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SUPOUT TOPOLOGY ON DIRECTED FUZZY GRAPHS

Hanan Omer Zomam

ABSTRACT. In this work, we introduce a topology, called supout topology and
denoted Fo

G , for a fuzzy directed graph. We study some properties of this topol-
ogy and give some examples of open and closed sets. We demonstrate that two
isomorphic fuzzy directed graphs have homeomorphic supout topologies. In ad-
dition, we prove that this topology is an Alexandroff one and then use minimal
basis to characterize homeomorphic fuzzy directed graphs. Finally, we investigate
the connectedness of this topology vs. the connectivity of the graph.

1. INTRODUCTION

Directed fuzzy graphs were introduced by Chen and Chang in [10]. After a
few years, directed fuzzy graphs have been applied in many domains: Sensor
networks, Communication networks, Social networks, Transportation networks,
Air traffic control, [1, 19, 20, 24, 25, 28, 31]. They are used in medical field [22],
economic [4,21,23]. In [1,4,6,13,14,21,26,32], we find some topological char-
acterizations of fuzzy graphs.

1corresponding author
2020 Mathematics Subject Classification. 05C72, 05C40, 05C38, 05C60, 54D05, 54D80.
Key words and phrases. Fuzzy graph, directed graph, topology, isomorphic fuzzy graphs, homeo-
morphism, isomorphic, connectivity.
Submitted: 09.10.2024; Accepted: 24.10.2024; Published: 07.11.2024.

501



502 Hanan Omer Zomam

Recall that topology can be used in many domains as examples: machine learn-
ing [8, 9, 11], image processing and computer vision [15, 17, 34] and network-
ing [2,7,33]. In this paper, we are going to construct a topology for directed fuzzy
graph and study their properties. We will prove that this topology is an Alexan-
droff topology, that is any intersection of open sets is an open set. Therefore, we
have a minimal basis. This minimal basis helps us to characterize continuous func-
tions, homeomorphisms, and to prove that two isomorphic directed fuzzy graphs
are homeomorphic. This topology is called Supout Topology for the fuzzy graph
since it is built by using out-neighbors for a given vertex x whose form with the
vertex x an edge with positive membership.

The outline of the paper is as follows. In the second section, we recall some
definitions and results in the fuzzy graph theory and the topology domain that
we will use later. In section 3, we define our topology and prove that it is an
Alexandroff one. We prove many results using the minimal basis. Section 4 is
devoted to study homeomorphic directed fuzzy graphs. Finally section 5 studied
the relation between the connectivity of the graph and the connectedness of the
constructed topology.

2. PRELIMINARIES

In the beginning of this paper, we take this section to recall the basic definitions
and results that we will use along this paper, we can refer to [5,7,12,16,18,27,30]
for more details.

Definition 2.1. A fuzzy graph G = (V , ρ, ν) is non empty set V with two maps
ρ : V → [0, 1] and ν : V × V → [0, 1] such that for all x, y ∈ V, we have.

(i) ν(x, y) = ν(y, x).
(ii) ν(x, y) ≤ min(ρ(x), ρ(y)).

(iii) ν(x, x) = 0.

An element x of V is called a vertex of the graph G and we have the two supports

(2.1) Supp(ρ) = {x ∈ V ; ρ(x) > 0}

and

(2.2) Supp(ν) = {(x, y) ∈ V × V ; ν(x, y) > 0}.
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Example 1. In Figure 1, we have Supp(ρ) = {a, b, c, d} = V and Supp(ν) =

{(a, b), (a, c), (b, c), (c, d)} but ν(a, d) = ν(b, d) = 0.

FIGURE 1. A fuzzy graph

Definition 2.2. A fuzzy graph G = (V , ρ, ν) is called directed if

(i) ν(x, y) ≤ min(ρ(x), ρ(y)).
(ii) ν(x, x) = 0.

Example 2. In a directed graph, the function ν is not needed to be symmetric and we
precise the direction of the edge (the edges are directed) and we represent a directed
fuzzy graph as in Figure 2.

FIGURE 2. Examples of directed fuzzy graphs
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Definition 2.3. A fuzzy path in a directed fuzzy graph is any sequence of distinct
vertices a0, a1, · · · , an−1, an with ν(ai−1, ai) > 0 for i = 1, · · · , n. We say that this
path is length n.

