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THE MATRIX LINEAR UNILATERAL AND BILATERAL EQUATIONS

G. Gomathi Eswari1 and A. Rameshkumar

ABSTRACT. In this article the method of solving matrix linear equations over com-
mutative Bezout domains by means of standard form of a pair of matrices with
respect to generalized equivalence is found. The criterions of uniqueness of partic-
ular solutions of matrix linear equations are determined. The formulas of general
solutions of matrix linear equations AX + BY = C and AX + YB = C are deduced.

1. INTRODUCTION

The matrix linear equations play a fundamental role in many talks in control
and dynamical systems theory [1–4]. The such equations are the matrix linear
bilateral equations with one and two variables

(1.1) AX +XB = C

(1.2) AX + Y B = C

and the matrix linear unilateral equations

(1.3) AX +BY = C,
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where A,B, and C are matrices of appropriate size over a certain field F or over
a ring R. X, Y are unknown matrices. Equations (1.1), (1.2) are called Sylvester
equations. The equation AX + XAT = C, where matrix AT is transpose of A, is
called Lyapunov equation and it is special case of Sylvester equation. Equation
(1.3) is called the matrix linear Diophantine equation [3, 4]. Roth [5] established
the criterions of solvability of matrix equations (1.1), (1.2) whose coefficients
A,B, and C are the matrices over a field F.

2. STANDARD FORM OF A PAIR OF MATRICES

Let R be a commutative Bezout domain with diagonal reduction of matrices [9],
that is, for every matrix A of the ring of matrices M(n,R), there exist invertible
matrices U, V ∈ GL(n,R) such that

(2.1) UAVA = DA = diag(φ1, . . . , φn), φi|φi+1, i = 1, . . . , n− 1.

If φi ∈ R, i = 1, . . . , n, then the matrix DA is unique and is called the canonical
diagonal form (Smith normal form) of the matrix A. Such rings are so-called
adequate rings. The ring R is called an adequate if R is a commutative domain in
which every finitely generated ideal is principal and for every a, b ∈ R with a 6= 0;
a can be represented as a = cd where (c, b) = 1 and (di, b) 6= 1 for every nonunit
factor di of d [10].

Definition 2.1. The pairs (A1, A2) and (B1, B2) of matrices Ai, Bi ∈ M(n,R), i =

1, 2 are called generalized equivalent pairs if Ai = UBiVi, i = 1, 2 for some invertible
matrices U and Vi over R.

In [7,8], the forms of the pair of matrices with respect to generalized equivalence
are established.

Theorem 2.1. Let R be an adequate ring, and let A,B ∈M(n,R) be the nonsingular
matrices and

(2.2) DA = Φ = diag(φ1, . . . , φn), DB = ψ = diag(ψ1, . . . , ψn)

be their canonical diagonal forms then the pair of matrices (A,B) is generalized
equivalent to the pair (DA, TB), where TB has the following form:
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TB =

∥∥∥∥∥∥∥∥∥
ψ1 0 . . . 0

t21ψ1 ψ2 . . . 0

. . . . . . . . . 0

tn1ψ1 tn2ψ2 . . . ψn,

∥∥∥∥∥∥∥∥∥
tij ∈ Rδij , where δij = (φi/φj, ψi/ψj), i, j = 1, 2, . . . , n, i > j.

The pair (DA, DB) defined in Theorem 2.2 is called the standard form of the
pair of matrices (A,B) or the standard pair of matrices (A,B).

Definition 2.2. The pair (A,B) is called diagonalizable if it is generalized equivalent
to the pair of diagonal matrices(DA, DB) that is, its standard form is the pair of
diagonal matrices (DA, DB).

Example 1. Let A,B ∈ M(n,R). If (φn/φ1, ψn/ψ1) = 1, than the pair of matrices
(A,B) is diagonalizable.

It is clear taking into account by a Corollary that if (detA, detB) = 1, then the
standard form of matrices (A,B) is the pair of diagonal matrices (DA, DB). Let us
formulate the criterion of diagonalizability of the pair of matrices [5].

