046 M. Amrani and H. Zeghdoudi

TABLE 2. Longitude and Latitude of locations under consideration

Countries Latitude Longitude
Canada 56.13036 −106.34677

United States 37.09024 −95.712891

Mexico 23, 634501 −102.552788

Greenland 71.70694 −42.604301

TABLE 3. Standardized weighted matrix

Canada United States Mexico Greenland
Canada 0 1

3
1
3

1
3

United States 1
3

0 1
3

1
3

Mexico 1
3

1
3

0 1
3

Greenland 1
3

1
3

1
3

0

TABLE 4. Row normalized Inverse distance spatial weight matrix

Canada United States Mexico Greenland
Canada 0 21.8084 32.7166 65.6180

United States 21.8084 0 15.0944 63.3943

Mexico 32.7166 15.0944 0 76.8425

Greenland 65.6180 63.3943 76.8425 0

FIGURE 2. The increase in the number of covid-19 cases in four countries
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TABLE 5. Fisher Test of Causality de Granger

Fisher Test P-value Conclusion
Canada9United.States 25.409 6.822e-07 Bidirectional
United.States 9Canada 24.833 9.047e-07 Causality
Canada 9 Mexico 310.43 < 2.2e-16 Bidirectional
Mexico9 Canada 59.775 7.483e-14 Causality
Canada9 Greenland 5.9955 0.01474 Unidirectional
Greenland 9 Canada 730.18 < 2.2e-16 Causality
United.States 9Mexico 89.468 < 2.2e-16 Bidirectional
Mexico9United.States 16.731 5.134e-05 Causality
United.States 9 Greenland 1.9097 0.1677 unidirectional
Greenland 9 United.States 91.855 < 2.2e-16 Causality
Mexico 9Greenland 1.1768 0.2786 No Causality
Greenland 9Mexico 2.3482 0.1254 Causality

Notes rejection of the nul hypothesis at the 1%,if the probability > 0.01, the
null hypothesis is accepted.

TABLE 6. Longrank test of Causality de Granger

H0: No instantaneous causality
between

Longrank test P-value Conclusion

Canada and United States 26.991 2.044e−7 Causality
Canada and Mexico 27.117 1.915e−7 Causality
Canada and Greenland 0.23177 0.6302 No Causality
United States and Mexico 37.627 8.565e−10 Causality
United States and Greenland 2.1049 0.1468 No Causality
Greenland and Mexico 2.3482 0.1254 No Causality

Granger causality test reveals bidirectional Causality from number confirmed
cases of corona-virus in Canada to number confirmed cases of corona virus in
United. States, number confirmed cases of corona-virus in Canada to num-
ber confirmed cases of corona-virus in Mexico and number confirmed cases of
corona-virus in Mexico to number confirmed cases of corona-virus in United
States, Canada-United States, Canada-Mexico, Mexico- United States.



1048 M. Amrani and H. Zeghdoudi

Granger causality test reveals unidirectional causality from number confirmed
cases of corona-virus in Canada to number confirmed cases of corona-virus
in Greenland and number confirmed cases of corona-virus in United. States
to number confirmed cases of corona-virus Greenland. Canada�Greenland,
United.States�Greenland.

Granger causality test reveals no causality from number confirmed cases of
corona-virus in Mexico to number confirmed cases of corona-virus in Greenland.
Mexico =Greenland.

Estimated coefficients for equation Canada
z1,t = 0.976032945z1,t−1+0.001343703z2,t−1−0.010709207z3,t−1+124.428041412z4,t−1+

25.875325726

Canada = Canada.l1 + United States.l1 + Mexico.l1 + Greenland.l1 + const
Estimated coefficients for equation United States
z2,t = 9.368883e−2z1,t−1+−9.653702e−1z2,t−1+3.383258e−1z3,t−1+3.84508e+3z4,t−1+

4.06841e+2

United States = Canada.l1 + United States.l1 + Mexico.l1 + Greenland.l1 +
const

Estimated coefficients for equation Mexico
z3,t = 0.076676110z1,t−1−0.003553168z2,t−1+1.029450958z3,t−1+24.50168267z4,t−1+

2.778536914

Mexico = Canada.l1 + United States.l1 + Mexico.l1 + Greenland.l1 + const
Estimated coefficients for equation Greenland
z4,t = −2.411315e−6z1,t−1− 2.444835e−7z2,t−1 + 2.257638e−6z3,t−1 + 1.025547e+

00z4,t−1 + 9.379688e−2

Greenland = Canada.l1 + United.States.l1 + Mexico.l1 + Greenland.l1 +
const

TABLE 7. Test Residuals VAR (1)

χ2 test p-value
Portmanteau Test 1792.8 < 2.2e-16
JB-Test 15288 < 2.2e-16
Skewness 1267 < 2.2e-16
Kurtosis 14021 < 2.2e-16
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From Table 3 the following weight matrix is obtained:

w =


0 1

3
1
3

1
3

1
3

0 1
3

1
3

1
3

1
3

0 1
3

1
3

1
3

1
3

0

 .
By using this weight Matrix, the resulted parameter estimates and significant
test of GSTAR (11)1model is shown in Table 8.

