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ON LINEAR TRANSFORMATION OF REPRODUCING KERNEL HILBERT
C∗−MODULES

Anoh Yannick Kraidi

ABSTRACT. In this paper, we investigate the reproducing kernel theory in the
framework of Hilbert C∗− modules and the linear transformation of Hilbert C∗−
modules. We give an analog of the inversion formula and the theorems of approx-
imation in a reproducing kernel space.

1. INTRODUCTION

Reproducing kernel originated with the works of S. Bergman and S.Szego (See
[3, 16]). The theory has been developed by Nachman Aronszajn and plays a very
important role in mathematics. We can deduce from that many applications in
many fields like Deep and machine learning, statistics, signal processing, quantum
mechanics, interpolation. Let E be any set. A reproducing kernel Hilbert space
(RKHS) H on E is a Hilbert space of functions on E for which point evaluations
are continuous. The point evaluation functional is defined on H defined by: for
all x ∈ E,

ϵx : H → C
f 7→ ϵx(f) = f(x).
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Thanks to Riesz-Fréchet theorem, we can deduce the existence of a kernel K :
E × E → C such that for all x ∈ E,

f(x) = (f,K(., x))H , for all f ∈ H.

Nachman Aronszajn [2] established the fundamental correspondence between
RKHSs and positive definite kernels: each positive definite kernel defines a unique
RKHS, and each RKHS admits a unique reproducing kernel. RKHSs now play
a central role in analysis and its applications, particularly in machine learning,
statistics, signal processing, and quantum mechanics. Many examples of repro-
ducing kernel Hilbert spaces can be found in ( [1,5,12,15]). The theory has since
been generalized in several directions. Indeed, a generalization of RKHS to non-
Hilbert spaces has been proposed in Canu et al. (see [4]). In 2009, Haizhang
Zhang, Yuesheng Xu and Jun Zhang in (see [18]) extended the theory of RKHS on
Banach spaces with many applications in machine learning. Naimark (see [17])
introduced a reprodcing kernel space using a kernel defined on a group with many
applications in probability, harmonic analysis. In [10,11], our works presented an
extension of the theory of RKHS to the Cartan sub-algebra of a semi-simple Lie
algebra. Among all those spaces, we have Hilbert C∗−modules. In fact, they are
natural generalization of Hilbert spaces. Indeed in [8], Murphy introduced repro-
ducing kernel Hilbert modules (RKHM) and explored relationships between posi-
tive definite kernels and Hilbert C∗−modules. In 2008, Jaeseong Heo in (see [9])
also worked in reproducing kernel Hilbert C∗-modules. He discussed about repro-
ducing kernels whose ranges are contained in a C∗-algebra and gave reproducing
Hilbert C∗-modules associated with the kernels, and he showed that reproducing
kernels whose ranges are contained in Hilbert C∗-modules can be expressed in
terms of operators on Hilbert C∗-modules using representations on Hilbert C∗-
modules. More details about C∗-algebra can be found in [6,7]. The ongoing trend
is to extend results from RKHSs to RKHMs. Motivated by this, the present paper
investigates linear transformations in the setting of Hilbert C∗-modules. In partic-
ular, we establish analogues in RKHMs of the inversion formula for linear trans-
formations and of the approximation theorem introduced by S. Saitoh ( [14,15]),
and we study some of their structural properties. The paper is organized as fol-
lows. Section 2 introduces the necessary preliminaries and definitions, Section 3
presents our main results.
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2. PRELIMINARIES AND DEFINITIONS

Definition 2.1. (See [13]) Let A be a C∗-algebra. A right A-module X is called a
(right) pre-Hilbert A-module if there is an A-valued mapping

⟨·, ·⟩ : X ×X −→ A

which is sesquilinear and satisfies the following properties:

(1) ⟨x, x⟩ ≥ 0 for any x ∈ X;
(2) ⟨x, x⟩ = 0 implies x = 0;
(3) ⟨x, y⟩ = ⟨y, x⟩∗ for any x, y ∈ X;
(4) ⟨x, ya⟩ = ⟨x, y⟩a for any x, y ∈ X and a ∈ A.

Let X be a pre-Hilbert A-module, x ∈ X. We set

∥x∥X := ∥⟨x, x⟩∥
1
2 .