Definition 2.3. Diophantine equation is a polynomial equation usually involving
two (or) more unknown variables, Such that the only solutions of interest are the
integer ones. ax+ by = c where x, y are unknowns and a, b, c are integers.

3. THE MATRIX LINEAR UNILATERAL EQUATIONS AX +BY = C

3.1. The Construction of the Solutions of the Matrix Linear Unilateral Equa-
tions with Two Variables.

Suppose that the matrix linear unilateral equation (1.3) is solvable, and let
(DA, TB) be a standard form of a pair of matrices (A,B) from (1.3) with respect
to generalized equivalence, that is,

DA = Φ = UAVA = diag(φ1, . . . , φn),

(3.1) TB = UBVB =

∥∥∥∥∥∥∥∥∥
ψ1 0 . . . 0

t21ψ1 ψ2 . . . 0

. . . . . . . . . 0

tn1ψ1 tn2ψ2 . . . ψn

∥∥∥∥∥∥∥∥∥
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is a lower triangular matrix of the form (2.3) with the principal diagonal

(3.2) DB = Ψ = diag(ψ1, . . . , ψn),

where U, VA, VB ∈ GL(n,R).

Then (1.3) is equivalent to the equation

(3.3) DAx̃+ TB ỹ = c̃,

where x̃ = v−1
A x, ỹ = v−1

B y and c̃ = uc.

The pair of matrices x̃0, ỹ0 satisfying (3.3) is called the solution of this equation.
Then

(3.4) x0 = VAx̃0, y0 = VB ỹ0

is the solution of (1.3). The matrix equation (3.3) is equivalent to the system of
linear equation:

φ1x̃11 + φ1ỹ11 = c̃11,

φ1x̃12 + φ1ỹ12 = c̃12,

...

φ1x̃1n + φ1ỹ1n = c̃1n,

φ2x̃21 + φ1t21ỹ11 + φ2ỹ21 = c̃21,

...

φnx̃nn + φ1tn1ỹ1n + . . .+ ψn−1tn,n−1ỹn−1,n + ψnỹnn = c̃nn,

(3.5)

with the variables x̃ij, ỹij, i, j = 1, . . . , n, where tij, i, j = 1, . . . , n, from (3.3), or

(3.6) φix̃ij +
i=n∑
i=1

ψitij ỹij + φiỹij = c̃ij, i, j = 1, . . . , n,

where x̃ = ‖x̃ij‖n1 , ỹ = ‖ỹij‖n1 and c̃ = ‖c̃ij‖n1 .
The solving of this system reduces to the successive solving of linear Diophantine

equations of the form

(3.7) φix̃ij + φiỹij = c̃ij.

Using solutions of system (3.6), we construct the solutions x̃, ỹ of matrix equation
(3.3). Then X = VAx̃ and Y = VB ỹ are the solutions of matrix equation (1.3).
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3.2. The General solutions of the Matrix Equation AX + BY = C with the
Diagonalizable Pair of Matrices (A,B).

Suppose that the pair of matrices (A,B) is diagonalizable, that is,

UAVA = DA = Φ = diag(φ1, . . . , φn),

UBVB = DB = Ψ = diag(ψ1, . . . , ψn).
(3.8)

For some matrices U, VA, VB ∈ GL(n,R). Then (1.3) is equivalent to the equation

(3.9) ΦX̃ = ΨỸ = C̃,

where X̃ = V −1
A X, Ỹ = V −1

B Y and C̃ = UC.
From matrix equation (3.9) we get the system of linear Diophantine equation:

(3.10) φix̃ij + φiỹij = c̃ij i, j = 1, . . . , n.

Let x̃(0)
ij , ỹ

(0)
ij , i, j = 1, . . . , n be a particular solution of corresponding equation of

system (3.10), that is, x̃(0)
ij is the solution of congruence φix̃ij ≡ c̃ij( mod ψi),

x̃
(0)
ij ∈ Rφi and ỹ(0)

ij = (c̃ij − φix̃(0)
ij )/φi .