Definition 2.4. We say that a directed fuzzy graph G = (V , ρ, ν) is simple (or without
loop) if for all x ∈ V, ν(x, x) = 0.

For two distinct vertices a and b of a directed fuzzy graph, we denote d(a, b) the
length of the shortest path joining a and b. If there is no path between them, we say
that d(a, b) = ∞.

Definition 2.5. A fuzzy digraph G = (V , ρ, ν) is complete if for every pair of directed
adjacent vertices, we have

ν(x, y) = min(ρ(x), ρ(y)).

Example 3. The following Figure 3 represents a complete directed fuzzy graph.

FIGURE 3. An example of a complete directed fuzzy graph

Definition 2.6. The complement of a fuzzy digraph G = (V , ρ, ν) is a the fuzzy di-
graph G = (V , ρ, ν), where ρ̄ = ρ and for all x and y in V, ν̄(x, y) = min(ρ(x), ρ(y))−
ν(x, y).

Example 4. In the Figure 4, we have two complete directed fuzzy graphs and each
one is the complement of the other.
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FIGURE 4. An example of a directed fuzzy graph and its complement

Next, we define

(2.3) N o
x = {y ∈ V ; ν(x, y) > 0},

and

(2.4) N i
x = {y ∈ V ; ν(y, x) > 0},

the set of out-neighbors and int-neighbors of x respectively. It is clear that

y ∈ N o
x if and only if x ∈ N i

y.

In this paper, we define the isolated vertex as follows.

Definition 2.7. If ν(y, x) = 0 for all y ∈ V, then x is called an isolated vertex in the
fuzzy digraph G = (V , ρ, ν). This is equivalent to N i

x = ∅.

Definition 2.8. A fuzzy digraph G is said locally finite if N i
x is a finite set, for all

x ∈ V.

Also, in order to give some examples of open and closed subsets, we define the
supout-degree of a vertex x as ds+(x) = card(N o

x) and the supint-degree of x is
ds−(x) = card(N i

x).

Let
δs+(G) = min{ds+(x), x ∈ V},

and
δs−(G) = min{ds−(x), x ∈ V}
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the minimum supout-degree and the minimum supint-degree of the fuzzy digraph
G = (V , ρ, ν). In the same way, we have the maximum supout-degree and maxi-
mum supint-degree of G given by

∆s+(G) = max{ds+(x), x ∈ V},

and
∆s−(G) = max{ds−(x), x ∈ V}.

We end this section by some definitions about topological spaces.

Definition 2.9. A non empty set V is called a topological space if it has a family F
of subsets satisfying

(i) ∅, V ∈ F .
(ii) For all A1, A2 ∈ F , A1 ∩ A2 ∈ F .

(iii) For all sequence {Ai}i of elements of F , ∪i∈IAi ∈ F .

The elements of F are called open sets for the topology F .
If all intersections of open sets are also open sets, then the topological space (V,F) is
said an Alexandroff space.

Definition 2.10. If A is a subset of V and (V,F) is a topological space, then.

(i) A is called a closed set if its complement Ac := V \ A is an open set.
(ii) The closure of A, A, is the smallest closed set containing A.

Definition 2.11. Suppose that (V,F) is a topological space. If every open cover of V
has a finite subcover, then we say that V is a compact space.

3. FIRST RESULTS

In the sequel, we suppose that the directed fuzzy graph G is without isolated
vertices, locally finite and ρ > 0. In order to introduce our topology, we set

(3.1) N o
G = {N o

x ; x ∈ V}.

Theorem 3.1. Suppose that G = (V , ρ, ν) is a fuzzy directed graph. Then, N o
G is a

subbasis of a topology for V.
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Proof. We have to prove that ⋃
u∈V

N o
u = V

Let x ∈ V. We have that x is not isolated vertex and so N i
x ̸= ∅. Consider one

element y ∈ N i
x. Therefore, x ∈ N o

y , and so x ∈
⋃

u∈V N
o
u.

We get
⋃

u∈V N
o
u ⊂ V and so

⋃
u∈V N

o
u = V. Hence N o

G is a subbasis for a topology
of V. □

The topology induced by the subbasis N o
G will be denoted by Fo

G and will be
called supout topology.