TABLE 8. Least Squares Estimator of GSTAR (11)1model

Parameter Estimate Std. Err. t Value Pr > |
φ10(Canada) 1.020e+00 2.866e-01 3.559 0.000395 ***
φ10(United States) 1.032e+00 2.328e-03 443.116 < 2e-16 ***
φ10(Mexico) 1.000e+00 6.829e-02 14.647 < 2e-16 ***
φ10(Greenland) 1.011e+00 4.335e+06 0.000 1.000000
φ11(Canada) -1.336e-03 2.850e-03 -0.469 0.639258
φ11(United States) -4.101e-01 1.520e+00 -0.270 0.787347
φ11(Mexico) 4.966e-03 4.087e-03 1.215 0.224708
φ11(Greenland) -1.063e-07 8.603e-04 0.000 0.999901

AIC =15847.22

Signif. codes: ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 . From Table 4 the following weight
matrix is obtained:

w =


0 21.8084 32.7166 65.6180
21.8084 0 15.0944 63.3943
32.7166 15.0944 0 76.8425
65.6180 63.3943 76.8425 0

 .
By using this weight Matrix, the resulted parameter estimates and significant
test of GSTAR (11)2model is shown in Table 9.

Table 9: Least Squares Estimator of GSTAR (11)2model

Parameter Estimate Std. Err. t Value Pr > t |
φ10 (Canada) 1.020e+00 2.888e-01 3.532 0.000436 ***
φ10(United States) 1.031e+00 2.120e-03 486.306 < 2e-16 ***
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φ10(Mexico) 1.000e+00 6.901e-02 14.494 < 2e-16 ***
φ10(Greenland) 1.011e+00 4.357e+06 0.000 1.000000
φ11(Canada) -1.143e-03 2.103e-03 -0.543 0.586956
φ11(United States) -3.000e-01 8.285e-01 -0.362 0.717354
φ11(Mexico) 3.925e-03 2.568e-03 1.528 0.126809
φ11(Greenland) -1.915e-07 2.781e-03 0.000 0.999945

AIC =15847.22

Signif. codes: ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05.
From Table 8 and Table 9, the GSTAR (11)1and GSTAR (11)2 models are as
follows:

z
(1)
t =


z1,t
z2,t
z3,t
z4,t

 =


1.0200 -0.0006 0.0000 0.0000
-0.4101 1.0320 -0.4101 0.0000
0.0000 0.0024 1.0000 0.0000
0.0000 0.0000 0.0000 1.011



z1,t−1
z2,t−1
z3,t−1
z4,t−1

+


ε1,t
ε2,t
ε3,t
ε3,t



z
(2)
t =


z1,t
z2,t
z3,t
z4,t

 =


1.0200 -8.467e-04 -4.86e04 -0.0003
-1.604e-01 1.0320 -1.7419e-01 -0.0754
1.8313e-03 0.0024 1.0000 0.0009
-3.6207e-08 -3.6782e-08 -3.33e-08 1.0110



·


z1,t−1
z2,t−1
z3,t−1
z4,t−1

+


ε1,t
ε2,t
ε3,t
ε3,t


In tables 8 and 9, we keep the same modeled GSTAR(11) but played on the

weight matrix. This will add confirmation of the effectiveness of our spatio
causality test.

5. CONCLUSION

The simplest framework for the study of causality in the sense of Granger is
that of a system consisting only of two variables x and y. It allows normally
familiarizing oneself easily with the tools and representations which will be mo-
bilized in more general frameworks.
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We will first see what Granger’s lack of causation implies. of the four variables
on the coefficients of VAR and GSTAR. Secondly, we will show the possibility of
treatment of causality according to Granger within the framework of the multi-
variate Spatio-temporal chronological series model (GSTAR model).

In a third step, we will present the implementation of the tests of causality of
the VAR and GSTAR model with a small change in the weight matrix, we have
chosen for the GSTAR(11)1 model Standardized weighted matrix and for the
GSTAR(11)2 model the Row normalized Inverse distance spatial weight matrix.
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