The general solution of corresponding equation of system (3.10) by the formula
will have the following form:

(3.11) x̃ij = x̃
(0)
ij +

ψi
dij
ri + ψikij, ỹij = ỹ

(0)
ij +

ψi
dij
ri + φikij, i, j = 1, . . . , n,

where dij = (φi, ψi), ri are arbitrary elements of Rdij , and kij are any elements of
R, i, j = 1, . . . , n. The particular solution of matrix equation (3.9) is

(3.12) x̃0 = ‖x̃(0)
ij ‖n1 , ỹ0 = ‖ỹ(0)

ij ‖n1 ,

where x̃(0)
ij , ỹ

(0)
ij , i, j = 1, . . . , n is a particular solution of corresponding equation of

system (3.10). Then

(3.13) X0 = VAX̃0, Y0 = VBỸ0,

is a particular solution of matrix equation (1.3).

Theorem 3.1. Let the pair of matrices (A,B) from matrix equation (1.3) be diago-
nalizable and its standard pair be the pair of matrices (Φ,Ψ) in the form (3.8). Let
X̃0, Ỹ0, be a particular solution of matrix equation (3.9). Then the general solution
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of matrix equation (3.9) is

X̃ = X̃0 + diag(
ψ1

d11

r1, . . . ,
ψn
dnn

rn)L+ Ψk,

(3.14) Ỹ = Ỹ0 + diag(
ψ1

d11

r1, . . . ,
ψn
dnn

rn)L− Φk,

where dii = (φi, ψi), ri are arbitrary elements of Rdii , i = 1, . . . , n; L = ‖lij‖n1 ,
lij = 1, i, j = 1, . . . , n; k = ‖kij‖n1 , kij are arbitrary elements in R. The general
solution of matrix equation (1.3) has the form X = VAX̃, y = VBỸ .

Example 2. Consider the equation

(3.15) AX +BY = C.

For the matrices

(3.16) A =

∥∥∥∥∥−2 4

−6 8

∥∥∥∥∥ , B =

∥∥∥∥∥1 3

5 7

∥∥∥∥∥ , C =

∥∥∥∥∥ 9 12

11 10

∥∥∥∥∥ ,
are matrices over Z and

(3.17) X =

∥∥∥∥∥x11 x13

x21 x22

∥∥∥∥∥ , Y =

∥∥∥∥∥y11 y12

y21 y22

∥∥∥∥∥
are unknown matrices. The matrix equation (3.16) is solvable.

The pair of matrices (A,B) from matrix equation (3.16) by a theorem is diago-
nalizable[6]. Let A,B ∈ M(n,R) and A be a nonsingular matrix. Then the pair of
matrices (A,B) is generalized equivalent to the pair of diagonal matrices (DA, DB)

if, and only if, the matrices (adjA)B and (adjDA)DB are equivalent, where adjA is
an adjoint matrix[7].

Since the matrices

(3.19a) (adjA)B =

∥∥∥∥∥8 −4

6 6

∥∥∥∥∥
∥∥∥∥∥1 3

5 7

∥∥∥∥∥ =

∥∥∥∥∥−12 −4

−4 4

∥∥∥∥∥
(3.19b) (adjDA)DB =

∥∥∥∥∥8 0

0 6

∥∥∥∥∥
∥∥∥∥∥6 0

0 −8

∥∥∥∥∥ =

∥∥∥∥∥8 0

0 −8

∥∥∥∥∥ .
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From (3.19a) and (3.19 b) are equivalent. Therefore,

