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SOME METRICAL AND TOPOLOGICAL PROPERTIES OF THE RIVER
METRIC ON R2

Nermin Okičić and Amra Rekić-Vuković1

ABSTRACT. In this paper we consider some metrical and topological properties of
the river metric d∗ in the plane R2. We give the form of the metric segment and
the set of all points that are equidistant from two points in (R2, d∗). We also give
the characterization of a compact sets in this space.

1. INTRODUCTION

When we consider the distance between two points in a plane, we actually think
about the length of the shortest path connecting those two points. But, what
are "length" and "shortest path"? For example, the shortest path connecting two
points in the plane is given by the line segment. The length of this line segment
gives us, what is called, the Euclidean distance and the usual way that we think
about points, lines and angles in the plane is known as Euclidean geometry. What
happens when we change the metric function? As expected, the metric specifies
metric properties such as length and segment, but also shapes such as sphere,
ellipse, hyperbola, etc ( [1, 3]). It also dictates topological properties, openness
of the sets, completeness, compactness of the sets, measure of non-compactness
( [2,5]) etc.
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In this paper, we will replace the Euclidean metric in R2 with the so-called jungle
river metric or barbed wire metric ( [2]). In the first part, we will determine what
a metric segment is in such a space, and in the second part, we will give a complete
characterization of the compact sets in it.

2. THE METRIC SEGMENT IN THE RIVER METRIC

We will observe the set R2 with so-called river metric defined by

d∗(v1, v2) =

{
|y1 − y2| , x1 = x2,

|y1|+ |y2|+ |x1 − x2| , x1 ̸= x2,

where v1 = (x1, y1), v2 = (x2, y2) ∈ R2. Unfortunately, this space is not a normed
space and not even a linear metric space. The definitions of some terms must be
adapted to these structures, but for most terms they are standard. In the following,
we will denote the river metric with d∗ and with (R2, d∗) the metric space with the
river metric. We will denote the open ball in this space by B((x0, y0), r) = {(x, y) ∈
R2 | d∗((x, y), (x0, y0)) < r}, where v = (x0, y0) ∈ R2 is the center of the ball, and
r > 0 is the radius. With B((x0, y0), r) we denote closed ball.

(x1, y1)

(x2, y2)

(a) Equal first coordinates

(x1, y1)

(x2, y2)

(b) Different first coordi-
nates

FIGURE 1. The river metric in R2.

Let (X, d) be a metric space and let x, y, z ∈ X. We say that the point z is
between the points x and y in a given metric space if and only if

d(x, z) + d(y, z) = d(x, y).

The set of all points located between points x and y is called the metric segment
denoted by [x, y].
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Lemma 2.1. The metric segment between points v1 = (x1, y1), v2 = (x2, y2) ∈ R2

with the river metric d∗ is the set

[v1, v2] = {(x1, a) ∈ R2 | a ∈ [0, y1] (or a ∈ [y1, 0])}

∪ {(x2, a) ∈ R2 | a ∈ [0, y2] (or a ∈ [y2, 0])} ∪ {(b, 0) ∈ R2 | x1 ≤ b ≤ x2},

for x1 < x2 (Figure 1 (b)),or the set

[v1, v2] = {(x1, a) ∈ R2 | y1 ≤ a ≤ y2},

for x1 = x2 and y1 ≤ y2 (Figure 1 (a)).

In a metric space, the set of all points that are equidistant from the one fixed
point is a sphere, and thus we have a characterization of open and closed ball in a
given space. The ball in the metric space R2 with the river metric can have several
shapes depending on the center of the ball and its radius.

The ball centered at (0, 0) in (R2, d∗), with radius r > 0 (Figure 2 (a)) is given
with

B((0, 0), r) =
{
(x, y) ∈ R2 | |x|+ |y| < r

}
.