Theorem 3.2. Suppose that G = (V , ρ, ν) is a fuzzy directed graph. Then, (V ,Fo
G) is

an Alexandroff topological space.

Proof. Since the topology Fo
G is defined by the subbasis N o

G , we are going to prove
that any intersection of elements in N o

G is an open set, see Definition 2.9.
Consider ⋂

x∈M

N o
x

where M ⊂ V.
case 1. ∩x∈MN o

x = ∅, then ∩x∈MN o
x is an open set.

case 2. ∩x∈MN o
x ̸= ∅, then let y in ∩x∈MN o

x . So, y ∈ N o
x , ∀x ∈ M .

We get for all x ∈ M , x ∈ N i
y and then M ⊂ N i

y. Since the graph G is locally
finite, N i

y is a finite set and so M is also finite. Therefore, by the Definition 2.9, we
get that ∩x∈MN o

x is an open set. Hence the theorem is proved. □

We have an Alexandroff topological space (V ,Fo
G). Let x ∈ V, we denote Dx the

smallest open set containing x, that is the intersection of all open sets containing
x (Theorem 3.2). We set

(3.2) D = {Dx; x ∈ V}.

D is called the minimal basis of Fo
G. For more details and results, we can refer

to [3, 5, 12, 18, 29, 30]. We will call Dx the minimal open set containing x. The
following result connects the minimal open sets with the subbasis.
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Theorem 3.3. Let G be a directed fuzzy graph. For all x a vertex of G, we have

Dx =
⋂

y∈N i
x

N o
y .

Proof. For x a vertex of the graph G = (V , ρ, ν). First, we are going to prove that

Dx ⊆
⋂

y∈N i
x

N o
y .

Since x is not isolated vertex, then there exists y ∈ N i
x. By definition, N o

y is an
open set. In addition, y ∈ N i

x is equivalent x ∈ N o
y , therefore N o

y is an open set
containing x. Then Dx ⊆ N o

y and hence Dx ⊆
⋂

y∈N i
x
N o

y .
Now, since Dx is the small open set containing x, then there exists a subset H

of V such that Dx =
⋂

y∈H N o
y . If y ∈ H, we have x ∈ N o

y and so y ∈ N i
x and so

H ⊆ N i
x. We get ⋂

y∈N i
x

N o
y ⊆

⋂
y∈H

N o
y

and so ⋂
y∈N i

x

N o
y ⊆ Dx.

The equality follows. □

As consequence, we can characterise and find the minimal open set Dx in some
cases.

Proposition 3.1. Suppose that x and y are two distinct vertices of a directed fuzzy
graph G.

(a) When N i
x = {y}, we have Dx = N o

y .
(b) Suppose that y ∈ N i

x, we get Dx ⊂ N o
y .

(c) If Dy ⊂ N i
x, then Dx ⊂ N o

y .

Proof.

(a) N i
x = {y} and Theorem 3.3 give Dx = N o

y .
(b) Since Dx =

⋂
a∈N i

x
N o

a , we get Dx ⊂ N o
y .

(c) Follows from (b).

□
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Proposition 3.2. Suppose that x is a vertex of a directed fuzzy graph G. Then,

Dx = {y ∈ V ; N i
x ⊂ N i

y}.

Proof. First, let y ∈ Dx, we have to prove that N i
x ⊆ N i

y. If z ∈ N i
x and since

Dx =
⋂

a∈N i
x

N o
a ⊆ N o

z ,

we get y ∈ N o
z and so z ∈ N i

y. Therefore, N i
x ⊂ N i

y and so Dx ⊆ {y ∈ V ; N i
x ⊂ N i

y}.
Conversely, suppose that y ∈ V and N i

x ⊂ N i
y. So, for all z ∈ N i

x, z ∈ N i
y. That

is, ∀z ∈ N i
x, y ∈ N o

z and then
y ∈

⋂
z∈N i

x

N o
z .