UAVA = DA = Φ = diag(6, 8), φ1 = 6, φ2 = 8,

(3.18) UBVB = DB = Ψ = diag(6,−8), φ1 = 6, φ2 = −8,

where

(3.19) U =

∥∥∥∥∥ 0 1

−1 5

∥∥∥∥∥ , VA =

∥∥∥∥∥5 2

2 1

∥∥∥∥∥ , VB =

∥∥∥∥∥3 5

1 2

∥∥∥∥∥
Then (3.16) is equivalent to the equation Φx̃+ Ψỹ = c̃, where

X̃ = V −1
A X =

∥∥∥∥∥X̃11 X̃12

X̃21 X̃22

∥∥∥∥∥ ,
Ỹ = V −1

B Y =

∥∥∥∥∥Ỹ11 Ỹ12

Ỹ21 Ỹ22

∥∥∥∥∥ , C̃ = UC =

∥∥∥∥∥11 10

46 38

∥∥∥∥∥ .
(3.20)

From matrix equation (3.22), we get the system of linear Diophantine equations:

6x̃11 + 6ỹ11 = 11, 6x̃12 + 6ỹ12 = 10,

(3.21) 8x̃12 − 8ỹ21 = 46, 8x̃22 − 8ỹ22 = 38.

The particular solution of each linear equation of system (3.24) has the following
form

x̃
(0)
11 = 30, ỹ

(0)
11 = 1, x̃

(0)
12 = 0, ỹ

(0)
12 = 2

(3.22) x̃
(0)
21 = −4, ỹ

(0)
21 = −10, x̃

(0)
22 = −4, ỹ

(0)
22 = −9.

The particular solution of matrix equation (3.22) is

(3.23) X̃0 =

∥∥∥∥∥30 0

−4 −4

∥∥∥∥∥ , Ỹ0 =

∥∥∥∥∥ 1 2

−10 −9

∥∥∥∥∥ .
Then by (3.14) the general solution of matrix equation (3.22) is

X̃ =

∥∥∥∥∥30 0

−4 −4

∥∥∥∥∥+

∥∥∥∥∥ r1 r1

−r2 −r2

∥∥∥∥∥+

∥∥∥∥∥ 6k11 6k12

−8k21 −8k22

∥∥∥∥∥
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(3.24) Ỹ =

∥∥∥∥∥ 1 2

−10 −9

∥∥∥∥∥−
∥∥∥∥∥r1 r1

r2 r2

∥∥∥∥∥−
∥∥∥∥∥6k11 6k12

8k21 8k22

∥∥∥∥∥
or

X̃ =

∥∥∥∥∥ 30 + 6k11 6k12

−4− r2 − 8k21 −4− r2 − 8k22

∥∥∥∥∥
(3.25) X̃ =

∥∥∥∥∥ 1− 6k11 2− 6k12

−10− r2 − 8k21 −9− r2 − 8k22

∥∥∥∥∥
where ri is from Z1 = {0}, r2 is arbtrary element of Z3 = {0, 1, 2}, and kij, i, j = 1, 2

is arbitrary element of Z.
Finally, the general solution of matrix equation (3.16) is

X̃ = VAX̃ =

∥∥∥∥∥142− 2r2 + 30k11 − 16k21 −8− 2r2 + 30k12 − 16k12

56− r2 + 12k11 − 8k21 −4− r2 + 12k11 − 8k22

∥∥∥∥∥
(3.26) Ỹ = VBỸ =

∥∥∥∥∥−47− 5r2 − 18k11 − 40k21 −39− 5r2 − 18k12 − 40k12

−19− 2r2 − 6k11 − 16k21 −16− 2r2 − 6k12 − 16k22

∥∥∥∥∥
3.3. The Uniqueness of Particular Solutions of the Matrix Linear Unilateral
Equation.

The conditions of uniqueness of solutions of bounded degree (minimal solu-
tions) of matrix linear polynomial equations We present the conditions of unique-
ness of particular solutions of matrix linear equation over a commutative Bezout
domain R [8].

Theorem 3.2. The matrix equation (3.3) has a unique particular solution

(3.27) X̃0 = ‖x̃(0)
ij ‖n1 , Ỹ0 = ‖ỹ(0)

ij ‖n1

such that x̃(0)
ij ∈ Rφi , i, j = 1, . . . , n if, and only if, (detDA, detTB) = 1.