If v = (x∗, y∗) is arbitrary, then the ball centered at v and with the radius r > 0,
such that |y∗| < r, has the form (Figure 2 (b) and (c))

B(v, r) =

{
(x, y) ∈ R2 |

{
|y − y∗| < r , x = x∗

|x|+ |y| < r − |y∗| , x ̸= x∗

}
,

while for |y∗| ≥ r (Figure 2 (d)) has the form

(2.1) B(v, r) = {(x, y) ∈ R2 | x = x∗ ∧ |y − y∗| < r}.

r

r

v

(a)

r

v

(b)

r
v

(c)

r v

(d)

FIGURE 2. The shapes of B(v, r) in the river metric, depending on
the center v and the radius r.
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We say that a metric space (X, d) is a geodesic metric space if any two points
can be connected with a geodesic line, that is, for arbitrary x, y ∈ X there is an
isometric imbedding γ : [α, β] → X, [α, β] ⊂ R, so γ(α) = x and γ(β) = y. This
fact is equivalent (see [1]) to the existence of a midpoint mapping for (X, d), that
is, to the existence of a mapping m : X ×X → X such that for arbitrary x, y ∈ X

holds
d(m(x, y), x) = d(m(x, y), y) =

1

2
d(x, y).

Let v1 = (x1, y1), v2 = (x2, y2) ∈ R2, x1 < x2, be arbitrary. Then the mapping
γ : [0, d∗(v1, v2)] → R2, defined by

γ(t) =

{
(x1, y1 − t) ; y1 ≥ 0

(x1, y1 + t) ; y1 ≤ 0
; 0 ≤ t ≤ |y1|

(t− |y1|+ x1, 0); |y1| < t ≤ |y1|+ (x2 − x1){
(x2, t− (|y1|+ x2 − x1)) ; y2 ≥ 0

(x2,− (t− (|y1|+ x2 − x1))) ; y2 ≤ 0
;

|y1|+ (x2 − x1) < t

≤ d∗(v1, v2)

,
(2.2)

is obviously isometry. Furthermore, γ(0) = (x1, y1) = v1 and γ(d∗(v1, v2)) =

(x2, y2) = v2, so (R2, d∗) is a geodesic metric space. With this we ensured the
existence of midpoint mapping in this space. In addition, the existence of a map-
ping (2.2) gives us that (R2, d∗) is so-called segment space ( [4]).

Theorem 2.1. Let v1 = (x1, y1) and v2 = (x2, y2) be two points from (R2, d∗) such
that x1 ̸= x2 and |y1| ± x1 ̸= |y2| ± x2. If d∗(v1,v2)

2
≥ max{|y1|, |y2|}, then the set of all

points that are equidistant from points v1 and v2 is the set

A =

{
(x, y) ∈ R2 | x =

|y2|+ x2 − |y1|+ x1

2
, y ∈ R

}
,

and the middle of the metric segment [v1, v2] is the point

(x, y) =

(
|y2|+ x2 − |y1|+ x1

2
, 0

)
.

If d∗(v1,v2)
2

< max{|y1|, |y2|}, then the set of points that are equidistant from points
v1 and v2 is a singleton and for the middle of metric segment [v1, v2] we have, if
max{|y1|, |y2|} = |yi|, i ∈ {1, 2}, the middle point is
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(x, y) =

(
xi,

yi − |yj| − |x1 − x2|
2

)
, for yi > 0,

respectively

(x, y) =

(
xi,

yi + |yj|+ |x1 − x2|
2

)
, for yi < 0,

where j ∈ {1, 2}, j ̸= i.

Proof. Let v1 = (x1, y1), v2 = (x2, y2) ∈ R2, such that x1 ̸= x2, y1 ̸= y2. We can
assume that x1 < x2. Let (x, y) ∈ R2 be arbitrary, such that x ̸= x1 and x ̸= x2.
Then

d∗((x, y), (x1, y1)) = |y|+ |y1|+ |x− x1|,

d∗((x, y), (x2, y2)) = |y|+ |y2|+ |x− x2|.

If (x, y) is equidistant from points v1 and v2, d∗((x, y), (x1, y1)) = d∗((x, y), (x2, y2)),
then following holds

(2.3) |y1|+ |x− x1| = |y2|+ |x− x2|.

Let us consider three different cases.

(a) Let x < x1. Using (2.3), we have

|y1| − x+ x1 = |y2| − x+ x2 ⇐⇒ |y1|+ x1 = |y2|+ x2,

and by the assumption of the theorem there is no solution for x.

