ADV MATH SCI JOURNAL Advances in Mathematics: Scientific Journal **13** (2024), no.4, 463–477 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.13.4.1

ON FS-LIFTING AND CFS-LIFTING SEMIMODULES OVER SEMIRINGS

Moussa Sall¹, Landing Fall², and Djiby Sow³

ABSTRACT. In this paper, we introduce the notions of fs-lifting and cfs-lifting semimodules as respectively the generalizations of finitely lifting (f-lifting for short) semimodules and cofinitely lifting (cf-lifting) semimodules. Under some conditions, we prove some results on fs-lifting and cfs-lifting semimodules for proving the equivalence between fs-lifting and cfs-lifting semimodules.

An *R*-semimodule *M* is fs-lifting if every finitely generated subtractive subsemimodule *N* of *M*, there exists a direct summand *K* of *M* such that $K \leq N$ and $N/K \ll M/K$; so if every coessential finitely generated subtractive subsemimodule *N* of *M*, there exists a direct summand *K* of *M* such that $K \leq N$ and $N/K \ll M/K$, *M* is called cfs-lifting.

1. INTRODUCTION

Extending semimodules are generalization of injective semimodules and, dually, lifting semimodules generalize projective supplemented semimodules ([2]).

Moreover let M be an R-semimodule. An equivalence relation ρ on M is an R-congruence relation if and only if: $m\rho m'$ and $n\rho n' \Rightarrow (m+n)\rho(m'+n')$ and $(rm)\rho(rm')$ for all $m, m', n, n' \in M$ and $r \in R$.

¹corresponding author

²⁰²⁰ Mathematics Subject Classification. 28A51, 16D70, 13E05, 16Y60.

Key words and phrases. Subtractive semimodule, s-lifting semimodule, fs-lifting semimodule, cfs-lifting semimodule and V-semiring.

Submitted: 5.September. 2024; Accepted: 20.September. 2024; Published: 06.10.2024.

M. Sall, L. Fall, and D. Sow

An *R*-congruence relation ρ is trivial if $m\rho m' \Leftrightarrow m = m'$.

Let N be a subsemimodule of a left R-semimodule M. N induces on M an R-congruence relation \equiv_N , known as the Bourne relation defined by: $\forall m, m' \in M; m \equiv_N m' \Leftrightarrow \exists n, n' \in N$ such that m + n = m' + n'.

The set of all the equivalences classes modulo " \equiv_N " denoted by M/N is such that (M/N, +, .) is an R-semimodule which is called quotient semimodule where the operations are defined by:

$$"+":\overline{m}+\overline{m'}=\overline{m+m'},$$
$$".":r\overline{m}=\overline{rm}.$$

Let M_1 , M_2 two subsemimodules of a left R-semimodule M.

- An *R*-semimodule *M* is a direct weak sum of M_1 and M_2 (denoted: $M = M_1 \oplus M_2$) if $M = M_1 + M_2$ and $M_1 \cap M_2 = \{0\}$.
- An *R*-semimodule *M* is direct strong sum of M_1 and M_2 (denoted by $M = M_1 \oplus M_2$) if and only if $M = M_1 + M_2$ and the restriction " \equiv_{M_1} " to M_2 and the restriction " \equiv_{M_2} " to M_1 are trivial.

Let M be a left R-semimodule.

- A subsemimodule N of an R-semimodule M is called a subtractive subsemimodule (=k-subsemimodule) if ∀ x, y ∈ M, (x + y ∈ N, y ∈ N) ⇒ x ∈ N.
- The subsemimodule N is called strongly subtractive if $\forall x, y \in M$; $(x+y \in N) \Rightarrow x \in N$ and $y \in N$.
- The *R*-semimodule M is called subtractive (resp.strongly subtractive) or subtractive completely if every subsemimodule of M is subtractive (resp.strongly subtractive).

Example 1. Let $R = \{0, 1\}$ be the Boole semiring and the set $M = \{0, 1, a, b\}$. Define on M the operations as the following: $0_R = 0_M$, $1_R = 1_M = 1$, 1 + 1 = 1 + a =1 + b = a + b = 1; a + 0 = a + a = a; b + 0 = b + b = b; $0 \times a = 0 \times b = a \times b =$ $0; 1 \times 1 = 1; 1 \times a = a \times a = a; 1 \times b = b \times b = b$. Then $(M, +, \times)$ is a commutative left R-semimodule which is finitely generated. In add, we have:

- $\{0; a\}$ is a subtractive subsemimodule of M but $\{0; 1; a\}$ is not subtracive (because $1 + b = 1 \in \{0; 1; a\}, 1 \in \{0; 1; a\}$ and $b \notin \{0; 1; a\}$).

