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ON LINEAR TRANSFORMATION OF REPRODUCING KERNEL HILBERT
C*—MODULES

Anoh Yannick Kraidi

ABSTRACT. In this paper, we investigate the reproducing kernel theory in the
framework of Hilbert C*— modules and the linear transformation of Hilbert C*—
modules. We give an analog of the inversion formula and the theorems of approx-
imation in a reproducing kernel space.

1. INTRODUCTION

Reproducing kernel originated with the works of S. Bergman and S.Szego (See
[[3,16]). The theory has been developed by Nachman Aronszajn and plays a very
important role in mathematics. We can deduce from that many applications in
many fields like Deep and machine learning, statistics, signal processing, quantum
mechanics, interpolation. Let £ be any set. A reproducing kernel Hilbert space
(RKHS) H on E is a Hilbert space of functions on E for which point evaluations
are continuous. The point evaluation functional is defined on H defined by: for
allz e E,
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Thanks to Riesz-Fréchet theorem, we can deduce the existence of a kernel K :
E x E — C such that for all x € E,

f(z)=(f,K(.,x))n, forall f € H.

Nachman Aronszajn [2] established the fundamental correspondence between
RKHSs and positive definite kernels: each positive definite kernel defines a unique
RKHS, and each RKHS admits a unique reproducing kernel. RKHSs now play
a central role in analysis and its applications, particularly in machine learning,
statistics, signal processing, and quantum mechanics. Many examples of repro-
ducing kernel Hilbert spaces can be found in ( [1,5,12,(15]). The theory has since
been generalized in several directions. Indeed, a generalization of RKHS to non-
Hilbert spaces has been proposed in Canu et al. (see [4]). In 2009, Haizhang
Zhang, Yuesheng Xu and Jun Zhang in (see [18]]) extended the theory of RKHS on
Banach spaces with many applications in machine learning. Naimark (see [17])
introduced a reprodcing kernel space using a kernel defined on a group with many
applications in probability, harmonic analysis. In [10,11]], our works presented an
extension of the theory of RKHS to the Cartan sub-algebra of a semi-simple Lie
algebra. Among all those spaces, we have Hilbert C*—modules. In fact, they are
natural generalization of Hilbert spaces. Indeed in [8]], Murphy introduced repro-
ducing kernel Hilbert modules (RKHM) and explored relationships between posi-
tive definite kernels and Hilbert C*—modules. In 2008, Jaeseong Heo in (see [9])
also worked in reproducing kernel Hilbert C*-modules. He discussed about repro-
ducing kernels whose ranges are contained in a C*-algebra and gave reproducing
Hilbert C*-modules associated with the kernels, and he showed that reproducing
kernels whose ranges are contained in Hilbert C*-modules can be expressed in
terms of operators on Hilbert C*-modules using representations on Hilbert C*-
modules. More details about C*-algebra can be found in [|6,7]]. The ongoing trend
is to extend results from RKHSs to RKHMs. Motivated by this, the present paper
investigates linear transformations in the setting of Hilbert C*-modules. In partic-
ular, we establish analogues in RKHMs of the inversion formula for linear trans-
formations and of the approximation theorem introduced by S. Saitoh ( [14}/15]),
and we study some of their structural properties. The paper is organized as fol-
lows. Section 2 introduces the necessary preliminaries and definitions, Section 3
presents our main results.
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2. PRELIMINARIES AND DEFINITIONS

Definition 2.1. (See [|13|]) Let A be a C*-algebra. A right A-module X is called a
(right) pre-Hilbert A-module if there is an A-valued mapping

()X x X — A

which is sesquilinear and satisfies the following properties:

(1) (z,x) >0 forany z € X;

(2) (x,z) = 0 implies v = 0;

(3 (z,y) = (y,x)" forany z,y € X;

(4) (z,ya) = (x,y)a forany x,y € X and a € A.

Let X be a pre-Hilbert .A-module, z € X. We set
1
]l x = [ (2, 2)[]>.

Proposition 2.1. (See [13]) The function ||.||x is a norm on X and satisfies the
following properties:
D) ||z.alx < ||z.||x]|la| for any x € X, a € A;
i) (z,y)(y,z) < ||yll%(x,z) for any z,y € X;
i) [[(z, )| < [l=llx||ylx for any z,y € X.

