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ON FS-LIFTING AND CFS-LIFTING SEMIMODULES OVER SEMIRINGS

Moussa Sall1, Landing Fall2, and Djiby Sow3

ABSTRACT. In this paper, we introduce the notions of fs-lifting and cfs-lifting semi-
modules as respectively the generalizations of finitely lifting (f-lifting for short)
semimodules and cofinitely lifting (cf-lifting) semimodules. Under some condi-
tions, we prove some results on fs-lifting and cfs-lifting semimodules for proving
the equivalence between fs-lifting and cfs-lifting semimodules.

An R-semimodule M is fs-lifting if every finitely generated subtractive sub-
semimodule N of M , there exists a direct summand K of M such that K ≤ N

and N/K ≪ M/K; so if every coessential finitely generated subtractive subsemi-
module N of M , there exists a direct summand K of M such that K ≤ N and
N/K ≪ M/K, M is called cfs-lifting.

1. INTRODUCTION

Extending semimodules are generalization of injective semimodules and, dually,
lifting semimodules generalize projective supplemented semimodules ( [2]).

Moreover let M be an R-semimodule. An equivalence relation ρ on M is an
R-congruence relation if and only if: mρm

′ and nρn
′ ⇒ (m + n)ρ(m

′
+ n

′
) and

(rm)ρ(rm
′
) for all m,m

′
, n, n

′ ∈ M and r ∈ R.
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An R-congruence relation ρ is trivial if mρm
′ ⇔ m = m

′.
Let N be a subsemimodule of a left R-semimodule M . N induces on M an

R-congruence relation ≡N , known as the Bourne relation defined by: ∀m,m
′ ∈

M ;m ≡N m
′ ⇔ ∃n, n′ ∈ N such that m+ n = m

′
+ n

′.
The set of all the equivalences classes modulo ′′ ≡′′

N denoted by M/N is such
that (M/N,+, .) is an R-semimodule which is called quotient semimodule where
the operations are defined by:

′′+′′ : m+m′ = m+m′ ,

′′.′′ : rm = rm.

Let M1, M2 two subsemimodules of a left R-semimodule M .

- An R-semimodule M is a direct weak sum of M1 and M2 (denoted:M =

M1⊕M2) if M = M1 +M2 and M1 ∩M2 = {0}.
- An R-semimodule M is direct strong sum of M1 and M2 (denoted by M =

M1 ⊕M2) if and only if M = M1 +M2 and the restriction ′′ ≡′′
M1

to M2 and
the restriction ′′ ≡M2 to M1 are trivial.

Let M be a left R-semimodule.

- A subsemimodule N of an R-semimodule M is called a subtractive sub-
semimodule (=k-subsemimodule) if ∀ x, y ∈ M, (x + y ∈ N, y ∈ N) ⇒
x ∈ N .

- The subsemimodule N is called strongly subtractive if ∀ x, y ∈ M ; (x+y ∈
N) ⇒ x ∈ N and y ∈ N .

- The R-semimodule M is called subtractive (resp.strongly subtractive) or
subtractive completely if every subsemimodule of M is subtractive (resp.strongly
subtractive).

Example 1. Let R = {0; 1} be the Boole semiring and the set M = {0; 1; a; b}. Define
on M the operations as the following: 0R = 0M , 1R = 1M = 1, 1 + 1 = 1 + a =

1 + b = a + b = 1; a + 0 = a + a = a; b + 0 = b + b = b; 0 × a = 0 × b = a × b =

0; 1× 1 = 1; 1× a = a× a = a; 1× b = b× b = b. Then (M,+,×) is a commutative
left R-semimodule which is finitely generated. In add, we have:

- {0; a} is a subtractive subsemimodule of M but {0; 1; a} is not subtracive
(because 1 + b = 1 ∈ {0; 1; a}, 1 ∈ {0; 1; a} and b ̸∈ {0; 1; a}).
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- M = {0; a} + {0; 1; b}, {0; a} ∩ {0; 1; b} = {0} and 1 = 0 + 1 = a + b.
Since a ̸= 0 and b ̸= 1, the decomposition of 1 is not unique and hence
M = {0; a}⊕{0; 1; b}.