Proposition 2.1. (See [13]) The function ∥.∥X is a norm on X and satisfies the
following properties:

i) ∥x.a∥X ≤ ∥x.∥X∥a∥ for any x ∈ X, a ∈ A;
ii) ⟨x, y⟩⟨y, x⟩ ≤ ∥y∥2

X⟨x, x⟩ for any x, y ∈ X;
iii) ∥⟨x, y⟩∥ ≤ ∥x∥X∥y∥X for any x, y ∈ X.

Definition 2.2. (see [13]) A pre-Hilbert A-module X is called a Hilbert C∗-module if
it is complete with respect to the norm ∥.∥X .

We now recall some important facts concerning operators on Hilbert modules.
Let M,N be Hilbert C∗-modules over a C∗ algebra A. A bounded C-linear A-
homomorphism from M to N is called an operator from M to N . LetHomA(M,N )
denote the set of all operators from M to N . Let T ∈ HomA(M,N ), we say that
T is adjointable if there exixts an operator T ∗ ∈ HomA(N ,M) such that:

⟨x, Ty⟩ = ⟨T ∗x, y⟩ for all x ∈ M, y ∈ N .

Lemma 2.1. (See [13]). Let M be a Hilbert A-module and let T : M −→ M and
T ∗ : M −→ M be maps such that

⟨x, Ty⟩ = ⟨T ∗x, y⟩ for all x ∈ M, y ∈ N .

Then, T is a bounded C-linear A-homomorphism (and T ∗ as well).
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After we defined the basics concerning a Hilbert C∗-module for our work, we
discuss the structure of reproducing kernel in such a space.

Let S and A denote a nonempty set and a C∗-algebra, respectively. We denote by
X a self-dual Hilbert A-module of A-valued functions on S such that each valuation
ψ 7→ ψ(s) is continuous and linear. Then, for each s ∈ S and ψ ∈ X, there exists an
element ϕs ∈ X such that ψ(s) = (ϕs, ψ). The corresponding reproducing kernel
K : S × S 7→ A is given by

K(s, t) = (ϕs, ϕt).

Definition 2.3. (see [9]) A kernel K : S × S −→ A is positive definite if for every
n ∈ N and s1,..,sn ∈ S and b1, . . . ,bn ∈ A, the sum∑n

i,j=1 b
∗
iK(si, sj)bj is positive in A.

Proposition 2.2. (see [9]) Under the consideration of the notations from the above
definition, the kernel K verifies:

- The kernel K is positive definite.
- For each s ∈ S, K(s, s) is a positive element in A.
- For all s, t ∈ S , ∥K(s, t∥2 ≤ ∥K(s, s∥∥K(t, t∥.
- The set {ϕs : s ∈ S}: generates X as a Hilbert A-module.

Theorem 2.1. (see [9]) If a kernel K : S × S −→ A is positive definite, then
there exists a Hilbert A-module X of A-valued functions on S such that K is the
reproducing kernel of X.

This theorem will lead us to introduce the basic points concerning a linear trans-
formation of reproducing kernel Hilbert C∗− modules.

Let’s consider X a Hilbert A-module with the scalar product (., .)X which is the
A-valued mapping defined on S × S, F(S) the set of A-valued functions defined
on S, h a function on S with values in X defined by h(p) = hp, L the map defined
by:

L : X → F(S)
f 7→ Lf = f̃ .

with

f̃(p) = (Lf)(p) = (f, hp)X .

Let’s consider the kernel K defined by:
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K(p, q) = (hq, hp)X = L(hq)(p) for all p, q ∈ S.

Let R(L) be the range of L. We introduce an inner product in R(L) induced by
the norm:

∥f̃∥R(L) =inf{∥f∥H ; f̃ = Lf}.

Theorem 2.2. (see [15], p.21) If we consider the kernel K defined above, the space
(R(L), ⟨., .⟩H) is a Hilbert space satisfying the following properties:

1. For all q ∈ E, K(p, q) ∈ R(L) as a function in p.
2. For all f ∈ R(L) and for all q ∈ E, we have

f̃ = ⟨f̃ , K(., p)⟩R(L).

Note that, the mapping L is an isometry if and only if {hp, p ∈ E} is complete in H.

From this theorem, we see that the range of the linear transform is a reproducing
kernel space that will be denoted by HK and the theorem still holds in the case of
Hilbert C∗− modules. that is, the range of a linear transform defined on a Hilbert
C∗− module with values in F(S) is a reproducing kernel Hilbert C∗− module. The
proof is parallel to the one on the previous theorem.