From Theorem 3.3, y ∈ Dx. That is {y ∈ V ; N i
x ⊂ N i

y} ⊆ Dx. So the proposition is
proved. □

Theorem 3.4. Suppose that G = (V , ρ, ν) is a fuzzy directed graph and x, y ∈ V.
Then,

(1) Dx

⋂
N i

x = ∅.
(2) If Dy ⊂ N i

x, then Dx

⋂
Dy = ∅.

Proof.

(1) By contraction. Let a ∈ Dx

⋂
N i

x. From the fact that a ∈ Dx and Theorem
3.4, we get N i

x ⊆ N i
a. In addition, a ∈ N i

x and therefore a ∈ N i
a. This

is impossible since the directed fuzzy graph is simple. We deduce that
Dx

⋂
N i

x = ∅.
(2) Since ∅ = Dx

⋂
N i

x ⊇ Dx

⋂
Dy. So, Dx

⋂
Dy = ∅.

□

Proposition 3.3. Suppose that G = (V , ρ, ν) is a fuzzy directed graph and x ∈ V.
Then,

{x} = {y ∈ V ; N i
y ⊂ N i

x},

where {x} is the closure of the set {x} (see the Definition 2.10).

Proof. Let y ∈ V, we have Dy = {a ∈ V ; N i
y ⊂ N i

a}, and y ∈ {x} this is equivalent
to A ∩ {x} ̸= ∅, for all A open set containing y. That is, Dy ∩ {x} ̸= ∅. Therefore,
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this means x ∈ Dy. We get

y ∈ {x} ⇔ x ∈ Dy ⇔ N i
y ⊂ N i

x.

The result follows. □

4. FUNCTIONS AND Fo
G TOPOLOGY

Definition 4.1. Let G1 = (V1, ρ1, ν1) and G2 = (V2, ρ2, ν2) be two directed fuzzy
graphs. A morphism (homomorphism) from G1 to G2 is a map f : V1 → V2 satisfying

ρ1(x) ≤ ρ2(f(x)) and ν1(x, y) ≤ ν2(f(x), f(y)),∀x, y ∈ V1

We say the two directed fuzzy graphs G1 = (V1, ρ1, ν1) and G2 = (V2, ρ2, ν2) are
isomorphic if there is a bijective function f : V1 → V2 verifying

ρ1(x) = ρ2(f(x)) and ν1(x, y) = ν2(f(x), f(y)),∀x, y ∈ V1

As topological spaces, we have the following equivalent relation.

Definition 4.2. Consider the two topological spaces (V1,Fo
G1
) and (V2,Fo

G2
). A func-

tion f : V1 → V2 is said continuous if

f−1(A) ∈ Fo
G1
,∀A ∈ Fo

G2
.

The two topological spaces (V1,Fo
G1
) and (V2,Fo

G2
) are called homeomorphic if there

is a bijective function f : V1 → V2 such that f and f−1 are continuous.

Theorem 4.1. If G1 = (V1, ρ1, ν1) and G2 = (V2, ρ2, ν2) are two isomorphic fuzzy
graphs, then (V1,Fo

G1
) and (V2,Fo

G2
) are homeomorphic.

Proof. Denote f : V1 → V2 an isomorphism. We have to prove that for all A ∈ N o
G2

,
f−1(A) ∈ Fo

G1
(see Theorem 3.1).

Let A ∈ N o
G2

. Then, there exists a ∈ V2 such that A = N o
a . We set b = f−1(a),

then we have

f−1(A) = f−1(N o
a) = {x ∈ V1, f(x) ∈ N o

a} = {x ∈ V1, ν2(a, f(x)) > 0}

= {x ∈ V1, ν2(f(b), f(x)) > 0} = {x ∈ V1, ν1(b, x) > 0}

= {x ∈ V1, x ∈ N o
b } = N o

b .
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We obtain

(4.1) f−1(A) = N o
b

and

(4.2) f−1(N o
f(b)) = N o

b .

From (4.1), we deduce that f−1(A) ∈ N o
G1

⊂ Fo
G1

. Therefore, f is continuous.
From (4.2), we get

N o
f(b) = f(N o

b ) = (f−1)−1(N o
b )

and hence, the function f−1 is continuous. □

The Figure 5 shows that the converse of the above theorem is not always true.