- M = {0; a} + {0; b} and there does not exist x, y ∈ {0; a} | 0 + x = b + y,
therefore m ≡{0;a} m

′ ⇔ m = m
′
, ∀ m,m

′ ∈ {0; b} and hence the restriction
of ≡{0;a} to {0; b} is trivial. Similarly, the restriction of ≡{0;b} to {0; a} is
trivial.

Thus M = {0; a}⊕{0; b}.

This paper is organized as follows:

- In Section 1: Basic notions, where more notions are defined.
- In Section 2, we study the notions of finitely subtractive lifting semimod-

ule;
- In Section 3, we study the notion of cofinitely subtractive lifting semimod-

ules.

In the following, R is always an associative, commutative semiring with unit
and 1R ̸= 0R,the direct summands are the strong ones, the semimodules are left
R-semimodules and we use Bourne relation for the semimodules quotients.

2. BASICS NOTIONS

Let M be a R-semimodule and N,H,L three subsemimodules of M such that
H ≤ N .

A proper subsemimodule S of M is called a small subsemimodule of M if for all
subsemimodule T of M , S + T = M implies that T = M . It is indicated by the
notation S ≪ M .

A semimodule M is called hollow if every proper subsemimodule of M is small
in M .

A subsemimodule N of M is called a supplement of L in M if N + L = M and
N ∩L ≪ N . In add, if N is subtractive it is trivial to see that N is a supplement of
L in M if and only if it is minimal with the propriety of N + L = M .
A subsemimodule N of an R-semimodule M is called a weak supplement of L if
N + L = M and N ∩ L ≪ M (see [1]).
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If every subsemimodule of M has a supplement (resp a weak supplement), then
M is called a supplemented semimodule (resp weakly supplemented semimod-
ule). So M is amply supplemented if M = L+N implies there exists a supplement
K of L such that K ≤ N .

If N/H ≪ M/H, then H is called a coessential (or cosmall) subsemimodule of
N in M and it is denoted by H ≤ce N , and hence we say that N lies above H.

A subsemimodule N of M is coclosed in M (denoted by N ≤cc M) if N has no
proper coessential subsemimodule in M .

The subsemimodule H is called an s-closure of N in M if H is coessential sub-
semimodule of N and H is coclosed in M .

The R-semimodule M is called lifting if every subsemimodule of M lies above
a direct summand of M i.e ∀ N ≤ M there exists a direct summand K of M such
that K ≤ N and N/K ≪ M/K.

The R-semimodule M is k-simple (respectively k-noetherian) if it has no non-
trivial k-subsemimodules (respectively if every k-subsemimodule of M is finitely
generated). The R-semimodule M is k-semisimple if it is a direct sum of k-simple
subsemimodules i.e, every k-subsemimodule of M is a direct summand of M .

A semiring R is a left V -semiring if Rad(M) = 0 for all R-semimodule M , where
Rad(M) is the Jacobson radical of M .

3. FS-LIFTING SEMIMODULES

Definition 3.1. A semimodule M is called finitely lifting or f-lifting for short , if every
finitely generated subsemimodule of M lies above a direct summand of M .

Example 2. Let (R = {0, 1, . . . , n} ∪ {+∞}; +; .) where the operation ′′+′′ and ′′.′′

are define by: x + y = max(x, y), x.y = xy = min(x, y) and M be the set of all
nonnegative integers. Define a+b = max(a, b) for each a, b ∈ M and a mapping from
R × M into M , sending (r,m) to min(r,m). Then M is an f-lifting R-semimodule.
Indeed, we show that:

I. R is a semiring.
(1) It is clear that max(0, x) = x, x + y = max(x, y) = max(y, x) = y +

x ∈ R, and max(max(x, y), z) = max(x,max(y, z)) ⇒ (x + y) + z =

x + (y + z), ∀ x, y, z ∈ R; then (R,+) is a commutative monoid with
identity element 0;
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(2) xy = min(x, y) ∈ R, min(min(x, y), z) = min(x,min(y, z)) ⇒ (xy)z =

x(yz) and x(+∞) = min(x,+∞) = x, ∀ x, y, z ∈ R; then (R, .) is a
monoid with identity element +∞ ≠ 0;

(3) x(y+z) = min(x, y+z) = min(x,max(y, z)) and xy+xz = min(x, y)+

min(x, z) = max(min(x, y),min(x, z))

- If max(min(x, y),min(x, z)) = x, then min(x, y) = x or min(x, z) =

x therefore min(x,max(y, z)) = x;
- If max(min(x, y),min(x, z)) = y, then we have min(x, y) = y and
max(y, z) = y therefore min(x,max(y, z)) = min(x, y) = y;

- If max(min(x, y),min(x, z)) = z, similarly of y case, we will have
min(x,max(y, z)) = z.