(b) Let x > x2. Again, using (2.3), we have

|y1|+ x− x1 = |y2|+ x− x2 ⇐⇒ |y1| − x1 = |y2| − x2,

so in this case, by the assumption of the theorem, there is no solution for x.

(c) Let x1 < x < x2. From (2.3) we get

|y1|+ x− x1 = |y2| − x+ x2 ⇐⇒ x =
|y2|+ x2 − |y1|+ x1

2
.

Since the second coordinate (y) is arbitrary, every point

(x, y) =

(
|y2|+ x2 − |y1|+ x1

2
, y

)
, y ∈ R,

satisfies the condition (2.3). So, the set of all points that are equidistant from
points v1 and v2 is actually the set A. Since the point (x, y) is the middle of the
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metric segment and satisfies the condition

d∗((x, y), (x1, y1)) = d∗((x, y), (x2, y2)) = inf{d∗((x, y), (x1, y1)) | (x, y) ∈ A},

infimum of the expression

d∗((x, y), (x1, y1)) = |y|+ |y1|+
∣∣∣∣ |y2|+ x2 − |y1|+ x1

2
− x1

∣∣∣∣ ,
where (x, y) ∈ A, is reached for y = 0. This means that the point

(x, y) =

(
|y2|+ x2 − |y1|+ x1

2
, 0

)
,

is the middle of the metric segment [v1, v2].

Let v1, v2 ∈ R2 be such that x1 < x2,
d∗(v1, v2)

2
< max{|y1|, |y2|} and without

loss of generality let y1 > 0 and max{|y1|, |y2|} = |y1|. The condition
d∗(v1, v2)

2
<

max{|y1|, |y2|} is equivalent to the condition

(2.4) |y2|+ x2 < |y1|+ x1.

Let us determine the set A of the points that are equidistant from points v1 and v2,
i.e. the set A = {(x, y) ∈ R2 | d∗((x, y), v1) = d∗((x, y), v2)}. Based on the condition
(2.4), we have that x = x1 holds for the first coordinate of the point that belongs
to the set A. Indeed, let x ̸= x1. We will consider following cases.

(a) Let x < x1 < x2. Then, the equality d∗((x, y), v1) = d∗((x, y), v2) is equivalent
to

|y|+ |y1|+ |x− x1| = |y|+ |y2|+ |x− x2|,

that is
|y1|+ x1 = |y2|+ x2,

and this is impossible given the assumption of the theorem.

(b) Let x > x2 > x1. The equality d∗((x, y), v1) = d∗((x, y), v2) is equivalent to

|y1| − x1 = |y2| − x2,

which is again impossible, due to the assumption of the theorem.

(c) Let x1 < x ≤ x2. If x1 < x < x2, then

d∗((x, y), v1) = |y|+ |y1|+ x− x1,
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d∗((x, y), v2) = |y|+ |y2|+ x2 − x,

so, equalizing these distances we get

x =
|y2|+ x2 − |y1|+ x1

2
.

Using the condition (2.4) we conclude that x < x1, and that is a contradiction to
the assumption x1 < x. On the other hand, if x = x2, then

d∗((x, y), v1) = |y|+ |y1|+ |x1 − x2|,

d∗((x, y), v2) = |y − y2|,

and we get
|y|+ |y1|+ x2 − x1 = |y − y2|,

that is

y1 + x2 − x1 = |y − y2| − |y| ≤ |y2| ≤ max{|y1|, |y2|} = |y1| = y1.

Since the distances between the point (x, y) and points v1 and v2 are equal, we
conclude that x2 ≤ x1, which is impossible due to assumption of this considered
case x1 < x2.

Therefore, assuming that
d∗(v1, v2)

2
< max{|y1|, |y2|} = |y1|, y1 > 0, we have

x = x1, where (x) is the first coordinate of the point from the set of all points that
are equidistant from points v1 and v2. In order to determine the points of the set
A, we will actually search for the points (x1, y) ∈ R2 such that d∗((x1, y), (x1, y1)) =

d∗((x1, y), (x2, y2)). Since

d∗((x1, y), (x1, y1)) = |y − y1|,

d∗((x1, y), (x2, y2)) = |y|+ |y2|+ |x1 − x2|,

we are looking for y ∈ R such that

(2.5) |y − y1| = |y|+ |y2|+ |x1 − x2|.