Proof. From matrix equation (3.3), we get the system of linear equations (3.6).
The solving of this system reduces to the successive solving of the linear Dio-
phantine equations of the form (3.7). The matrix equation (2.3) has a unique
particular solution X̃0 = ‖x̃(0)

ij ‖n1 , Ỹ0 = ‖ỹ(0)
ij ‖n1 such that x̃(0)

ij ∈ Rφi , i, j = 1, . . . , n

if, and only if, each linear Diophantine equations of the form (3.7) has a unique



THE MATRIX LINEAR UNILATERAL AND BILATERAL EQUATIONS 705

particular solution x̃
(0)
ij , ỹ

(0)
ij , such that x̃(0)

ij ∈ Rφi , i, j = 1, . . . , n. It follows that
(detDA, detTB) = 1. �

Theorem 3.3. X̃0 = ‖x̃(0)
ij ‖n1 , Ỹ0 = ‖ỹ(0)

ij ‖n1 , where x̃(0)
ij ∈ Rφi , i, j = 1, . . . , n be a

unique particular solution of matrix equation (3.3). Then the general solution of
matrix equation (3.3) is

(3.28) X̃ = X̃0 + ΨK, Ỹ = Ỹ0 + ΦK,

where Φ = DA and Ψ = DB are canonical diagonal forms of A and B from matrix
equation (1.3), respectively, K = ‖k̃(0)

ij ‖n1 , kij are arbitrary elements of R, i, j =

1, . . . , n.
The general solution of matrix equation (1.3) is the pair of matrices

(3.29) X = VAX̃, Y = VBỸ .

Proof. The particular solution of the form (3.30) of (3.3) is unique if, and only
if, (detDA, detTB) = 1, that is, (detA, detB) = 1. Then by corollary the pair of
matrices (A,B) is diagonalizable and (1.3) gives us the equation of the form (3.9)

Thus by a Theorem we get the formula (3.31) of the general solution of (3.3)
and the formula (3.32) for computation of general solution of (1.3) in the case
where (3.3) has unique particular solution of the form (3.30). �

4. THE MATRIX LINEAR BILATERAL EQUATIONS AX + Y B = C

Consider the matrix linear bilateral equation (1.2), where A,B, and C are ma-
trices over a commutative Bezout domain R, and

UAAVA = DA = Φ = diag(φ1, . . . , φn), φi|φi+1,

(4.1) UBBVB = DB = Ψ = diag(ψ1, . . . , ψn), ψi|ψi+1, i = 1, . . . , n− 1

are the canonical diagonal forms of matrices A and B, respectively, and UA, VA,

UB, VB ∈ GL(n,R). Then (1.2) is equivalent to

(4.2) ΦX̃ + Ỹ = C̃,

where X̃ = V −1
A XVB, Ỹ = UAY U

−1
B and C̃ = UACVB.
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Such an approach to solving (1.2) where A,B and C are the matrices over a
polynomial ring F (λ), where F is a field, was applied in [3]. The equation (3.2)
is equivalent to the system of linear Diophantine equations.

(4.3) φix̃ij + ψiỹij = c̃ij, i, j = 1, . . . , n.

Theorem 4.1. Let

(4.4) X̃0 = ‖X̃(0)
ij ‖n1 , Ỹ0 = ‖Ỹ (0)

ij ‖n1 ,

be a particular solution of matrix equation (4.2) that is, X̃(0)
ij , Ỹ

(0)
ij , i, j = 1, . . . , n,

are particular solutions of linear Diophantine equation of system (3.3).
The general solution of matrix equation (4.2) is

(4.5) X̃ = X̃0 +Wψ + k, Ỹ = Ỹ0 +WΦ + kΦ,

where Wψ = ‖(ψj/dij)wij‖n1 ,WΦ = ‖(φj/dij)wij‖, where wij are arbitrary element of
Rdij and K = ‖kij‖n1 , where kij are arbitrary element of R, i, j = 1, . . . , n.