- $M = \{0; a\} + \{0; 1; b\}, \{0; a\} \cap \{0; 1; b\} = \{0\}$ and 1 = 0 + 1 = a + b. Since $a \neq 0$ and $b \neq 1$, the decomposition of 1 is not unique and hence $M = \{0; a\} \oplus \{0; 1; b\}.$
- $M = \{0; a\} + \{0; b\}$ and there does not exist $x, y \in \{0; a\} \mid 0 + x = b + y$, therefore $m \equiv_{\{0;a\}} m' \Leftrightarrow m = m', \forall m, m' \in \{0; b\}$ and hence the restriction of $\equiv_{\{0;a\}}$ to $\{0; b\}$ is trivial. Similarly, the restriction of $\equiv_{\{0;b\}}$ to $\{0; a\}$ is trivial.

Thus
$$M = \{0; a\} \oplus \{0; b\}.$$

This paper is organized as follows:

- In Section 1: Basic notions, where more notions are defined.
- In Section 2, we study the notions of finitely subtractive lifting semimodule;
- In Section 3, we study the notion of cofinitely subtractive lifting semimodules.

In the following, R is always an associative, commutative semiring with unit and $1_R \neq 0_R$, the direct summands are the strong ones, the semimodules are left R-semimodules and we use Bourne relation for the semimodules quotients.

2. BASICS NOTIONS

Let M be a $R\mbox{-semimodule}$ and N,H,L three subsemimodules of M such that $H\leq N$.

A proper subsemimodule S of M is called a small subsemimodule of M if for all subsemimodule T of M, S + T = M implies that T = M. It is indicated by the notation $S \ll M$.

A semimodule M is called hollow if every proper subsemimodule of M is small in M.

A subsemimodule N of M is called a supplement of L in M if N + L = M and $N \cap L \ll N$. In add, if N is subtractive it is trivial to see that N is a supplement of L in M if and only if it is minimal with the propriety of N + L = M.

A subsemimodule N of an R-semimodule M is called a weak supplement of L if N + L = M and $N \cap L \ll M$ (see [1]).

If every subsemimodule of M has a supplement (resp a weak supplement), then M is called a supplemented semimodule (resp weakly supplemented semimodule). So M is amply supplemented if M = L + N implies there exists a supplement K of L such that $K \leq N$.

If $N/H \ll M/H$, then *H* is called a coessential (or cosmall) subsemimodule of *N* in *M* and it is denoted by $H \leq^{ce} N$, and hence we say that *N* lies above *H*.

A subsemimodule N of M is coclosed in M (denoted by $N \leq^{cc} M$) if N has no proper coessential subsemimodule in M.

The subsemimodule H is called an s-closure of N in M if H is coessential subsemimodule of N and H is coclosed in M.

The *R*-semimodule *M* is called lifting if every subsemimodule of *M* lies above a direct summand of *M* i.e $\forall N \leq M$ there exists a direct summand *K* of *M* such that $K \leq N$ and $N/K \ll M/K$.

The *R*-semimodule *M* is k-simple (respectively k-noetherian) if it has no nontrivial k-subsemimodules (respectively if every *k*-subsemimodule of *M* is finitely generated). The *R*-semimodule *M* is k-semisimple if it is a direct sum of k-simple subsemimodules i.e, every k-subsemimodule of *M* is a direct summand of *M*.

A semiring R is a left V-semiring if Rad(M) = 0 for all R-semimodule M, where Rad(M) is the Jacobson radical of M.

3. Fs-Lifting Semimodules

Definition 3.1. A semimodule *M* is called finitely lifting or f-lifting for short, if every finitely generated subsemimodule of *M* lies above a direct summand of *M*.

Example 2. Let $(R = \{0, 1, ..., n\} \cup \{+\infty\}; +; .)$ where the operation "+" and "." are define by: $x + y = \max(x, y)$, $x.y = xy = \min(x, y)$ and M be the set of all nonnegative integers. Define $a+b = \max(a,b)$ for each $a, b \in M$ and a mapping from $R \times M$ into M, sending (r,m) to $\min(r,m)$. Then M is an f-lifting R-semimodule. Indeed, we show that:

- I. *R* is a semiring.
 - (1) It is clear that $\max(0, x) = x$, $x + y = \max(x, y) = \max(y, x) = y + x \in R$, and $\max(\max(x, y), z) = \max(x, \max(y, z)) \Rightarrow (x + y) + z = x + (y + z), \forall x, y, z \in R$; then (R, +) is a commutative monoid with identity element 0;

ON FS-LIFTING AND CFS-LIFTING SEMIMODULES OVER SEMIRINGS

- (2) $xy = \min(x, y) \in R$, $\min(\min(x, y), z) = \min(x, \min(y, z)) \Rightarrow (xy)z = x(yz)$ and $x(+\infty) = \min(x, +\infty) = x$, $\forall x, y, z \in R$; then (R, .) is a monoid with identity element $+\infty \neq 0$;
- (3) $x(y+z) = \min(x, y+z) = \min(x, \max(y, z))$ and $xy+xz = \min(x, y) + \min(x, z) = \max(\min(x, y), \min(x, z))$
 - If max(min(x, y), min(x, z)) = x, then min(x, y) = x or min(x, z) = x therefore min(x, max(y, z)) = x;
 - If $\max(\min(x, y), \min(x, z)) = y$, then we have $\min(x, y) = y$ and $\max(y, z) = y$ therefore $\min(x, \max(y, z)) = \min(x, y) = y$;
 - If max(min(x, y), min(x, z)) = z, similarly of y case, we will have min(x, max(y, z)) = z.