We will consider several cases.

(a) If y = 0, the condition (2.5) is equivalent to | − y1| = |y2| + |x1 − x2|, i.e.
|y1|+x1 = |y2|+x2, which is impossible because of the assumption of the theorem.
Hence y ̸= 0.
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(b) Let y < 0. The condition (2.5) is equivalent to |y − y1| = |y|+ |y2|+ x2 − x1,
i.e. |y1|+ x1 = |y2|+ x2, which is impossible. So, y < 0 doesn’t hold.

(c) Let y > 0 and y > y1. Then, (2.5) is equivalent to y − y1 = y + |y2|+ x2 − x1,
i.e. −|y1|+ x1 = |y2|+ x2, we get x1 = y1 + |y2|+ x2 > x2, which is contrary to the
initial assumption x1 < x2. Thus, let 0 < y < y1. The equality (2.5) becomes

y1 − y = y + |y2|+ |x1 − x2|,

and we have

y =
y1 − |y2| − |x1 − x2|

2
.

Accordingly, the set A =

{(
x1,

y1 − |y2| − |x1 − x2|
2

)}
is a singleton. So, if

max{|y1|, |y2|} = |yi|, where yi > 0, then the set of the points that are equidistant

from points v1 and v2 is a singleton and A =

{(
xi,

yi − |yj| − |x1 − x2|
2

)}
, j ∈

{1, 2}, j ̸= i.
If max{|y1|, |y2|} = |y1| and y1 < 0, in a similar way as in the previous case, using

the condition
d∗(v1, v2)

2
< max{|y1|, |y2|}, we conclude that the set of the points

that are equidistant from points v1 and v2 is

A = {(x1, y) | d∗((x1, y), v1) = d∗((x1, y), v2)} .

We will find the second coordinate y ∈ R from the condition (2.5). Let us consider
following cases.
(a) Let y = 0. Then, the condition (2.5) is equivalent to |y1| + x1 = |y2| + x2,
which is impossible due to assumption of the theorem. So, y ̸= 0.

(b) If y < 0, that is y < y1, (2.5) is equivalent to y1 = |y2| + x2 − x1, or x1 =

|y2| − y1 + x2 = |y2|+ |y1|+ x2 > x2, which is also impossible.

(c) Let y > 0. Since y1 < 0, we have y > y1 and the condition (2.5) is equivalent
to −y1 = |y2| + x2 − x1, that is |y1| + x1 = |y2| + x2, which is the opposite to the
assumption of the theorem. If y < 0 and y > y1, we have

y =
y1 + |y2|+ |x1 − x2|

2
,
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thus the set

A =

{(
x1,

y1 + |y2|+ |x1 − x2|
2

)}
is singleton.

Therefore, if
d∗(v1, v2)

2
< max{|y1|, |y2|}, where max{|y1|, |y2|} = |yi|, yi > 0,

then

A =

{(
xi,

yi + |yj|+ |x1 − x2|
2

)}
,

where j ∈ {1, 2}, j ̸= i. □

The assumption |y1|±x1 ̸= |y2|±x2 that we made in the Theorem 2.1 for points
v1 and v2, eliminated several special cases. Let v1 = (a, b) and v2 = (b, a), where
a ̸= b. Without loss of generality, let a < b. For arbitrary (x, y) ∈ R2, x ̸= a, b we
have

d∗((x, y), v1) = |y|+ |b|+ |x− a|, d∗((x, y), v2) = |y|+ |a|+ |x− b|,

and from the equality of these two distances we get

(2.6) |b|+ |x− a| = |a|+ |x− b|.

Let us now consider the possibilities for x.

(a) For x < a, we have x < b, so (2.6) implies a + |b| = |a| + b. According to
the initial assumption (a < b), the last equality is satisfied only for the case when
a, b > 0. In this case, the set of the points that are equidistant from points v1 and
v2 is given by

A = {(x, y) ∈ R2 | x < a, y ∈ R}.