3. MAIN RESULTS

In this first part of our main results, we present the inversion formula.
Let us consider X the Hilbert A-module with the scalar product ⟨., .⟩X , F(S) the

set of A-valued functions defined on S, h a function on S with values in X defined
by h(p) = hp, L the map defined by:

L : X → F(S)
f 7→ Lf = f̃ .

with

f̃(p) = (Lf)(p) = ⟨f, hp⟩X .

For the Hilbert A-module, let L be a linear map from X into F(S), h the map
from S into X defined by h(p) = hp for all p ∈ S.

Theorem 3.1. Let {ϕi} be a complete orthonormal system of a the Hilbert A-module
X and suppose that L defined like above is an adjointable mapping between the A-
modules X and HK , f̃ ∈ HK and Ψi(p) = (ϕi, hp)X ,. Then,
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1) For p, q ∈ S, K(p, q) = ∑
i Ψi(p)(Ψi(q))∗ which is convergent in S × S and

∥f̃∥HK
≤ ∥⟨f̃ , h∗

(.)⟩HK
∥X .

2) Furthermore, if {hp, p ∈ S} is dense in X then,
∥f̃∥HK

= ∥⟨f̃ , h∗
(.)⟩HK

∥X and there exists an unique f ♯ in X such that:

f ♯ = ⟨f̃ , h∗
(.)⟩HK

= ∑
i⟨f̃(.), ⟨ϕi, h(.)⟩X⟩HK

ϕsi
.

Proof. 1) Let’s consider p, q ∈ S. We have ⟨Kp,Ψi⟩HK
= ⟨Ψi, Kp⟩∗

HK
= (Ψi(p))∗.

Hence, from the Parseval identity:

K(p, q) = ⟨Kq, Kp⟩HK
=

n∑
i=1

⟨Kq,Ψi⟩HK
⟨Kp,Ψi⟩∗

HK

=
n∑

i=1
Ψi(p)(Ψi(q))∗.

If Ψi(p) = ⟨ϕi, hp⟩X , then hp = ∑
i⟨hp, ϕi⟩Xϕi = ∑

i(Ψi(p))∗ϕi. Hence, by
setting h∗

p = ∑n
i=i Ψi(p)ϕsi

, we have

(3.1) h∗
(.) =

n∑
i=i

Ψi(.)ϕsi

For f̃ ∈ HK , ⟨f̃ , h∗
(.)⟩HK

= ∑
i⟨f̃ ,Ψi(.)⟩HK

ϕi then ⟨f̃ , h∗
(.)⟩HK

∈ X.

For any p ∈ X, let’s remark that since ⟨hp, h(.)⟩X = ⟨∑
i(Ψi(p))∗ϕi,

∑
i(Ψi(.))∗ϕsi

⟩X =∑
i(Ψi(p))∗Ψi(.), then ⟨f̃(.), ⟨hp, h(.)⟩X⟩HK

= ⟨f̃ ,∑i(Ψi(p))∗Ψi(.)⟩HK
= ∑

i Ψi(p)⟨f̃ ,Ψi(.)⟩HK
,

and

⟨⟨f̃ , h∗
(.)⟩HK

, hp⟩X = ⟨
∑

i

⟨f̃ ,Ψi(.)⟩HK
ϕi, hp⟩X

= ⟨
∑

i

⟨f̃ ,Ψi(.)⟩HK
ϕi,

∑
i

(Ψi(p))∗ϕi⟩X

=
∑

i

⟨f̃ ,Ψi(.)⟩HK
Ψi(p).

Then, ⟨f̃(.), ⟨hp, h(.)⟩X⟩HK
= ⟨⟨f̃ , h∗

(.)⟩HK
, hp⟩X .

Using the assumptions and the equality above, we have:
f̃(p) = ⟨f̃(.), K(., p)⟩HK

= ⟨f̃(.), ⟨hp, h(.)⟩X⟩HK
= ⟨⟨f̃ , h∗

(.)⟩HK
, hp⟩X which

implies that:

(3.2) f̃ = L⟨f̃ , h∗
(.)⟩HK

, ∥f̃∥HK
≤ ∥⟨f̃ , h∗

(.)⟩HK
∥X .
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2) For f0 ∈ X, and using (3.1),

⟨f0, ⟨f̃ , h∗
(.)⟩HK

⟩X = ⟨f0,
∑

i

⟨f̃ ,Ψi(.)⟩HK
ϕi⟩X

=
∑

i

⟨f̃ ,Ψi(.)⟩∗
HK

⟨f0, ϕi⟩X .