Example 5. For the first graph in the Figure 5, we have

N i
a = {d, c} and N o

a = {b, c},
N i

b = {a, d} and N o
b = {c, d},

N i
c = {a, b} and N o

c = {a, d},
N i

d = {b, c} and N o
d = {a, b}.

FIGURE 5. An example of two homeomorphic graphs but not isomorphic

Then,

Da =
⋂

y∈N i
a
N o

y =
⋂

y∈{d,c}N
o
y = N o

d ∩N o
c = {a},

Db =
⋂

y∈N i
b
N o

y =
⋂

y∈{a,d}N
o
y = N o

a ∩N o
d = {b},
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Dc =
⋂

y∈N i
c
N o

y =
⋂

y∈{a,b}N
o
y = N o

a ∩N o
b = {c},

Dd =
⋂

y∈N i
d
N o

y =
⋂

y∈{b,c}N
o
y = N o

b ∩N o
c = {d}.

So, the minimal basis is
D =

{
{a}, {b}, {c}, {d}

}
.

For the second graph in the figure 5, we have
N i

u = {w} and N o
u = {v},

N i
v = {u} and N v

o = {x},
N i

x = {v} and N o
x = {w},

N i
w = {x} and Nx

w = {u},
Dx =

⋂
y∈N i

x
N o

y ,
Du =

⋂
y∈N i

u
N o

y =
⋂

y∈{w}N
o
y = N o

w = {u},
Dv =

⋂
y∈N i

b
N o

y =
⋂

y∈{u}N
o
y = N o

u = {v},
Dx =

⋂
y∈N i

x
N o

y =
⋂

y∈{v}N
o
y = N o

v = {x},
Dw =

⋂
y∈N i

w
N o

y =
⋂

y∈{x}N
o
y = N o

x = {w}.
We have

D =
{
{u}, {v}, {x}, {w}

}
.

Theorem 4.2. If G1 = (V1, ρ1, ν1) and G2 = (V2, ρ2, ν2) are two directed fuzzy graphs
and f : V1 → V2 a bijective function. Then, f is an homeomorphism between the
two corresponding topological spaces (V1,Fo

G1
) and (V2,Fo

G2
) if and only if the two

properties are equivalents

(i) N i
a ⊂ N i

b .
(ii) N i

f(a) ⊂ N i
f(b).

for all a, b ∈ V1.

Proof. First, we suppose that f is an homeomorphism. Let a, b ∈ V1.

Step 1. (i) ⇒ (ii): Suppose that N i
a ⊂ N i

b . Recall that, for x ∈ V1, the minimal
open set Dx is given by Dx = {y ∈ V1; N i

x ⊂ N i
y} (see Proposition 3.2). Next,

N i
a ⊂ N i

b this is equivalent to

(4.3) b ∈ Da.

Or since the function f is continuous, f−1(Df(a)) is an open set containing a and
so Da ⊂ f−1(Df(a)). From (4.3), we obtain b ∈ f−1(Df(a)). But b ∈ f−1(Df(a))

gives f(b) ∈ Df(a). Hence, N i
f(a) ⊂ N i

f(b).
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Step 2. (ii) ⇒ (i): Suppose that N i
f(a) ⊂ N i

f(b). We have N i
f(a) ⊂ N i

f(b) and this
means

(4.4) f(b) ∈ Df(a).

Da is an open set, since the function f−1 is continuous, (f−1)−1(Da), which is
f(Da), is an open set containing f(a) and so a ∈ Df(a) ⊂ f(Da).

From (4.4), we get f(b) ∈ f(Da). Then, b ∈ f−1(f(Da)), so b ∈ Da which
equivalent to N i

a ⊂ N i
b .

For the other sense, suppose that (i) and (ii) are equivalent. We have to prove
that f and f−1 are continuous.

Step 1. We have to prove that f is continuous. For this, let O an open set for
(V2,Fo

G2
). Suppose that a ∈ f−1(O) and b ∈ Da. we have N i

a ⊂ N i
b .

And so, by our hypothesis, we get N i
f(a) ⊂ N i

f(b). Therefore, f(b) ∈ Df(a) ⊂ O. That
is, b ∈ f−1(O) and hence Da ⊂ f−1(O) and then f−1(O) is an open for (V2,Fo

G2
).

We deduce that f is a continuous function.