Hence we conclude that $\min(x, \max(y, z)) = \max(\min(x, y), \min(x, z))$ therefore x(y + z) = xy + xz, $\forall x, y, z \in R$. Similarly, we show that (x + y)z = xz + yz, $\forall x, y, z \in R$;

- (4) $\min(0, a) = \min(a, 0) = 0, \forall a \in R$, then $0a = a0 = 0, \forall a \in R$.
 - $(1), (2), (3), (4) \Rightarrow R$ is a semiring.
- II. *M* is an *R*-semimodule.

By the previous demonstration, (M, +) is a commutative additive semigroup with identity element 0 (by(1)), (r + s)m = rm + sm, r(m + p) = rm + rp, $\forall m, p \in M, r, s \in R$ (by (3)). In add, $r(sm) = \min(r, sm) = \min(r, \min(s, m)) = \min(\min(r, s), m) = (rs)m$, $0m = \min(0, m) = 0_M = \min(r, 0_M) \ \forall m \in M, r, s \in R$. Hence M is a left R-semimodule.

III. *M* is *f*-lifting.

It is clear that $M = \bigcup \{k \in \mathbb{N}\}$. Let L be a finitely generated subsemimodule of M. Then there exists $m \in \mathbb{N}$ such that

$$L = \bigcup \{ k \in \mathbb{N} | 0 \le k \le m \}.$$

Let *H* be a subsemimodule of *M* such that L+H = M, $a+b = \max(a, b)$, $\forall a, b \in M$, then $L + H = M \Rightarrow L = M$ or H = M. Since *L* is finitely generated, $L \neq M$ therefore H = M; hence $L \ll M$, and

$$L \ll M \Rightarrow L/\{0\} \ll M/\{0\},$$

and since $\{0\}$ is a direct summand of M, we conclude that L lies above a direct summand of M. Hence M is f-lifting.

Definition 3.2. A semimodule M is called subtractive lifting semimodules or fs-lifting semimodule for short, if every finitely generated subtractive subsemimodule of M lies above a direct summand of M.

Example 3. Let $R = \{0, 1\}$ be the Boole semiring and the set $M = \{0, 1, a, b\}$.

1) Define on *M* the operations as the following: $0_R = 0_M$, $1_R = 1_M = 1$, 1+1 = 1 + a = 1 + b = a + b = 1; a + 0 = a + a = a; b + 0 = b + b = b; $0 \times a = 0 \times b = a \times b = 0$; $1 \times 1 = 1$; $1 \times a = a \times a = a$; $1 \times b = b \times b = b$.

Then $(M, +, \times)$ is a fs-lifting *R*-semimodule.

Indeed, clearly M is finitely generated and hence every subsemimodule of M is finitely generated. The only subtractive non trivial subsemimodules of M is $\{0, a\}$ and $\{0, b\}$. Clearly $\{0, a\}/\{0, a\} \ll M/\{0, a\}, \{0, b\}/\{0, b\} \ll M/\{0, b\}$ and since $\{0, a\}$ and $\{0, b\}$ are the direct summands of M (from Example 1), then $(M, +, \times)$ is fs-lifting.

2) Define on M the operations as the following: 0_R = 0_M, 1_R = 1_M = 1, 1 * 1 = 1 * a = 1 * b = 1; a * a = a * 0 = 0 * a = a; b * b = b * 0 = 0 * b = b; a * b = 0; a.0 = 0.a = b.0 = 0.b = 0; 1.a = a; 1.b = b.

Then (M, *, .) is *R*-semimodule which is not fs-lifting.

Indeed, consider the subsemimodule $N = \{0, a, b\}$ of M. Clearly N is subtractive and finitely generated, and the only direct summand of M contained in N is $\{0\}$. Since $N + \{0, 1\} = M$ and $\{0, 1\} \neq M$, $N \ll M$ therefore $N/\{0\} \ll M/\{0\}$ and hence (M, *, .) is not fs-lifting.

3) Define on M the operations as the following: 0_R = 0_M, 1_R = 1_M = 1, 1+1 = 1 + a = 1 + b = a + b = 0; a + a = a + 0 = 0 + a = a; b + b = b + 0 = 0 + b = b; a.0 = 0.a = b.0 = 0.b = 0; 1.a = a; 1.b = b.

Then (M, +, .) is an *R*-semimodule fs-lifting but it is not f-lifting.

Indeed, clearly, the only subtractive subsemimodule of M is $\{0\}$, then M is fs-lifting. So the only direct summand of M contained in $\{0;1\}$ is $\{0\}$ and it is clearly that $\{0;1\}$ is finitely generated. Since $M = \{0;1\} + \{0;a;b\}$ and $\{0;a;b\} \neq M$, then $\{0;1\}/\{0\} \ll M/\{0\}$ therefore M is not f-lifting.