(b) For x > b, we have x > a, so (2.6) implies |b| − a = |a| − b. Using the initial
assumption a < b, the last condition will be satisfied if and only if a, b < 0. The set
of the points that are equidistant from points v1 and v2 is given by

A = {(x, y) ∈ R2 | x > b, y ∈ R}.

(c) For a < x < b, using (2.6) we get

|b|+ x− a = |a| − x+ b ⇐⇒ x =
|a|+ a+ b− |b|

2
.
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Such x will exist if and only if a < 0 i b > 0, which means that x = 0, therefore

A = {(0, y) | y ∈ R}.

Theorem 2.2. Let v1 = (x1, y1) and v2 = (x2, y2) are two points from (R2, d∗), such
that x1 = x2 and y1 ̸= −y2. The set of all points that are equidistant from points v1
and v2 is a singleton and the middle of the metric segment [v1, v2] is the point

(x, y) =

(
x1,

y1 + y2
2

)
.

If y1 = −y2, then the set of all points that are equidistant from the points v1 and v2

is the set
A = R2 \ {(x1, y) | y ∈ R, y ̸= 0},

and the middle of the metric segment is the point (x1, 0).

Proof. Let v1 = (x1, y1) and v2 = (x2, y2) be such that x1 = x2 and y1 = −y2. Let
(x, y) ∈ R2 be arbitrary and x ̸= x1. Then

d∗((x, y), (x1, y1)) = |y|+ |y1|+ |x− x1|,

d∗((x, y), (x2, y2)) = |y|+ |y2|+ |x− x2|.

The equality of the distances gives |y1| = |y2|. This equality is true with respect to
the initial assumption, so every point (x, y) ∈ R2, where x ̸= x1 is equidistant from
points v1 and v2.

Specially, we have

d∗((x1, 0), (x1, y1)) = |y1| = |y2| = d∗((x1, 0), (x2, y2)).

Now, let us consider the point (x1, y), y ∈ R.

d∗((x1, y), (x1, y1)) = |y − y1|, d∗((x1, y), (x2, y2)) = |y − y2|.

The equality of these two distances gives us

|y − y1| = |y − y2| ⇐⇒ |y + y2| = |y − y2|,

and we conclude that the solution is possible only for y = 0. Consequently, we
have that the set of all points that are equidistant from points v1 and v2 is

A = R2 \ {(x1, y) | y ∈ R, y ̸= 0}.
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For arbitrary (x, y) ∈ A we have

d∗((x, y), v1) = d∗((x, y), v2) = |y|+ |y1|+ |x− x1|

≥ |y1| = d∗((x1, 0), v1) = d∗((x1, 0), v2),

so, the middle of the metric segment [v1, v2] is the point (x1, 0).
Now, let v1 = (x1, y1) and v2 = (x2, y2) be such that x1 = x2 and y1 ̸= −y2. For

arbitrary (x, y) ∈ R2, where x ̸= x1 we have

d∗((x, y), v1) = |y|+ |y1|+ |x− x1|, d∗((x, y), v2) = |y|+ |y2|+ |x− x1|.

The equality of these two distances gives us |y1| = |y2|, that is y1 = y2. This means
that v1 = v2 or y1 = −y2, which is impossible due to the initial assumption. Thus,
neither one of points (x, y) ∈ R2, such that x ̸= x1, is not equidistant from v1 and
v2. For that reason, let us consider points (x1, y) ∈ R2. It holds

d∗((x1, y), v1) = |y − y1|, d∗((x1, y), v2) = |y − y2|.

The equality of these two distances gives us |y − y1| = |y − y2|. So, the equality
y − y1 = y − y2 can hold, but using this we conclude there is no solution for y. On
the other side, the equality y − y1 = −(y − y2) can hold. This gives us the solution

y =
y1 + y2

2
. Accordingly, the point

(
x1,

y1 + y2
2

)
is equidistant from points v1 and

v2 and it is unique. □

3. THE COMPACTNESS IN THE RIVER METRIC

In a metric space, open balls are open sets, and the base in that metric space
consists of all possible open balls.