Hence we conclude that min(x,max(y, z)) = max(min(x, y),min(x, z))

therefore x(y + z) = xy + xz, ∀ x, y, z ∈ R. Similarly, we show that
(x+ y)z = xz + yz, ∀ x, y, z ∈ R;

(4) min(0, a) = min(a, 0) = 0, ∀ a ∈ R, then 0a = a0 = 0, ∀ a ∈ R.
(1), (2), (3), (4) ⇒ R is a semiring.

II. M is an R-semimodule.
By the previous demonstration, (M,+) is a commutative additive semigroup
with identity element 0 (by(1)), (r + s)m = rm + sm, r(m + p) = rm +

rp, ∀ m, p ∈ M, r, s ∈ R (by (3)). In add, r(sm) = min(r, sm) =

min(r,min(s,m)) = min(min(r, s),m) = (rs)m, 0m = min(0,m) = 0M =

min(r, 0M) ∀m ∈ M, r, s ∈ R. Hence M is a left R-semimodule.
III. M is f-lifting.

It is clear that M = ∪{k ∈ N}. Let L be a finitely generated subsemimodule
of M . Then there exists m ∈ N such that

L = ∪{k ∈ N|0 ≤ k ≤ m}.

Let H be a subsemimodule of M such that L+H = M , a+b = max(a, b), ∀ a, b ∈
M , then L + H = M ⇒ L = M or H = M . Since L is finitely generated,
L ̸= M therefore H = M ; hence L ≪ M , and

L ≪ M ⇒ L/{0} ≪ M/{0},

and since {0} is a direct summand of M , we conclude that L lies above a
direct summand of M . Hence M is f-lifting.
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Definition 3.2. A semimodule M is called subtractive lifting semimodules or fs-lifting
semimodule for short, if every finitely generated subtractive subsemimodule of M lies
above a direct summand of M .

Example 3. Let R = {0; 1} be the Boole semiring and the set M = {0; 1; a; b}.

1) Define on M the operations as the following: 0R = 0M , 1R = 1M = 1, 1+1 =

1 + a = 1 + b = a + b = 1; a + 0 = a + a = a; b + 0 = b + b = b; 0 × a =

0× b = a× b = 0; 1× 1 = 1; 1× a = a× a = a; 1× b = b× b = b.
Then (M,+,×) is a fs-lifting R-semimodule.
Indeed, clearly M is finitely generated and hence every subsemimodule of

M is finitely generated. The only subtractive non trivial subsemimodules of
M is {0, a} and {0, b}. Clearly {0, a}/{0, a} ≪ M/{0, a}, {0, b}/{0, b} ≪
M/{0, b} and since {0, a} and {0, b} are the direct summands of M (from
Example 1), then (M,+,×) is fs-lifting.

2) Define on M the operations as the following: 0R = 0M , 1R = 1M = 1, 1∗1 =

1 ∗ a = 1 ∗ b = 1; a ∗ a = a ∗ 0 = 0 ∗ a = a; b ∗ b = b ∗ 0 = 0 ∗ b = b; a ∗ b =
0; a.0 = 0.a = b.0 = 0.b = 0; 1.a = a; 1.b = b.

Then (M, ∗, .) is R-semimodule which is not fs-lifting.
Indeed, consider the subsemimodule N = {0, a, b} of M . Clearly N is sub-

tractive and finitely generated, and the only direct summand of M contained
in N is {0}. Since N + {0, 1} = M and {0, 1} ̸= M , N ̸≪ M therefore
N/{0} ̸≪ M/{0} and hence (M, ∗, .) is not fs-lifting.