4. CFS-LIFTING SEMIMODULES

Definition 4.1. A subsemimodule N of M is called a coessentially finitely generated subsemimodule if there exist a finitely generated non zero subsemimodule H of M such that $N \leq^{ce} (H + N)$ in M.

Definition 4.2. An R-semimodule M is called co-finitely lifting or cf-lifting for short, if every coessentially finitely generated subsemimodule of M lies above a direct summand of M.

Example 4. We consider the \mathbb{N} -semimodule $(\mathbb{N}/4\mathbb{N}, +, \times)$ whose operations are the natural addition and multiplication. Then $(\mathbb{N}/4\mathbb{N}, +, \times)$ is cf-lifting. Indeed, the only non trivial subsemimodule of $\mathbb{N}/4\mathbb{N}$ is $\{\overline{0}, \overline{2}\}$ which is a coessentially finitely generated subsemimodule of $\mathbb{N}/4\mathbb{N}$. Since $\{\overline{0}, \overline{2}\} \ll \mathbb{N}/4\mathbb{N}$ and $\{\overline{0}\}$ is a direct of $\mathbb{N}/4\mathbb{N}$, then $\{\overline{0}, \overline{2}\}$ lies above a direct summand of $\mathbb{N}/4\mathbb{N}$ and hence $\mathbb{N}/4\mathbb{N}$ is cf-lifting.

Remark 4.1. Every lifting *R*-semimodule is *f*-lifting and every *f*-lifting *R*-semimodule is *cf*-lifting.

Definition 4.3. An R-semimodule M is called co-finitely subtractive lifting semimodule or cfs-lifting semimodule if every coessentially finitely generated subtractive subsemimodule of M lies above a direct summand of M.

Example 5. Define on M the operations as the following: $0_R = 0_M$, $1_R = 1_M = 1$, 1 + 1 = 1 + a = 1 + b = a + b = 0; a + a = a + 0 = 0 + a = a; b + b = b + 0 = 0 + b = b; a.0 = 0.a = b.0 = 0.b = 0; 1.a = a; 1.b = b.

Then (M, +, .) is an *R*-semimodule cfs-lifting but it is not cf-lifting.

Indeed, clearly, the only subtractive subsemimodule of M is $\{0\}$, then M is cfs-lifting. So the only direct summand of M contained in $\{0; 1\}$ is $\{0\}$ and it is clearly that $\{0; 1\}$ is a coessentialy finitely generated subsemimodule. Since $M = \{0; 1\} + \{0; a; b\}$ and $\{0; a; b\} \neq M$, then $\{0; 1\}/\{0\} \ll M/\{0\}$ therefore M is not cf-lifting.

Remark 4.2. Every cf-lifting semimodule is cfs-lifting but it is clear that the converse is not true.

Lemma 4.1. (see [3] Lemma 1.4) Let M be a subtractive left R-semimodule and H, K be subsemimodules of M such that $K \subset H$ and H/K = M/K. Then M = H.

Theorem 4.1. Any direct summand of a cfs-lifting semimodule is cfs-lifting.

Proof. Let K be a direct summand of a cfs-lifting semimodule M. Then there is $K' \leq M$ such that $M = K \oplus K'$. Let N be a coessentially finitely generated subtractive subsemimodule of K therefore it is a coessentially finitely generated subtractive subsemimodule of M. Then there is a direct summand N' of M such that $N' \leq N$ and $N/N' \ll M/N'$. We show that $N/N' \ll K/N'$.

Assume that there is $L \leq K$ such that $N' \leq L$ and K/N' = N/N' + L/N'. Then N/N' + L/N' + (K' + N')/N' = K/N' + (K' + N')/N' = M/N'. Since $N/N' \ll M/N'$, then L/N' + (K' + N')/N' = M/N'. Clearly $L/N' \leq K/N'$ and $M/N' = K/N' \oplus (K' + N')/N'$, then L/N' = K/N'. Hence $N/N' \ll K/N'$. Since N' is a direct summand of M and $N' \leq K$, then N' is a direct summand of K. Thus K is a cfs-lifting semimodule.

Theorem 4.2. If an *R*-semimodule *M* is cfs-lifting then *M* is fs-lifting.

Proof. Let N be a finitely generated subtractive subsemimodule of M then $N \leq^{ce} N$ in M hence there exist a direct summand K of M such that $K \leq^{ce} N$ in M then M is fs-lifting.

Theorem 4.3. Let M be an R-semimodule such that every k-subsemimodule of M is finitely generated. Then the following statements are equivalent:

- (1) *M* is cfs-lifting
- (2) M is fs-lifting.

Proof.

 $1. \Rightarrow 2.$): From Theorem 4.2

2. \Rightarrow 1.): Let *N* be a coessentialy finitely generated subtractive subsemimodule of *M*. Since *N* is subtractive, then it is finitely generated and hence by 2., *N* lies a bove a direct summand of *M*. Thus *M* is cfs-lifting.