We also have:

⟨f0, h(.)⟩X = ⟨
∑

i

⟨f0, ϕi⟩Xϕi, h(.)⟩X

= ⟨
∑

i

⟨f0, ϕi⟩Xϕi,
∑
i=1

(Ψi(p))∗ϕi⟩X

=
∑

i

⟨f0, ϕi⟩XΨi(.).

Then, ⟨⟨f0, h(.)⟩X , f̃⟩HK
= ∑

i⟨f0, ϕi⟩X⟨Ψi(.), f̃⟩HK
= ∑

i⟨f0, ϕi⟩X⟨f̃ ,Ψi(.)⟩∗
HK
.

We obtain finally:

(3.3) ⟨f0, ⟨f̃ , h∗
(.)⟩HK

⟩X = ⟨⟨f0, h(.)⟩X , f̃⟩HK
.

If f0 ∈ Ker(L) then we obtain ⟨f0, h(.)⟩X = L(f0)(.) = 0. We get in (3.3)
⟨f0, ⟨f̃ , h∗

(.)⟩HK
⟩X = 0 and ⟨f̃ , h∗

(.)⟩HK
∈ [Ker(L)]⊥.

If {hp, p ∈ X} is dense in X, then [Ker(L)]⊥ = X, which implies that L
is an isometry between [Ker(L)]⊥ and R(L), then there exists an unique
f ♯ ∈ [Ker(L)]⊥ such that, from (3.2):

f ♯ = L−1f̃ = ⟨f̃ , h∗
(.)⟩HK

and ∥f̃∥HK
= ∥f ♯∥X = ∥⟨f̃ , h∗

(.)⟩HK
∥X .

For the adjoint L∗ of the isometry L between [Ker(L)]⊥ and HK , we
have L∗ = L−1 hence, we obtain:

L−1f̃ = f ♯ =
∑

i

⟨f ♯, ϕi⟩Xϕi

=
∑

i

⟨f̃ , Lϕi⟩HK
ϕi

=
∑

i

⟨f̃ , ⟨ϕi, h(.)⟩X⟩HK
ϕi.

□

The following part of our main results presents the approximation theorems.
Consider the linear operator T : HK −→ X. If we assume that T is adjointable,

we consider its adjoint operator T ∗ and the following kernel:
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k(p, q) = (T ∗TK(., q), T ∗TK(., p))HK
on S × S.

Then, we have

Theorem 3.2. For φ ∈ X, there exists ζ̃ ∈ HK such that:

(3.4) inf
ζ∈HK

∥T (ζ) − φ∥X = ∥T (ζ̃) − φ∥X

if and only if, for the reproducing kernel space hk,

T ∗φ ∈ hk

Furthermore, if the existence of the best approximation ζ̃ is ensured, then there exists
an unique extremal function ζ̌ with the minimum norm in HK , and the function ζ̌ is
written in the form

(3.5) ζ̌(p) = (T ∗φ, T ∗TK(., p))hk
, p ∈ S.

Proof. For any ζ ∈ HK and using the reproducing kernel K(p, q) in HK , T ∗Tζ is
written in the form:

[T ∗Tζ](p) = (T ∗Tζ,K(., p))HK
= (ζ, T ∗TK(., p))HK

.

The range of T ∗T coincides with the reproducing kernel hk. Let P be the orthogo-
nal projection of HK onto (HK ⊖Ker(T ∗T ). Then, we have:

∥T ∗Tζ∥hk
= ∥Pζ∥HK

.

We assume that the best approximations ζ̃ satisfying (3.4) exist. Then, we have:

∥T (ζ̃) − φ∥X ≤ ∥φ0 − φ∥X

for all φ0 in R(T ). Hence, φ = T ζ̃ + φ
′ for some φ′ ∈ X ⊖R(T ). Since Ker(T ∗) =

X ⊖R(T ), T ∗T ζ̃ = T ∗φ, and we have T ∗φ ∈ hk.
Conversely, let ζ1 ∈ HK with T ∗Tζ1 = T ∗φ. We choose φ1 in R(T ) such that

∥φ1 − φ∥X ≤ ∥φ0 − φ∥X

for all φ0 in R(T ). Then, T ∗Tζ1 = T ∗φ1 and Tζ1 = φ1 because T ∗ is one-to-one on
R(T ). Hence, we have, from the previous inequality:

∥T (ζ1) − φ∥X = inf
ζ∈HK

∥T (ζ) − φ∥X .

By setting ζ̌ = Pζ1, we see that ζ̌ is a unique element in HK such that
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∥T (ζ̌) − φ∥X = inf
ζ∈HK

∥T (ζ) − φ∥X

and ζ̌ has the minimum norm in HK because the family of functions ζ1 satisfying
(3.4) is exactly ζ̌ +Ker(T ∗T ).