3) Define on M the operations as the following: 0R = 0M , 1R = 1M = 1, 1+1 =

1+ a = 1+ b = a+ b = 0; a+ a = a+0 = 0+ a = a; b+ b = b+0 = 0+ b =

b; a.0 = 0.a = b.0 = 0.b = 0; 1.a = a; 1.b = b.
Then (M,+, .) is an R-semimodule fs-lifting but it is not f-lifting.
Indeed, clearly, the only subtractive subsemimodule of M is {0}, then M is

fs-lifting. So the only direct summand of M contained in {0; 1} is {0} and it
is clearly that {0; 1} is finitely generated. Since M = {0; 1} + {0; a; b} and
{0; a; b} ≠ M , then {0; 1}/{0} ̸≪ M/{0} therefore M is not f-lifting.
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4. CFS-LIFTING SEMIMODULES

Definition 4.1. A subsemimodule N of M is called a coessentialy finitely generated
subsemimodule if there exist a finitely generated non zero subsemimodule H of M
such that N ≤ce (H +N) in M .

Definition 4.2. An R-semimodule M is called co-finitely lifting or cf-lifting for short,
if every coessentialy finitely generated subsemimodule of M lies above a direct sum-
mand of M .

Example 4. We consider the N-semimodule (N/4N, +,×) whose operations are the
natural addition and multiplication. Then (N/4N, +,×) is cf-lifting. Indeed, the only
non trivial subsemimodule of N/4N is {0̄, 2̄} which is a coessentialy finitely generated
subsemimodule of N/4N. Since {0̄, 2̄} ≪ N/4N and {0̄} is a direct of N/4N, then
{0̄, 2̄} lies above a direct summand of N/4N and hence N/4N is cf-lifting.

Remark 4.1. Every lifting R-semimodule is f-lifting and every f-lifting R-semimodule
is cf-lifting.

Definition 4.3. An R-semimodule M is called co-finitely subtractive lifting semi-
module or cfs-lifting semimodule if every coessentialy finitely generated subtractive
subsemimodule of M lies above a direct summand of M.

Example 5. Define on M the operations as the following: 0R = 0M , 1R = 1M =

1, 1 + 1 = 1 + a = 1 + b = a + b = 0; a + a = a + 0 = 0 + a = a; b + b = b + 0 =

0 + b = b; a.0 = 0.a = b.0 = 0.b = 0; 1.a = a; 1.b = b.
Then (M,+, .) is an R-semimodule cfs-lifting but it is not cf-lifting.
Indeed, clearly, the only subtractive subsemimodule of M is {0}, then M is cfs-lifting.

So the only direct summand of M contained in {0; 1} is {0} and it is clearly that {0; 1}
is a coessentialy finitely generated subsemimodule. Since M = {0; 1} + {0; a; b} and
{0; a; b} ≠ M , then {0; 1}/{0} ̸≪ M/{0} therefore M is not cf-lifting.

Remark 4.2. Every cf-lifting semimodule is cfs-lifting but it is clear that the converse
is not true.

Lemma 4.1. (see [3] Lemma 1.4) Let M be a subtractive left R-semimodule and
H, K be subsemimodules of M such that K ⊂ H and H/K = M/K. Then M = H.

Theorem 4.1. Any direct summand of a cfs-lifting semimodule is cfs-lifting.
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Proof. Let K be a direct summand of a cfs-lifting semimodule M . Then there is
K

′ ≤ M such that M = K ⊕ K
′. Let N be a coessentialy finitely generated

subtractive subsemimodule of K therefore it is a coessentialy finitely generated
subtractive subsemimodule of M . Then there is a direct summand N

′ of M such
that N ′ ≤ N and N/N

′ ≪ M/N
′. We show that N/N

′ ≪ K/N
′.

Assume that there is L ≤ K such that N
′ ≤ L and K/N

′
= N/N

′
+ L/N

′.
Then N/N

′
+ L/N

′
+ (K

′
+ N

′
)/N

′
= K/N

′
+ (K

′
+ N

′
)/N

′
= M/N

′. Since
N/N

′ ≪ M/N
′, then L/N

′
+ (K

′
+ N

′
)/N

′
= M/N

′. Clearly L/N
′ ≤ K/N

′ and
M/N

′
= K/N

′ ⊕ (K
′
+N

′
)/N

′, then L/N
′
= K/N

′. Hence N/N
′ ≪ K/N

′. Since
N

′ is a direct summand of M and N
′ ≤ K, then N

′ is a direct summand of K.
Thus K is a cfs-lifting semimodule. □

Theorem 4.2. If an R-semimodule M is cfs-lifting then M is fs-lifting.

Proof. Let N be a finitely generated subtractive subsemimodule of M then N ≤ce N

in M hence there exist a direct summand K of M such that K ≤ce N in M then
M is fs-lifting. □

Theorem 4.3. Let M be an R-semimodule such that every k-subsemimodule of M is
finitely generated. Then the following statements are equivalent:

(1) M is cfs-lifting
(2) M is fs-lifting.