Definition 4.4. A semimodule is k-noetherian if every k-subsemimodule is finitely generated.

Theorem 4.4. For a k-noetherian subtractive *R*-semimodule *M*, the following statements are equivalent:

- (1) M is cfs-lifting
- (2) M is fs-lifting
- (3) M is cf-lifting

(4) M is f-lifting

(5) M is lifting

Proof. 1) \Leftrightarrow 2) \Leftrightarrow 3) \Leftrightarrow 4) \Leftrightarrow 5)

Indeed, since *M* is k-noetherian then every k-subsemimodule of M is finitely generated and hence, by the Theorem 4.3, we have $1) \Leftrightarrow 2$). In addition, since M is subtractive, every subsemimodule of M is a k-subsemimodule; then every subsemimodule of M is finitely generated. Thus $2) \Leftrightarrow 3) \Leftrightarrow 4) \Leftrightarrow 5$).

For application we can consider the following example:

Example 6. Let $(\mathbb{N}; gcd; lcm)$ be a semiring. Then \mathbb{N} is a k-noetherian subtractive \mathbb{N} -semimodule . Indeed, it is clear that \mathbb{N} is an \mathbb{N} -semimodule and every ksubsemimodule of \mathbb{N} is of the form $n\mathbb{N}$ where $n \in \mathbb{N}$.

Let $m_1 \mathbb{N} \subseteq m_2 \mathbb{N} \subseteq \ldots \subseteq m_i \mathbb{N} \subseteq m_{i+1} \mathbb{N} \subseteq \ldots$ an increasing sequence of k-subsemimodules of \mathbb{N} .

We should show that this sequence is stationary: $m_1\mathbb{N} \subseteq m_2\mathbb{N} \Rightarrow m_2|m_1$ then $m_{i+1}|m_i| \dots |m_1 \forall i \in \mathbb{N}$. Since the divisors number of any inter is finite, there exists $t \in \mathbb{N}$ such that $m_t = m_n \forall t \leq n$ therefore there exists $t \in \mathbb{N}$ such that $m_t\mathbb{N} = m_n\mathbb{N}, \forall k \leq n$. Hence the sequence is stationary so \mathbb{N} is k-noetherian.

We proof that M is subtractive in showing every subsemimodule of M is a k-subsemimodule.

It is clear that every k-subsemimodule of M is of the form $n\mathbb{N}$, $n \in \mathbb{N}$ and $\{0\}, M$ are trivial k-subsemimodule of M (because $\{0\} = 0\mathbb{N}$ and $M = 1\mathbb{N}$).

Let $N \neq \{0\}$ be a subsemimodule of $M = \mathbb{N}$ and $x \in N$. Then, $N \neq \{0\}$ is a subsemimodule of $M = \mathbb{N}$ then it has a non zero minimal element say m. Then, $x \in N$ and $m \in N \Rightarrow x + m = \gcd(x, m) \in N$, $\gcd(x, m) | m \Rightarrow 0 \neq \gcd(x, m) \leq m$, $\Rightarrow \gcd(x, m) = m$ (because m is a non zero minimal element of N). Hence m | x therefore $x \in m\mathbb{N}$ so $N \subseteq m\mathbb{N}$ (1).

Let $y \in m\mathbb{N}$. Then there exists $\alpha \in \mathbb{N}$ such that $y = m\alpha = \operatorname{lcm}(m, \alpha)$. Since $m \in N, \alpha \in \mathbb{N}$ and N is a \mathbb{N} -subsemimodule of M, $\operatorname{lcm}(m, \alpha) \in N$ therefore $y \in N$. Hence $m\mathbb{N} \subseteq N$ (2), (1) and (2) $\Rightarrow N = m\mathbb{N}$ therefore N is a k-subsemimodule of M and M is subtractive. **Proposition 4.1.** Let I, J be R-semimodules, $f : I \longrightarrow J$ a surjective homomorphism and S a subsemimodule of J such that $S \ll J$. Then $f^{-1}(S) \ll I$. In addition, if f is an isomorphism, then $f(N) \ll J$ for all $N \ll I$.

Proof. Indeed we show that $f^{-1}(S) \ll I$. Suppose that there exist $T \leq I$ such that $f^{-1}(S) + T = I$:

$$f^{-1}(S) + T = I \implies f(f^{-1}(S) + T) = f(I) = J$$
$$\implies f(f^{-1}(S)) + f(T) = J \implies S + f(T) = J.$$

Then $T \subset I \Rightarrow f(T) \subset f(I) \Rightarrow f(T) \subset J$.

Hence S + f(T) = J and $f(T) \subset J$, contradiction then there exist not $T \leq I$ such that $f^{-1}(S) + T = I$ from where $f^{-1}(S) \ll S$.