The topology induced by the river metric on R2 is not equal to Euclidean topolo-
gies on R2 that are induced by Euclidean metrics dp (1 ≤ p ≤ ∞). The reason for
this lies in the characterization of topologically equivalent metrics ( [7]). Namely,
for the arbitrary ball Bd∗ in the river metric, in the general case, there is no ball
Bdp in the Euclidean metric such that Bdp ⊂ Bd∗. For example, if we consider
the ball Bd∗((2, 1.2), 1) (Figure 2 (d)), it is obvious that there is no ball in (R2, dp)

(1 ≤ p ≤ ∞) which is contained in Bd∗.
Let Bdp((x0, y0), r) be arbitrary ball in (R2, dp) (1 ≤ p ≤ ∞). Let us consider the

ball Bd∗((x0, y0), r0), where
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r0 =

{
r ; |y0| ≥ r
r

n
; |y0| < r

,

and n ∈ N such that |y0| ≥
r

n
. If |y0| ≥ r, then

Bd∗((x0, y0), r0) = {(x0, y) ∈ R2 | |y − y0| < r},

and if |y0| < r, then

Bd∗((x0, y0), r0) = {(x0, y) ∈ R2 | |y − y0| <
r

n
}.

In both cases we have Bd∗((x0, y0), r0) ⊂ Bdp((x0, y0), r). This means that the
topology induced by the river metric is finer topology than the topology induced
by the Euclidean metric on R2 ( [7]). The balls given by (2.1) (see Figure 2 (d))
are open balls in the river topology, and are not open in Euclidean topologies on
R2. This confirms previous assertion.

The final conclusion is that the river topology is not topologically equivalent to
the Euclidean topology on R2. Moreover, the river metric is not even uniformly
equivalent to any of the metrics dp (1 ≤ p ≤ +∞) on R2 ( [6]).

It was proved in [6] that the space (R2, d∗) is complete metric space and hence
we have complete characterization of Cauchy sequences in this space.

Lemma 3.1 ( [6], Lemma 3.3). A sequence ((xn, yn))n∈N is Cauchy sequence in
(R2, d∗) if and only if (xn)n∈N is convergent, and (yn)n∈N is zero-sequence or (xn)n∈N

is constant sequence, starting from some index, and (yn)n∈N converges in R.

As we noted, the topology induced by the river metric is finer than the Euclidean
topology on R2. This will cause the decrement of the number of compact sets in
R2 with the river metric to decrease.

Example 1. Let a, b, c, d ∈ R, a < b and c < d. Let us consider the set K =

[a, b]× [c, d]. Let us define the sequence ((xn, yn))n∈N ⊂ R2 with

xn = a+
b− a

n
, yn = c+

d− c

k
= α, n ∈ N, and k ∈ N is fixed.

Now, let n,m ∈ N be arbitrary. Then
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d∗((xn, yn), (xn+m, yn+m)) = |α|+ |α|+
∣∣∣∣a+ b− a

n
−
(
a+

b− a

n+m

)∣∣∣∣
= 2|α|+ (b− a)

m

n(n+m)
≥ 2|α|.

Thus, considered sequence is not Cauchy sequence, so it has no accumulation points.
Hence, there exists no convergent subsequence of the given sequence, so the set K is
not compact.

Theorem 3.1. Let a, b ∈ R, a < b and let f : [a, b] → R, f ̸= 0 be continuous
function. If closed set K ⊂ R2 contains the set I = {(x, f(x)) | x ∈ [a, b]}, then the
set K is not compact in R2 with the river metric.

Proof. Since a < b, let us consider the sequence of the points defined by xn =

a +
b− a

n
∈ [a, b], n ∈ N. For arbitrary n,m ∈ N, n ̸= m, we have xn ̸= xm.

It is obvious that xn → a ∈ [a, b] when n → ∞. Since f is continuous we have
f(xn) → f(a), n → ∞. Notice that both of these convergence are in R with the
standard metric. Without loss of generality assume that f(a) ̸= 0. Consider the
sequence (xn, f(xn))n∈N ⊂ R2. For arbitrary n,m ∈ N we have

d∗((xn, f(xn)), (xm, f(xm))) = |f(xn)|+ |f(xm)|+ |xn − xm|.