Proof.
1. ⇒ 2.): From Theorem 4.2
2. ⇒ 1.): Let N be a coessentialy finitely generated subtractive subsemimodule of
M . Since N is subtractive, then it is finitely generated and hence by 2., N lies a
bove a direct summand of M . Thus M is cfs-lifting. □

Definition 4.4. A semimodule is k-noetherian if every k-subsemimodule is finitely
generated.

Theorem 4.4. For a k-noetherian subtractive R-semimodule M , the following state-
ments are equivalent:

(1) M is cfs-lifting
(2) M is fs-lifting
(3) M is cf-lifting
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(4) M is f-lifting
(5) M is lifting

Proof. 1) ⇔ 2) ⇔ 3) ⇔ 4) ⇔ 5)

Indeed, since M is k-noetherian then every k-subsemimodule of M is finitely
generated and hence, by the Theorem 4.3, we have 1) ⇔ 2). In addition, since
M is subtractive, every subsemimodule of M is a k-subsemimodule; then every
subsemimodule of M is finitely generated. Thus 2) ⇔ 3) ⇔ 4) ⇔ 5). □

For application we can consider the following example:

Example 6. Let (N; gcd; lcm) be a semiring. Then N is a k-noetherian subtrac-
tive N-semimodule . Indeed, it is clear that N is an N-semimodule and every k-
subsemimodule of N is of the form nN where n ∈ N.

Let m1N ⊆ m2N ⊆ . . . ⊆ miN ⊆ mi+1N ⊆ . . . an increasing sequence of k-
subsemimodules of N.

We should show that this sequence is stationary: m1N ⊆ m2N ⇒ m2|m1 then
mi+1|mi| . . . |m1 ∀ i ∈ N. Since the divisors number of any inter is finite, there
exists t ∈ N such that mt = mn ∀ t ≤ n therefore there exists t ∈ N such that
mtN = mnN, ∀ k ≤ n. Hence the sequence is stationary so N is k-noetherian.

We proof that M is subtractive in showing every subsemimodule of M is a k-
subsemimodule.

It is clear that every k-subsemimodule of M is of the form nN, n ∈ N and {0},M
are trivial k-subsemimodule of M (because {0} = 0N and M = 1N).

Let N ̸= {0} be a subsemimodule of M = N and x ∈ N . Then, N ̸= {0} is a
subsemimodule of M = N then it has a non zero minimal element say m. Then,
x ∈ N and m ∈ N ⇒ x +m = gcd(x,m) ∈ N , gcd(x,m)|m ⇒ 0 ̸= gcd(x,m) ≤ m,
⇒ gcd(x,m) = m (because m is a non zero minimal element of N). Hence m|x
therefore x ∈ mN so N ⊆ mN (1).

Let y ∈ mN. Then there exists α ∈ N such that y = mα = lcm(m,α). Since
m ∈ N, α ∈ N and N is a N-subsemimodule of M , lcm(m,α) ∈ N therefore y ∈ N .
Hence mN ⊆ N (2), (1) and (2) ⇒ N = mN therefore N is a k-subsemimodule of M
and M is subtractive.
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Proposition 4.1. Let I, J be R-semimodules, f : I −→ J a surjective homomorphism
and S a subsemimodule of J such that S ≪ J . Then f−1(S) ≪ I. In addition, if f is
an isomorphism, then f(N) ≪ J for all N ≪ I.

Proof. Indeed we show that f−1(S) ≪ I. Suppose that there exist T ≤ I such that
f−1(S) + T = I:

f−1(S) + T = I ⇒ f(f−1(S) + T ) = f(I) = J

⇒ f(f−1(S)) + f(T ) = J ⇒ S + f(T ) = J.

Then T ⊂ I ⇒ f(T ) ⊂ f(I) ⇒ f(T ) ⊂ J .
Hence S + f(T ) = J and f(T ) ⊂ J , contradiction then there exist not T ≤ I

such that f−1(S) + T = I from where f−1(S) ≪ S.
Suppose f is an isomorphism and N ≪ I. Let H be a subsemimodule of J such

that f(N) +H = J . Then f−1(f(N) +H) = f−1(J) = I ⇒ f−1(f(N)) + f−1(H) =

N + f−1(H) = I which is a contradiction hence f(N) ≪ J (f−1(f(N)) come
from of the fact that f is an isomorphism ). □

Lemma 4.2. Every supplement subsemimodule of subtractive semimodule M is co-
closed in M .