Suppose f is an isomorphism and $N \ll I$. Let H be a subsemimodule of J such that f(N) + H = J. Then $f^{-1}(f(N) + H) = f^{-1}(J) = I \Rightarrow f^{-1}(f(N)) + f^{-1}(H) = N + f^{-1}(H) = I$ which is a contradiction hence $f(N) \ll J$ $(f^{-1}(f(N))$ come from of the fact that f is an isomorphism).

Lemma 4.2. Every supplement subsemimodule of subtractive semimodule M is coclosed in M.

Proof. Let be N a supplement subsemimodule of M. Then there exists a subsemimodule L of such that N is minimal of the propriety N + L = M. Let $K \le N$ such that $N/K \ll M/K$. Then

$$\begin{split} N+L &= M \Rightarrow N + (K+L) = M \\ \Rightarrow (N+(K+L))/K &= N/K + (K+L)/K = M/K \\ \Rightarrow (K+L)/K &= M/K \text{ (because } N/K \ll M/K) \\ \Rightarrow K+L &= M \text{ (from Lemma 4.1).} \end{split}$$

Since N is minimal with the propriety N + L = M, we conclude that N = K therefore N is coclosed.

Theorem 4.5. An *R*-semimodule *M* is cfs-lifting if and only if for every coessentialy finitely generated subtractive subsemimodule *N* of *M*, there is a decomposition $M = M_1 \oplus M_2$ such that $M_1 \subseteq N$, $N \cap M_2 \ll M_2$.

Proof. Assume that M is cfs-lifting. Let N be a coessentially fifnitely generated subtractive subsemimodule of M. Since M is cfs-lifting, N lies above a direct

summand M_1 of M. Then there is a decomposition $M = M_1 \oplus M_2$ such that $M_1 \subseteq N, N/M_1 \ll M/M_1$ and $M_2 \leq M$.

Note that we want to verify $N \cap M_2 \ll M_2$. Consider the obvious isomorphism

$$f: M/M_1 \longrightarrow M_2$$
$$\bar{x} \longmapsto x_2$$

with $x = x_1 + x_2$ where $x_1 \in M_1$ and $x_2 \in M_2$. It is very easy to verify that $f(N/M_1) = N \cap M_2$.

Indeed, let $x_2 \in f(N/M_1)$. Then there is $\bar{x} \in N/M_1$ such that $x = x_1 + x_2$ and $f(\bar{x}) = x_2$ with $x_1 \in M_1$, $x_2 \in M_2$. Next, $\bar{x} \in N/M_1 \Rightarrow \exists x' \in N$ such that $\bar{x} = \overline{x'}$, and $\bar{x} = \overline{x'} \Rightarrow \exists m_1, m_2 \in M_1$ such that $x + m_1 = x' + m_2$. Since $m_2 \in M_1 \subseteq N$, $x' + m_2 \in N$ therefore $x + m_1 \in N$ and so $x \in N$ (because N is subtractive and $m_1 \in M_1 \subseteq N$).

Hence $x_1+x_2 = x \in N$ therefore $x_2 \in N$ (because N is subtractive and $x \in M_1 \subseteq N$) whence $f(N/M_1) \subseteq N$. Since $f(N/M_1) \subseteq M_2$, we conclude that $f(N/M_1) \subseteq N \cap M_2$.

Let $x_2 \in N \cap M_2$. Then $x_2 \in M_2$ therefore there is an unique $\bar{x} \in M/M_1$ such that $x = x_1 + x_2$ where $x_1 \in M_1$, and $f(\bar{x}) = x_2$ (because f is an isomorphism). So, $x_2 \in N$, $x_1 \in M_1 \subseteq N \Rightarrow x = x_1 + x_2 \in N$ therefore $\bar{x} \in N/M_1$ whence $x_2 \in f(N/M_1)$.

The above implies that $f(N/M_1) = N \cap M_2$.

Since $N/M_1 \ll M/M_1$ and f is an isomorphism, $f(N/M_1) \ll M_2$ (from Proposition 4.1) therefore $N \cap M_2 \ll M_2$.

In sum, we have: $M = M_1 \oplus M_2$ such that $M_1 \subseteq N$ and $N \cap M_2 \ll M_2$.

Conversely, if N is a coessentialy fifnitely generated subtractive subsemimodule of M, then there a decomposition $M = M_1 \oplus M_2$ such that $M_1 \subseteq N$, $N \cap M_2 \ll M_2$ and in considering the reciprocal bijection f^{-1} of f, we have $f^{-1}(N \cap M_2) = N/M_1$. Since $N \cap M_2 \ll M_2$ and f^{-1} is a bijection, then $N/M_1 \ll M/M_1$ (by Proposition 4.1). Thus M is cfs-lifting.

Theorem 4.6. Let *M* be a cfs-lifting *R*-semimodule. Then:

1) Every coessentialy finitely generated subtractive subsemimodule N of M can be written as $N = N_1 \oplus N_2$ with N_1 is dierct summand of M and $N_2 \ll M_2$ with $M = N_1 \oplus M_2$. 2) Every coessentialy finitely generated subtractive coclosed subsemimodule of *M* is a direct summand of *M*.

Proof.