Finally, we shall derive the expression (3.5). Since T ∗T is an isometry of HK ⊖

Ker(T ∗T ) onto hk, its adjoint S is the inversion of T ∗T . Hence, we have

ζ̌(p) = [ST ∗l](p) = (ST ∗φ,K(., p))HK
= (T ∗φ, T ∗TK(., p))hk

.

□

For the next theorems, we assume that X is a Left-Hilbert A-module.

Theorem 3.3. Let h a Hilbert A-module X- valued function from an abstract set S
into a Hilbert A-module X. If for some {sj, j ∈ I} of S, {hsj

, j ∈ I} is a complete
orthonormal system in X, then for the RKHM HK admitting the reproducing kernel

K(p, q) = ⟨hq, hp⟩X with p, q ∈ S,

we have the sampling property

f̃(q) = ∑
j K(q, sj)f̃(sj) on X, for all f̃ ∈ HK .

Proof.

1) We know that f̃(q) = ⟨f(.), h(q)⟩X . Since h(q) = ∑
j⟨h(q), hsj

⟩Xhsj
,

f̃(q) = ⟨f(.), h(q)⟩X = ⟨f(.),
∑

j

⟨h(q), hsj
⟩Xhsj

⟩X

=
∑

j

⟨f(.), ⟨h(q), hsj
⟩Xhsj

⟩X

=
∑

j

⟨f(.), K(sj, q)hsj
⟩X

=
∑

j

(K(sj, q))∗⟨f(.), hsj
⟩X

=
∑

j

K(q, sj)⟨f(.), hsj
⟩X

=
∑

j

K(q, sj)f̃(sj).

□
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Theorem 3.4. For the Hilbert C∗−modules X, let J be a linear map on X with
values in A. Let h a Hilbert A-module X- valued function from an abstract set S
into a Hilbert A-module X. If for some {sj, j ∈ I} of S, {hsj

, j ∈ I} is a complete
orthonormal system in X, we have the following results.

1) Let x0 an element of X with the minimum norm such that

⟨x, hsj
⟩X = bj, j ∈ I

′ ⊂ I and for (X)′′ = {x ∈ X, ∥x∥X≤ B}.

Then,

∥Jx− Jx0∥≤ B
∑

I\I′ ∥Jhsj
∥

2) Let f̃ ∈ HK and consider some fixed {bj ∈ A, j ∈ I
′} such that I ′ ⊂ I where

EI′ (q) = ∑
I′ ⊂I K(q, sj)f̃(sj) is called the truncation error. we have:

∥EI′ (q)∥X≤ B
∑
I′ ⊂I

∥K(q, sj)∥.

for any f̃ ∈ (HK)′′ where (HK)′′ = {f̃ ∈ HK ; ∥f̃∥HK
≤ B}.

Proof. 1) Let x be an element of X, x = ∑
j∈I hsj

⟨x, hsj
⟩X = ∑

j∈I′ hsj
bj +∑

j∈I\I′ hsj
⟨x, hsj

⟩X , we have x0 = ∑
j∈I′ hsj

bj hence, x−x0 = ∑
j∈I\I′ hsj

⟨x, hsj
⟩X

and, Jx− Jx0 = ∑
j∈I\I′ J(hsj

)⟨x, hsj
⟩X .

∥Jx− Jx0∥= ∥
∑

j∈I\I′
J(hsj

)⟨x, hsj
⟩X∥ ≤

∑
j∈I\I′

∥J(hsj
).⟨x, hsj

⟩X∥

≤
∑

j∈I\I′
∥J(hsj

)∥∥⟨x, hsj
⟩∥X .

≤
∑

j∈I\I′
∥J(hsj

)∥∥x∥X∥hsj
∥X

≤ B
∑

j∈I\I′
∥J(hsj

)∥∥hsj
∥X

≤ B
∑

j∈I\I′
∥J(hsj

)∥.

and we have the desired result.
2) Let’s put:

X = HK , (X)′′ = (HK)′′, J(x) = f̃(q),

and bj = f̃(sj) = ⟨f̃(.), K(., sj)⟩HK
Then, J(x0) = f̃0(q) = ∑

I′ K(q, sj)f̃(sj)
and J(x) = f̃(q) = ∑

j∈I K(q, sj)f̃(sj).
We thus obtain 2) from 1).
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□
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