The general solution of matrix equation (1.2) is

(4.6) X = VAX̃V
−1
B , Y = U−1

A Ỹ UB.

Similarly as for (3.3) we prove that particular solution of (4.2) is unique if, and only
if, (detφ, detψ) = 1. Then by the same way as for (1.3) we write down the general
solution of matrix equation (1.2).

Theorem 4.2. Suppose that

X̃0 = ‖X̃(0)
ij ‖n1 , Ỹ0 = ‖Ỹ (0)

ij ‖n1 ,

where X̃(0)
ij ∈ Rψi

, i = 1, . . . , n is unique particular solution of matrix equation (4.2)
and

(4.7) DA = Φ = diag(φ1, . . . , φn), DB = Ψ = diag(ψ1, . . . , ψn),

are canonical diagonal forms of matrices A,B from matrix equation (1.2), respec-
tively. Then the general solution of matrix equation (4.2) is

(4.8) X̃ = X̃0 +KΨ, Ỹ = Ỹ0 +KΦ,

where K = ‖kij‖n1 , kij are arbitrary elements of R, i, j = 1, . . . , n.
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The general solution of matrix equation (1.2) is

(4.9) X = VAX̃V
−1
B , Y = U−1

A Ỹ UB.

Example 3. Consider the equation

(4.10) AX + Y B = C

for the matrices

A =

∥∥∥∥∥8 −6

4 −2

∥∥∥∥∥ , B =

∥∥∥∥∥7 5

3 1

∥∥∥∥∥ , C =

∥∥∥∥∥10 11

12 9

∥∥∥∥∥
for the matrices over Z and

(4.11) X =

∥∥∥∥∥x11 x12

x21 x22

∥∥∥∥∥ , Y =

∥∥∥∥∥y11 y12

y21 y22

∥∥∥∥∥
are unknown matrices. The matrix equation (4.10) is solvable. The Pair of matrices
(A,B) from matrix equation (4.10) by a theorem is diagonalizable.

Let A,B ∈ M(n,R) and A be a nonsingular matrix. Then the pair of matrices
(A,B) is generalized equivalent to the pair of diagonal matrices (DADB) if, and only
if, the matrices (adjA)B and (adjDA)DB are equivalent, where adjA is an adjoint
matrix.

Since the matrices

(4.12) (adjA)B =

∥∥∥∥∥−2 6

−4 8

∥∥∥∥∥
∥∥∥∥∥7 5

3 1

∥∥∥∥∥ =

∥∥∥∥∥ 4 −4

−4 −12

∥∥∥∥∥
(4.13) (adjDA)DB =

∥∥∥∥∥8 0

0 6

∥∥∥∥∥
∥∥∥∥∥6 0

0 −8

∥∥∥∥∥ =

∥∥∥∥∥8 0

0 −8

∥∥∥∥∥ .
From (4.12) and (4.13) are equivalent. Therefore, UAVA = DA = Φ = diag(6, 8), φ1 =