Step 2. In order to prove that f−1 : V2 → V1 is continuous, let A be an open set
for (V1,Fo

G1
). We are going to prove (f−1)−1(A) = f(A) is an open set for (V2,Fo

G2
).

Let f(x) ∈ f(A), for x ∈ A. If y ∈ Df(x), then N i
f(x) ⊂ N i

y. We set y = f(z),
since f is bijective and y ∈ V2. We get N i

f(x) ⊂ N i
f(z) and so N i

x ⊂ N i
z. Therefore,

z ∈ Dx ⊂ A (A is an open set). We obtain f(z) ∈ f(A), this means y ∈ f(A), this
is for all y ∈ Df(x). So, Df(x) ⊂ f(A). Hence, f(A) is an open set for V2 and f−1 is
continuous. □

Theorem 4.3. In the particular case, if G = (V , ρ, ν) is a directed fuzzy graph and
ν(x, y) = 1

2
(ρ(x) ∧ ρ(y)), then G = (V , ρ, ν) is self complementary (i.e G ∼= G) and

Fo
G = Fo

G.

Proof. We have ρ = ρ by Definition 2.6 and also we have

ν(x, y) = ρ(x) ∧ ρ(y)− ν(x, y) =
1

2
(ρ(x) ∧ ρ(y)) = ν(x, y).

□

Theorem 4.4. Let G = (V , ρ, ν) be a directed fuzzy graph. Then, V is compact if and
only if V is finite.



514 Hanan Omer Zomam

Proof. Suppose that V is compact. Consider the open cover D = {Dx}x∈V . This
open cover has a finite subcover. Since it is a minimal basis, his subcover will be
also equal D. Therefore, V is finite.

Conversely, if V is finite then any open cover can be reduced to finite one and
hence V is compact □

5. CONNECTIVITY AND Fo
G TOPOLOGY

Definition 5.1. Let (V,F) be a topological space. The space V is called connected if
whenever V = X ∪Y , with X, Y open sets and X ∩Y = ∅, we have X = ∅ or Y = ∅.

For example, if X = {a, b, c} and F = {∅, {a}, {a, b}, {a, b, c}}, the space (V,F)

is a connected topological space.

Definition 5.2. Let G = (V , ρ, ν) be a directed fuzzy graph. The fuzzy graph G is
called connected if for all u, v ∈ V there exists a fuzzy path from u to v and a fuzzy
path from v to u (i.e. u and v are strongly connected). Other wise, the graph is called
disconnected.

Example 6.

FIGURE 6. An example of connected directed fuzzy graph
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The main problem of this section is: For a directed fuzzy graph G = (V , ρ, ν), are
there any relations between the connectedness of the the topological space (V ,Fo

G)

and the connectivity of the directed fuzzy graph G = (V , ρ, ν)?
We are going to give some examples in order to prove that all cases are possible.

Example 7. This is an example for a disconnected directed fuzzy graph but the topo-
logical space (V ,Fo

G) is connected.

FIGURE 7. Disconnected directed fuzzy graph with connected topology

Indeed,

N i
a = {b, c} and N o

a = {b, c, a′}
N i

b = {a, c} and N o
b = {a, c, b′}

N i
c = {a, b} and N o

c = {a, b, c′}
N i

a′ = {a} and N o
a′ = ∅

N i
b′ = {b} and N o

b′ = ∅
N i

c′ = {c} and N o
c′ = ∅

Dx =
⋂

y∈N i
x

N o
y
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Da =
⋂

y∈N i
a

N o
y =

⋂
y∈{b,c}

N o
y = N o

b ∩N o
c = {a}

In the same way
Db = {b} and Dc = {c}.

Also, we have
Da′ =

⋂
y∈N i

a′

N o
y =

⋂
y∈{a}

N o
y = N o

a = {b, c, a′}

For the same reason and by symmetry, we get

Db′ = {a, c, b′} and Dc′ = {a, b, c′}.

The minimal basis is D =
{
{a}, {b}, {c}, {b, c, a′}, {a, c, b′}, {a, b, c′}

}
. So, Fo

G is
connected

Example 8. For the following disconnected directed fuzzy graph, the topological space
(V ,Fo

G) is disconnected.