1) By Theorem 4.5, we consider

$$N_1 = M_1, \ N_2 = N \cap M_2.$$

It is clear that N_1 is a direct summand of M and $N_2 \ll M_2$. In add $N = M_1 + N \cap M_2$ (because N is subtractive and $M_1 \subseteq N$) therefore $N = N_1 + N_2$. It is very trivial to see that $N = N_1 \oplus N_2$. Indeed let $x, y \in N_1$ such that $x \equiv_{N_2} y$. Then there exists $n_2, n'_2 \in N_2$ such that $x + n_2 = y + n'_2$. Since $n_2, n'_2 \in M_2$ (because $N_2 \subseteq M_2$), $x \equiv_{M_2} y$ therefore x = y (because $x, y \in N_1 = M_1$ and $M = M_1 \oplus M_2$) so " $\equiv_{N_2|N_1|}$ is trivial.

Similarly, we prove $'' \equiv_{N_1|N_2}''$ is trivial and hence $N = N_1 \oplus N_2$ with N_1 a direct summand of M and $N_2 \ll M$.

2) Trivial

Corollary 4.1. Let *M* be a subtractive *R*-semimodule. Then the following statements are equivalent:

- 1) *M* is cfs-lifting.
- 2) For every coessentially finitely generated subsemimodule N of M, there is a decomposition $M = M_1 \oplus M_2$ such that $M_1 \subseteq N$, $N \cap M_2 \ll M_2$.
- 3) Every coessentially finitely generated subsemimodule N of M can be written as $N = N_1 \oplus N_2$ with N_1 is direct summand of M and $N_2 \ll M_2$ with $M = N_1 \oplus M_2$.

Proof. 1) \Leftrightarrow 2) \Rightarrow 3) (From Theorem 4.5 and Theorem 4.6), while 3) \Rightarrow 1) is trivial.

Proposition 4.2. Let M_1 and M_2 be a cfs-lifting semimodules, and $M = M_1 \oplus M_2$. If every coessentially finitely generated subtractive subsemimodule of M is fully invariant, then M is cfs-lifting.

Proof. Let N be coessentially finitely generated subtractive subsemimodule of M. Then N is fully invariant therefore it is very easy to verify that $N = (N \cap M_1) \oplus (N \cap M_2)$. Clearly $N' = N \cap M_1$ is a coessentially finitely generated subtractive

subsemimodule of M_1 . Since M_1 is cfs-lifting, then from the Theorem 4.6, there is a decomposition $N' = N'_1 \oplus N'_2$ such that $M_1 = N'_1 \oplus M'_1$ and $N'_2 \ll M'_1$.

Similarly, $N'' = N \cap M_2$ is a coessentialy finitely generated subtractive subsemimodule of M_2 and so $N'' = N''_1 \oplus N''_2$ such that $M_2 = N''_1 \oplus M'_2$ and $N''_2 \ll M'_2$.

Hence $M = (N'_1 \oplus M'_1) \oplus (N''_1 \oplus M'_2) = (N'_1 \oplus N''_1) \oplus (M'_1 \oplus M'_2)$ and $N = N' \oplus N'' = (N'_1 \oplus N''_1) \oplus (N'_2 \oplus N''_2)$.

Pose $N_1 = N'_1 \oplus N''_1$ and $N_2 = N'_2 \oplus N''_2$ therefore $M = N_1 \oplus (M'_1 \oplus M'_2)$ and $N = N_1 \oplus N_2$. Since $N'_2 \ll M'_1$ and $N''_2 \ll M'_2$ hence $N_2 = N'_2 \oplus N''_2 \ll M'_1 \oplus M'_2$. Clearly $M/N_1 \cong M'_1 \oplus M'_2$, $N/N_1 \cong N_2$ and $N_2 \ll M'_1 \oplus M'_2$, then $N/N_1 \ll M/N_1$ therefore M is cfs-lifting.

Proposition 4.3. (See [3]) A subsemimodule L of a subtractive R-semimodule M is coclosed if and only if for any proper subsemimodule $K \subseteq L$, there is a subsemimodule N of M such that L + N = M and $N + K \neq M$.

Proof. (See [3]: Proposition 1.5)

Definition 4.5. A semiring R is a left V-semiring if Rad(M) = 0 for all R-semimodule M, where Rad(M) is the Jacobson radical of M.

Theorem 4.7. A semiring R is a V-semiring if and only if every subsemimodule is coclosed in M; for any subtractive R-semimodule M.

Proof. Let M be a subtractive R-semimodule. We suppose that R is a V-semiring. Then

$$Rad(M) = \sum_{L \ll M} L = 0$$

Let *K* be a subsemimodule of *M* and *L* be a proper subsemimodule of *K*. Since Rad(M) = 0 then $\{0\}$ is unique small subsemimodule of *M* therefore *K* is not small in *M*.