6, φ2 = 8,

(4.14) UBVB = DB = Ψ = diag(6,−8), φ1 = 6.φ2 = −8,

where

UA =

∥∥∥∥∥−1 0

1 −1

∥∥∥∥∥ , UB =

∥∥∥∥∥0 1

1 −2

∥∥∥∥∥
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(4.15) VA =

∥∥∥∥∥ 1 −2

−1 3

∥∥∥∥∥ , UB =

∥∥∥∥∥2 1

1 1

∥∥∥∥∥ .
Then (4.10) is equivalent to the equation

(4.16) Φx̃+ Ψỹ = c̃,

where

X̃ = V −1
A XVB =

∥∥∥∥∥x̃11 x̃12

x̃21 x̃22

∥∥∥∥∥
∥∥∥∥∥2 1

1 1

∥∥∥∥∥ =

∥∥∥∥∥2x̃11 + x̃12 x̃11 + x̃12

2x̃21 + x̃22 x̃21 + x̃22

∥∥∥∥∥
Ỹ = U−1

B Y UA =

∥∥∥∥∥ỹ11 ỹ12

ỹ21 ỹ22

∥∥∥∥∥
∥∥∥∥∥−1 0

1 −1

∥∥∥∥∥ =

∥∥∥∥∥−ỹ11 + ỹ12 0− ỹ12

−ỹ21 + ỹ22 0− ỹ22

∥∥∥∥∥
C̃ = U−1

A CVB =

∥∥∥∥∥−1 0

1 −1

∥∥∥∥∥
∥∥∥∥∥10 11

12 9

∥∥∥∥∥
∥∥∥∥∥2 1

1 1

∥∥∥∥∥ =

∥∥∥∥∥−31 −21

−2 0

∥∥∥∥∥ .

From matrix equation (4.16), we get the system of linear Diophantine equa-
tions:

6x̃11 + 6ỹ11 = −31,

6x̃12 + 6ỹ12 = −21,

8x̃21 − 8ỹ21 = −2,

8x̃22 − 8ỹ22 = 0.

(4.17)

The particular solution of each linear equation of system (4.18) has the following
form

x̃
(0)
11 = 30, ỹ

(0)
11 = −35,

x̃
(0)
12 = 18, ỹ

(0)
12 = −22,

x̃
(0)
21 = −4, ỹ

(0)
21 = −3,

x̃
(0)
22 = 0, ỹ

(0)
22 = 0.

(4.18)

The partricular solution of matrix equation (4.19) is

(4.19) X̃0 =

∥∥∥∥∥30 18

−4 0

∥∥∥∥∥ , Ỹ0 =

∥∥∥∥∥−35 −22

−3 0

∥∥∥∥∥ .
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Then by (3.14) the general solution of matrix equation (3.22) is

X̃ =

∥∥∥∥∥30 18

−4 0

∥∥∥∥∥+

∥∥∥∥∥ W11 W12

−W21 −W22

∥∥∥∥∥+

∥∥∥∥∥ 6k11 6k12

−8k21 −8k22

∥∥∥∥∥
(4.20) Ỹ =

∥∥∥∥∥−35 −22

−3 0

∥∥∥∥∥−
∥∥∥∥∥W11 W12

W21 W22

∥∥∥∥∥−
∥∥∥∥∥6k11 6k12

8k21 8k22

∥∥∥∥∥
X̃ =

∥∥∥∥∥ 30 +W12 + 6k11 18 +W12 + 6k12

−4−W21 − 8k21 0−W22 − 8k22

∥∥∥∥∥
(4.21) Ỹ =

∥∥∥∥∥−35−W11 − 6k11 −22−W12 − 6k12

−3−W21 − 8k21 0−W22 − 8k22

∥∥∥∥∥ ,
where r1 is from Z1 = {0}, r2 is arbitrary element of Z3 = {0, 1, 2} and kij, i, j = 1, 2

is arbitrary element of Z. Finally, the general solution of matrix equation (3.16) is

(4.22) X̃ = VAX̃V
−1
B

=

∥∥∥∥∥ 110 + 3W21 + 18k11 − 5W12 + 40k21 54 + 3W12 + 18k12 + 5W22 + 40k22

−148− 4W12 − 24k11 − 7W21 − 56k21 −72− 4W12 − 24k12 − 7W22 − 56k22

∥∥∥∥∥
Ỹ = U−1

A Ỹ UB =

∥∥∥∥∥ 3 + 3W21 + 8k21 W22 + 8k22

32 +W11 + 6k11 −W21 − 8k21 2 +W12 + 6k12 −W22 − 8k22

∥∥∥∥∥ .

5. CONCLUSION

Hence we conclude that the method of solving matrix linear equations are over
a commutative bezout domain. This method is based on the use of standard form
of a pair of matrices with respect to generalized equivalence introduced and on
congruences. Now the notion of particular solution of such matrix equations. We
establish the criterions of uniqueness of particular solutions and write down the
formulas of general solutions of such equations.
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