FIGURE 8. Disconnected directed fuzzy graph with disconnected topology

N i
a = {d} and N o

a = {b}
N i

b = {a} and N o
b = {c, d}

N i
c = {b, d} and N o

c = ∅
N i

d = {b} and N o
d = {a, c}

Dx =
⋂

y∈N i
x

N o
y

Da =
⋂

y∈N i
a

N o
y =

⋂
y∈{d}

N o
y = N o

d = {a, c}
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Db =
⋂
y∈N i

b

N o
y =

⋂
y∈{a}

N o
y = N o

a = {b}

Dc =
⋂
y∈N i

c

N o
y =

⋂
y∈{b,d}

N o
y = N o

b ∩N o
d = {c}

Dd =
⋂
y∈N i

d

N o
y =

⋂
y∈{b}

N o
y = N o

b = {c, d}.

We have D =
{
{b}, {c}, {a, c}, {c, d}

}
and Fo

G =
{
∅, {b}, {c}, {a, c}, {c, d}, {b, c},

{a, b, c}, {b, c, d}, {a, c, d}, {a, b, c, d}
}

. The topology Fo
G is disconnected.

Example 9.

FIGURE 9. Connected directed fuzzy graph with connected topology

N i
a = {a′, b, c} and N o

a = {a′, b, c}
N i

b = {a, b′, c} and N o
b = {a, b′, c}

N i
c = {a, b, c′} and N o

c = {a, b, c′}
N i

a′ = {a} and N o
a′ = {a}

N i
b′ = {b} and N o

b′ = {b}
N i

c′ = {c} and N o
c′ = {c}

Dx =
⋂

y∈N i
x

N o
y

Da =
⋂

y∈N i
a

N o
y =

⋂
y∈{a′,b,c}

N o
y = N o

a′ ∩N o
b ∩N o

c = {a}
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Also,
Db = {b} and Dc = {c}

and we have
Da′ =

⋂
y∈N i

a′

N o
y =

⋂
y∈{a}

N o
y = N o

a = {a′, b, c}.

For the same reason and by symmetry, we get

Db′ = {a, b′, c} and Dc′ = {a, b, c′}.

We obtain D =
{
{a}, {b}, {c}, {b, c, a′}, {a, c, b′}, {a, b, c′}

}
. So, The topology Fo

G is
connected.

Example 10.

FIGURE 10. Connected directed fuzzy graph with disconnected topology

N i
a = {c} and N o

a = {b, d}
N i

b = {a, c} and N o
b = {c, d}

N i
c = {b, d} and N o

c = {a, b}
N i

d = {a, b} and N o
d = {c}

Dx =
⋂

y∈N i
x

N o
y

Da =
⋂

y∈N i
a

N o
y =

⋂
y∈{c}

N o
y = N o

c = {a, b}
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Db =
⋂
y∈N i

b

N o
y =

⋂
y∈{a,c}

N o
y = N o

a ∩N o
c = {b}

Dc =
⋂
y∈N i

c

N o
y =

⋂
y∈{b,d}

N o
y = N o

b ∩N o
d = {c}

Dd =
⋂
y∈N i

d

N o
y =

⋂
y∈{a,b}

N o
y = N o

a ∩N o
b = {d}.

We have D =
{
{b}, {c}, {d}, {a, b}

}
and so the topology is not connected.

6. CONCLUSIONS

Along this work, we investigated fuzzy directed graph and topology. We de-
fined a topology Fo

G for the vertices set of a fuzzy directed graph G = (V , ρ, ν)
using a subbasis depended on the out-neighbors. We have proved that Fo

G is an
Alexandroff topology and characterize its minimal basis. In addition, we proved
some results about continuous functions and isomorphic fuzzy directed graphs.
We proved that the space (V ,Fo

G) is compact if and only if V is finite. For the con-
nectedness of the topology vs. the connectivity of the graph, we have given four
examples and so proved that all situations can be realized. As open question, we
can look for some necessary or sufficient conditions on the graph G = (V , ρ, ν) for
the connectivity of the topology Fo

G.
Furthermore, we can use the membership of the edges (or the weight) in order

to define the connectivity of the graph using strong edges. And then, see the
relation between the connectedness of the topology and the connectivity of the
graph.
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