Since K is not small in M, then there is $H \leq M$ such that K + H = M and $H \neq M$. Then $K + H = K + (H \setminus K) = M$. Let $N = H \setminus K^*$ and hence K + N = M; with $K^* = K \setminus \{0\}$. It is clear that $K \cap N = \{0\}$. Hence $M = K \oplus N$; in this case $L + N \neq M$ (because L is a proper subsemimodule of K). Then we have: K + N = M and $L + N \neq M$ therefore, by Proposition 4.3, K is coclosed in M.

Reciprocally we suppose that every subsemimodule of M is coclosed in M. Let L be a small subsemimodule of M. By the hypothesis, L is coclosed in M.

$$L \ll M \Rightarrow L/\{0\} \ll M/\{0\} \Rightarrow L = \{0\} (because \ L \leq^{cc} M)$$

Then $\{0\}$ is unique small subsemimodule of M therefore Rad(M) = 0 and hence R is a V-semiring.

Definition 4.6. An *R*-semimodule is *k*-simple (respectively *k*-semisimple) if it has no non-trivial *k*-subsemimodules (respectively if it is a direct sum of *k*-simple subsemimodules).

Lemma 4.3. Let R be a V-semiring. Then every subtractive lifting R-semimodule is k-semisimple.

Proof. Let M be a subtractive lifting R-semimodule, where R is a V-semiring. By the Theorem 4.7, every subsemimodule of M is coclosed in M; since M is lifting, every coclosed subsemimodule of M is a direct summand of M therefore every subsemimodule of M is a direct summand of M.

First we show that a cyclic subsemimodule $Ra \neq 0$ of M contains a simple (i.e ksimple) subsemimodule. The mapping $\phi : r \mapsto ra$ is a semimodule homomorphism of $_RR$ onto Ra, whose kernel is a left ideal of R and is contained in a maximal ideal L of R (by Krull theorem). Then $La = \phi(L)$ is a maximal subsemimodule (i.e k-subsemimodule) of Ra, and Ra/La is k-simple. Since every subsemimodule (i.e k-subsemimodule) of M is a direct summand of M, $M = La \oplus H$ for some subsemimodule (i.e k-subsemimodule) H of M.

Since *La* is a direct summand of *M* and *La* \subseteq *Ra*, then *La* is direct summand of *Ra* therefore it is easy to verify that *Ra* = *La* \oplus (*Ra* \cap *H*) (because *M* is subtractive).

Hence $Ra = La \oplus (Ra \cap H) \Rightarrow Ra \cap H \cong Ra/La$ is a simple (i.e k-simple) subsemimodule of Ra.

Now, let N be the sum of all the k-simple subsemimodules of M. Then $M = N \oplus N'$ for some subsemimodule N' of M. If $N' \neq \{0\}$ then N' contains a cyclic subsemimodule $Ra' \neq \{0\}$ containing a k-simple subsemimodule. Then N' has a k-simple subsemimodule S and hence $N \cap N' \supseteq S \neq \{0\}$ contradicting $M = N \oplus N'$ therefore $N' = \{0\}$ and M = N. Thus M is k-semisimple. \Box

Lemma 4.4. Let M be a k-semisimple R-semimodule. Then every subtractive fully invariant subsemimodule is a direct summand of M.

Proof. Let N be a subtractive subsemimodule of M which is fully invariant. Since M is semisimple, then $M = \bigoplus_{i \in I} M_i$ with M_i is a simple subsemimodule of M and for some index set I. Since N is fully invariant and subtractive, then it is very easu yo verify that $N = \bigoplus_{i \in I} (N \cap M_i)$ and hence $N = \{0\}$ or there is $i \in I$ such that $N = M_i$ because M_i is simple and $N \cap M_i \leq M_i$, $\forall i \in I$. Thus N is a direct summand of M.

Theorem 4.8. Let R be a V-semiring and M be a k-noetherian subtractive R-semimodule. If every coessentially finitely generated subsemimodule of M is fully invariant, then M is cfs-lifting if and only if it is semisimple.

Proof. Assume that M is cfs-lifting. Since M is k-noetherian subtractive, then by Theorem 4.4, M is lifting and by Lemma 4.3, M is semisimple.

Conversely, by Lemma 4.4, every coessentially finitely generated subtractive subsemimodule of M is a direct summand of M and hence M is semisimple.

REFERENCES

- [1] J. CLARK, C. LOMP, N. VANAJA, R. WISBAUER: *Lifting modules, frontiers in Mathematics*, Birkhaeuser Basel 2006.
- [2] K. OSHIRO: Lifting modules, extending modules and their applications to generalized uniserial rings, Hokkaido Math. J. **13** (1984), 339-346.
- [3] M. SALL, M. BARRY, L. FALL: On small subtrive and projective Semimodules over zero-sum semiring, Journal of Algebra, Number Theory and Application **61**(2) (2023), 117-134.

 $^{1,2.3}$ Department of Mathematics and Computer Science, Cheikh Anta Diop university, Dakar, Senegal.

Email address: ¹moussa18.sall@ucad.edu.sn

Email address: ²landing.fall@ucad.edu.sn

Email address: ³djiby.sow@ucad.edu.sn