Proof. Let be N a supplement subsemimodule of M . Then there exists a subsemi-
module L of such that N is minimal of the propriety N +L = M . Let K ≤ N such
that N/K ≪ M/K. Then

N + L = M ⇒ N + (K + L) = M

⇒ (N + (K + L))/K = N/K + (K + L)/K = M/K

⇒ (K + L)/K = M/K (because N/K ≪ M/K)
⇒ K + L = M (from Lemma 4.1).

Since N is minimal with the propriety N + L = M , we conclude that N = K

therefore N is coclosed. □

Theorem 4.5. An R-semimodule M is cfs-lifting if and only if for every coessentialy
finitely generated subtractive subsemimodule N of M , there is a decomposition M =

M1 ⊕M2 such that M1 ⊆ N , N ∩M2 ≪ M2.

Proof. Assume that M is cfs-lifting. Let N be a coessentialy fifnitely generated
subtractive subsemimodule of M . Since M is cfs-lifting, N lies above a direct
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summand M1 of M . Then there is a decomposition M = M1 ⊕ M2 such that
M1 ⊆ N,N/M1 ≪ M/M1 and M2 ≤ M .

Note that we want to verify N ∩M2 ≪ M2. Consider the obvious isomorphism

f : M/M1 −→ M2

x̄ 7−→ x2

with x = x1 + x2 where x1 ∈ M1 and x2 ∈ M2. It is very easy to verify that
f(N/M1) = N ∩M2.

Indeed, let x2 ∈ f(N/M1). Then there is x̄ ∈ N/M1 such that x = x1 + x2 and
f(x̄) = x2 with x1 ∈ M1, x2 ∈ M2. Next, x̄ ∈ N/M1 ⇒ ∃ x

′ ∈ N such that x̄ = x′,
and x̄ = x′ ⇒ ∃ m1,m2 ∈ M1 such that x + m1 = x

′
+ m2. Since m2 ∈ M1 ⊆ N ,

x
′
+ m2 ∈ N therefore x + m1 ∈ N and so x ∈ N (because N is subtractive and

m1 ∈ M1 ⊆ N).
Hence x1+x2 = x ∈ N therefore x2 ∈ N (because N is subtractive and x ∈ M1 ⊆

N) whence f(N/M1) ⊆ N . Since f(N/M1) ⊆ M2, we conclude that f(N/M1) ⊆
N ∩M2.

Let x2 ∈ N ∩ M2. Then x2 ∈ M2 therefore there is an unique x̄ ∈ M/M1 such
that x = x1 + x2 where x1 ∈ M1, and f(x̄) = x2 (because f is an isomorphism).
So, x2 ∈ N, x1 ∈ M1 ⊆ N ⇒ x = x1 + x2 ∈ N therefore x̄ ∈ N/M1 whence
x2 ∈ f(N/M1).

The above implies that f(N/M1) = N ∩M2.
Since N/M1 ≪ M/M1 and f is an isomorphism, f(N/M1) ≪ M2 (from Proposi-

tion 4.1) therefore N ∩M2 ≪ M2 .
In sum, we have: M = M1 ⊕M2 such that M1 ⊆ N and N ∩M2 ≪ M2.
Conversely, if N is a coessentialy fifnitely generated subtractive subsemimodule

of M , then there a decomposition M = M1⊕M2 such that M1 ⊆ N , N ∩M2 ≪ M2

and in considering the reciprocal bijection f−1 of f , we have f−1(N∩M2) = N/M1.
Since N ∩M2 ≪ M2 and f−1 is a bijection, then N/M1 ≪ M/M1 (by Proposition
4.1). Thus M is cfs-lifting. □

Theorem 4.6. Let M be a cfs-lifting R-semimodule. Then:

1) Every coessentialy finitely generated subtractive subsemimodule N of M can
be written as N = N1 ⊕ N2 with N1 is dierct summand of M and N2 ≪ M2

with M = N1 ⊕M2.
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2) Every coessentialy finitely generated subtractive coclosed subsemimodule of
M is a direct summand of M .