The sequence (xn)n∈N is Cauchy sequence in R and f is continuous on [a, b], so we
conclude that

d∗((xn, f(xn)), (xm, f(xm))) → 2|f(a)|, n,m → ∞.

Therefore, the sequence (xn, f(xn))n∈N is not Cauchy sequence which means it has
no accumulation points, i.e. there is no convergent subsequence of this sequence.
So, the set K is not compact.

The consequence of the above statement is that balls B((x∗, y∗), r) in R2 with the
river metric, for |y∗| < r, are not compact sets. Based on the Bolzano-Weierstrass
theorem, balls B((x∗, y∗), r), for |y∗| ≥ r, are compact sets. Furthermore, based
on the same theorem, sets given by [a, b] × {0} are also compact sets. With the
following theorem we give the description of compact sets in considered space.
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Theorem 3.2. Let R2 be equipped with the river metric d∗. The set K ⊂ R2 is
compact if and only if it is closed and satisfies

K ⊆ {α} × [c, d] , α, c, d ∈ R

or

K ⊆ ([a, b]× {0}) ∪
∞⋃
n=1

({αn} × [−βn, βn]),

where a, b ∈ R, a ≤ b, αn ∈ [a, b] and (βn)n∈N is sequence in R such that βn → 0

(n → ∞).

Proof. Let K be closed set and K ⊆ {α} × [c, d]. Let (vn)n∈N ⊆ K be arbitrary.
Then vn = (α, yn) and (yn)n∈N ⊂ [c, d]. Based on Weierstrass theorem, there exists
convergent subsequence (ynk

)k∈N ⊆ (yn)n∈N. By the Lemma 3.1, the sequence
(vnk

)k∈N is Cauchy sequence, so it is convergent in (R2, d∗). Thus, from arbitrary
sequence in K we have found convergent subsequence, so K is compact set.

Now, let

K ⊆ ([a, b]× {0}) ∪
∞⋃
n=1

({αn} × [−βn, βn]),

where a, b αn and βn (n ∈ N) satisfy assumptions of the theorem. Let (vk)k∈N ⊂ K

be arbitrary. We will consider following cases.

(a) Let infinitely many points of the sequence vk = (xk, yk) be in [a, b]×{0}. This
means that (xk)k∈N ⊂ [a, b] and yk = 0 for all k ∈ N. Based on the Weierstrass the-
orem, we can find convergent subsequence (xkl)l∈N of the sequence (xk)k∈N. Now,
using Lemma 3.1, we have that the sequence vkl = (xkl , 0) is Cauchy sequence, i.e.
convergent sequence. Therefore, K is compact.

(b) For some n0 ∈ N let infinitely many points of the sequence vk = (xk, yk) be
in the set {αn0} × [−βn0 , βn0 ]. This means that the sequence (xk)k∈N is constant
sequence starting from the index n0, and (yk)k∈N ⊂ [−βn0 , βn0 ]. Then, we can find
convergent subsequence (ykl)l∈N of the sequence (yk)k∈N. Based on the Lemma
3.1, the sequence vkl = (αn0 , ykl) is Cauchy sequence, so it is convergent. Hence,
we have found convergent subsequence in the arbitrary sequence in K, that is K

is compact.

(c) Let only finitely many points from the sequence (vk)k∈N belong to each of sets
[a, b] × {0} and {αn} × [−βn, βn] (n ∈ N). From each of the sets {αn} × [−βn, βn]
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that contain points of sequence (vk)k∈N, let us choose one member of the given
sequence. Notice, that there are infinitely many such sets. In this way, we con-
structed the subsequence vkn = (xkn , ykn) (n ∈ N) of the sequence (vk)k∈N. Actu-
ally, we formed the subsequence of the given sequence, such that the sequence of
the first coordinates satisfies (xkn)n∈N ⊂ [a, b], so we can find the convergent sub-
sequence (x′

kn
)n∈N. If we consider appropriate subsequence of second coordinates

(y′kn)n∈N ⊂ (ykn), we have (y′kn)n∈N ⊂ [−βn, βn]. Based on the "sandwich" theorem
this sequence is convergent, furthermore y′kn → 0 (n → ∞). Thus, using Lemma
3.1 we have that the subsequence (v′kn)n∈N is Cauchy sequence, so it converges. In
this way, we proved that K is compact.