Proof.
1) By Theorem 4.5, we consider

N1 = M1, N2 = N ∩M2.

It is clear that N1 is a direct summand of M and N2 ≪ M2. In add N = M1+N∩M2

(because N is subtractive and M1 ⊆ N ) therefore N = N1 + N2. It is very trivial
to see that N = N1 ⊕N2. Indeed let x, y ∈ N1 such that x ≡N2 y. Then there exists
n2, n

′
2 ∈ N2 such that x + n2 = y + n

′
2. Since n2, n

′
2 ∈ M2 (because N2 ⊆ M2),

x ≡M2 y therefore x = y (because x, y ∈ N1 = M1 and M = M1 ⊕M2) so ′′≡N2
′′
|N1

is trivial.
Similarly, we prove ′′≡N1

′′
|N2

is trivial and hence N = N1 ⊕ N2 with N1 a direct
summand of M and N2 ≪ M .
2) Trivial □

Corollary 4.1. Let M be a subtractive R-semimodule. Then the following statements
are equivalent:

1) M is cfs-lifting.
2) For every coessentialy finitely generated subsemimodule N of M , there is a

decomposition M = M1 ⊕M2 such that M1 ⊆ N , N ∩M2 ≪ M2.
3) Every coessentialy finitely generated subsemimodule N of M can be written

as N = N1 ⊕ N2 with N1 is direct summand of M and N2 ≪ M2 with
M = N1 ⊕M2.

Proof. 1) ⇔ 2) ⇒ 3) (From Theorem 4.5 and Theorem 4.6), while 3) ⇒ 1) is
trivial. □

Proposition 4.2. Let M1 and M2 be a cfs-lifting semimodules, and M = M1 ⊕
M2. If every coessentialy finitely generated subtractive subsemimodule of M is fully
invariant, then M is cfs-lifting.

Proof. Let N be coessentialy finitely generated subtractive subsemimodule of M .
Then N is fully invariant therefore it is very easy to verify that N = (N ∩ M1) ⊕
(N ∩ M2). Clearly N ′ = N ∩ M1 is a coessentialy finitely generated subtractive
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subsemimodule of M1 . Since M1 is cfs-lifting, then from the Theorem 4.6, there
is a decomposition N ′ = N ′

1 ⊕N ′
2 such that M1 = N ′

1 ⊕M ′
1 and N ′

2 ≪ M ′
1.

Similarly, N ′′ = N ∩M2 is a coessentialy finitely generated subtractive subsemi-
module of M2 and so N ′′ = N ′′

1 ⊕N ′′
2 such that M2 = N ′′

1 ⊕M ′
2 and N ′′

2 ≪ M ′
2.

Hence M = (N ′
1⊕M ′

1)⊕(N ′′
1 ⊕M ′

2) = (N ′
1⊕N ′′

1 )⊕(M ′
1⊕M ′

2) and N = N ′⊕N ′′ =

(N ′
1 ⊕N ′′

1 )⊕ (N ′
2 ⊕N ′′

2 ).
Pose N1 = N ′

1 ⊕ N ′′
1 and N2 = N ′

2 ⊕ N ′′
2 therefore M = N1 ⊕ (M ′

1 ⊕ M ′
2) and

N = N1 ⊕ N2. Since N ′
2 ≪ M ′

1 and N ′′
2 ≪ M ′

2 hence N2 = N ′
2 ⊕ N ′′

2 ≪ M ′
1 ⊕M ′

2.
Clearly M/N1

∼= M ′
1 ⊕M ′

2 , N/N1
∼= N2 and N2 ≪ M ′

1 ⊕M ′
2, then N/N1 ≪ M/N1

therefore M is cfs-lifting. □

Proposition 4.3. (See [3]) A subsemimodule L of a subtractive R-semimodule M is
coclosed if and only if for any proper subsemimodule K ⊆ L, there is a subsemimodule
N of M such that L+N = M and N +K ̸= M .

Proof. (See [3]: Proposition 1.5) □

Definition 4.5. A semiring R is a left V -semiring if Rad(M) = 0 for all R-semimodule
M , where Rad(M) is the Jacobson radical of M .

Theorem 4.7. A semiring R is a V -semiring if and only if every subsemimodule is
coclcosed in M ; for any subtractive R-semimodule M .

Proof. Let M be a subtractive R-semimodule. We suppose that R is a V -semiring.
Then

Rad(M) =
∑
L≪M

L = 0.