This completes the first part of the proof. □

Now, let us assume that K is compact set. Then K is closed. Let us assume that
the condition of the theorem is not satisfied, i.e.

(3.1) K ̸⊆ {α} × [c, d],

and

(3.2) K ̸⊆ ([a, b]× {0}) ∪
∞⋃
n=1

({αn} × [−βn, βn]),

where a, b, c, d, αn and βn (n ∈ N) satisfy the assumptions of the theorem. Since
the conditions (3.1) and (3.2) hold, we have three different possibilities.

(a) There exists infinite set A ⊆ K such that

A = {(xn, 0) ∈ R2 | (xn)n∈N is unbounded sequence}.

Then, there exists (xnk
)k∈N ⊂ (xn)n∈N, such that xnk

→ +∞ (or xnk
→ −∞).

However, there is no convergent subsequence of the sequence (vk)k∈N ⊂ A, where
vk = (xnk

, 0). Thus, K is not compact, which contradicts the initial assumption.

(b) There exists infinite set A ⊆ K such that

A = {(αn, y) ∈ R2 | n ∈ N, |y| ≥ δ > 0},

and the sequence (αn)n∈N is non-constant sequence. We can eventually find con-
vergent subsequence (αnk

)k∈N of the sequence (αn)n∈N, but because of the con-
dition for the set A, there is no subsequence (ynk

)k∈N of the second coordinates
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such that ynk
→ 0 (k → ∞). This means that neither one of the subsequences

(vk)k∈N ⊂ A, where vk = (αnk
, ynk

), is not Cauchy sequence in R2 with the river
metric (Lemma 3.1). Therefore, there are no accumulation points of the set A, i.e.
the set K is not compact. This is contradiction with the initial assumption.

(c) There exists infinite set A ⊆ K such that

A = {(α, yn) ∈ R2 | yn → +∞ (yn → −∞) n → ∞}.

It is obvious that this set A has no accumulation points. Hence, the set K is not
compact, which contradicts assumption about compactness of the set K.

In this way, we considered all possible cases when the conditions (3.1) and (3.2)
are satisfied. Based on the reductio ad absurdum principle, we conclude that if K
is compact, then following holds:

K ⊆ {α} × [c, d] , α, c, d ∈ R

or

K ⊆ ([a, b]× {0}) ∪
∞⋃
n=1

({αn} × [−βn, βn]).

□

Corollary 3.1. The set K ⊂ R2 is compact if and only if

(a) K = B((x∗, y∗), r), for |y∗| ≥ r.
(b) K = [a, b]× {0}, for a, b ∈ R, a ≤ b.
(c) A set K is the most countable union of the sets from (a), that is

K =
N⋃

n=1

B((xn, yn), rn) (N ∈ N) or K =
∞⋃
n=1

B((xn, yn), rn),

such that the sequence (xn)n∈N is bounded, yn → 0 (n → ∞) and |yn| ≥ rn

(n ∈ N).

The set A ⊆ R2, such that A = [a, b] × {c}, where a < b, c ̸= 0 is not totally
bounded set. Indeed, let us assume that set A is totally bounded. Then for ε = |c|
there exists covering {A1, A2, . . . , An} of the set A, i.e.

[a, b]× {c} ⊆
n⋃

i=1

Ai.



PROPERTIES OF THE RIVER METRIC 423

Since there are finitely many sets Ai, then there exists at least one set Ai0, i0 ∈
{1, 2, . . . , n} such that (a′, c), (b′, c) ∈ Ai0, where a′, b′ ∈ [a, b], a′ < b′. This means
that diamAi0 ≥ d∗((a′, c), (b′, c)) = 2|c|+ b′ − a′. On the other hand, diamAi0 = |c|,
so we conclude that |c| ≥ 2|c|+ b′ − a′, i.e. |c| ≤ a′ − b′ < 0 which is contradiction.

Obviously, sets that contain sets of the form A = [a, b] × {c} ⊆ R2, c ̸= 0 and
a < b, are not totally bounded. Based on that, balls of the form B((x0, y0), r),
where |y0| < r are not totally bounded sets in R2 with the river metric.
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