Let K be a subsemimodule of M and L be a proper subsemimodule of K. Since
Rad(M) = 0 then {0} is unique small subsemimodule of M therefore K is not
small in M .

Since K is not small in M , then there is H ≤ M such that K + H = M and
H ̸= M . Then K+H = K+(H\K) = M . Let N = H\K∗ and hence K+N = M ;
with K∗ = K\{0}. It is clear that K ∩ N = {0}. Hence M = K⊕N ; in this
case L + N ̸= M (because L is a proper subsemimodule of K ). Then we have:
K +N = M and L+N ̸= M therefore, by Proposition 4.3, K is coclosed in M .
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Reciprocally we suppose that every subsemimodule of M is coclosed in M . Let
L be a small subsemimodule of M . By the hypothesis, L is coclosed in M .

L ≪ M ⇒ L/{0} ≪ M/{0} ⇒ L = {0} (because L ≤cc M).

Then {0} is unique small subsemimodule of M therefore Rad(M) = 0 and hence
R is a V -semiring. □

Definition 4.6. An R-semimodule is k-simple (respectively k-semisimple) if it has no
non-trivial k-subsemimodules (respectively if it is a direct sum of k-simple subsemi-
modules).

Lemma 4.3. Let R be a V -semiring. Then every subtractive lifting R-semimodule is
k-semisimple.

Proof. Let M be a subtractive lifting R-semimodule, where R is a V -semiring. By
the Theorem 4.7, every subsemimodule of M is coclosed in M ; since M is lifting,
every coclosed subsemimodule of M is a direct summand of M therefore every
subsemimodule of M is a direct summand of M .

First we show that a cyclic subsemimodule Ra ̸= 0 of M contains a simple (i.e k-
simple) subsemimodule. The mapping ϕ : r 7→ ra is a semimodule homomorphism
of RR onto Ra, whose kernel is a left ideal of R and is contained in a maximal
ideal L of R (by Krull theorem). Then La = ϕ(L) is a maximal subsemimodule
(i.e k-subsemimodule) of Ra, and Ra/La is k-simple. Since every subsemimodule
(i.e k-subsemimodule) of M is a direct summand of M , M = La ⊕ H for some
subsemimodule (i.e k-subsemimodule) H of M .

Since La is a direct summand of M and La ⊆ Ra, then La is direct summand of
Ra therefore it is easy to verify that Ra = La⊕(Ra∩H) (because M is subtractive).

Hence Ra = La ⊕ (Ra ∩ H) ⇒ Ra ∩ H ∼= Ra/La is a simple (i.e k-simple)
subsemimodule of Ra.

Now, let N be the sum of all the k-simple subsemimodules of M . Then M =

N ⊕ N
′ for some subsemimodule N

′ of M . If N ′ ̸= {0} then N
′ contains a cyclic

subsemimodule Ra
′ ̸= {0} containing a k-simple subsemimodule. Then N

′ has a
k-simple subsemimodule S and hence N∩N ′ ⊇ S ̸= {0} contradicting M = N⊕N

′

therefore N
′
= {0} and M = N . Thus M is k-semisimple. □
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Lemma 4.4. Let M be a k-semisimple R-semimodule. Then every subtractive fully
invariant subsemimodule is a direct summand of M .

Proof. Let N be a subtractive subsemimodule of M which is fully invariant. Since
M is semisimple, then M =

⊕
i∈I Mi with Mi is a simple subsemimodule of M

and for some index set I. Since N is fully invariant and subtractive, then it is very
easu yo verify that N =

⊕
i∈I(N ∩Mi) and hence N = {0} or there is i ∈ I such

that N = Mi because Mi is simple and N ∩Mi ≤ Mi, ∀i ∈ I. Thus N is a direct
summand of M . □

Theorem 4.8. Let R be a V -semiring and M be a k-noetherian subtractive R-
semimodule. If every coessentialy finitely generated subsemimodule of M is fully
invariant, then M is cfs-lifting if and only if it is semisimple.

Proof. Assume that M is cfs-lifting. Since M is k-noetherian subtractive, then by
Theorem 4.4, M is lifting and by Lemma 4.3, M is semisimple.

Conversely, by Lemma 4.4, every coessentialy finitely generated subtractive sub-
semimodule of M is a direct summand of M and hence M is semisimple. □
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