Definition 2.2. (see [13|]) A pre-Hilbert A-module X is called a Hilbert C*-module if
it is complete with respect to the norm ||.|| x.

We now recall some important facts concerning operators on Hilbert modules.
Let M, N be Hilbert C*-modules over a C* algebra A. A bounded C-linear A-
homomorphism from M to N is called an operator from M to N. Let Hom 4(M, N)
denote the set of all operators from M to . Let T € Hom (M, N'), we say that
T is adjointable if there exixts an operator T* € Hom (N, M) such that:

(x,Ty) = (T*x,y) forallx € M,y € N.
Lemma 2.1. (See [13]). Let M be a Hilbert A-module and let T : M — M and
T : M — M be maps such that

(x,Ty) = (T*x,y) forallz € M,y € N.

Then, T is a bounded C-linear A-homomorphism (and T* as well).
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After we defined the basics concerning a Hilbert C*-module for our work, we
discuss the structure of reproducing kernel in such a space.

Let S and A denote a nonempty set and a C*-algebra, respectively. We denote by
X a self-dual Hilbert .A-module of .A-valued functions on S such that each valuation
Y+ 1(s) is continuous and linear. Then, for each s € S and i) € X, there exists an
element ¢, € X such that ¥(s) = (¢s,v). The corresponding reproducing kernel
K :S xS+~ Ais given by

K(Sat) = (¢57¢t)'

Definition 2.3. (see [9)]) A kernel K : S x S — A is positive definite if for every
n € Nand sy,..,s, € Sand by, ...,b, € A, the sum

n

ii=1 7 K (54, 55)b; is positive in A.

Proposition 2.2. (see [9|]) Under the consideration of the notations from the above
definition, the kernel K verifies:

- The kernel K is positive definite.

- For each s € S, K(s, s) is a positive element in A.

- Forall s,t €S, ||[K(s,t||> < || K(s,s|||K(t,t]

- The set {¢s : s € S}: generates X as a Hilbert A-module.

Theorem 2.1. (see [9]) If a kernel K : S x S — A is positive definite, then
there exists a Hilbert A-module X of A-valued functions on S such that K is the
reproducing kernel of X.

This theorem will lead us to introduce the basic points concerning a linear trans-
formation of reproducing kernel Hilbert C*— modules.

Let’s consider X a Hilbert .A-module with the scalar product (.,.) x which is the
A-valued mapping defined on S x S, F(S) the set of .4-valued functions defined
on S, h a function on S with values in X defined by h(p) = h,, L the map defined

by:

L:X — F(9)
_

f = Lf

with

f(p) = (Lf)(p) = (f hp)x-
Let’s consider the kernel K defined by:
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K(p,q) = (hq,hy)x = L(hg)(p) for all p,q € S.

Let R(L) be the range of L. We introduce an inner product in R(L) induced by
the norm:

1l ree) =inf{[| fllzrs f = Lf}.

Theorem 2.2. (see [15]], p.21) If we consider the kernel K defined above, the space
(R(L),(.,.)n) is a Hilbert space satisfying the following properties:

1. Forall g € E, K(p,q) € R(L) as a function in p.

2. For all f € R(L) and for all q € E, we have

fN = <f~7 K(7p)>R(L)
Note that, the mapping L is an isometry if and only if {h,,p € E} is complete in H.

From this theorem, we see that the range of the linear transform is a reproducing
kernel space that will be denoted by Hx and the theorem still holds in the case of
Hilbert C*— modules. that is, the range of a linear transform defined on a Hilbert
C*— module with values in F(5) is a reproducing kernel Hilbert C*— module. The
proof is parallel to the one on the previous theorem.

3. MAIN RESULTS

In this first part of our main results, we present the inversion formula.

Let us consider X the Hilbert .A-module with the scalar product (., .)x, F(S) the
set of A-valued functions defined on S, h a function on S with values in X defined
by h(p) = h,, L the map defined by:

L:X — F(9)
f = Lf=f.

with

f(p) = (LF)(p) = {f; hp)x-
For the Hilbert .4-module, let L be a linear map from X into F(S), h the map
from S into X defined by h(p) = h, forall p € S.

Theorem 3.1. Let {¢;} be a complete orthonormal system of a the Hilbert A-module
X and suppose that L defined like above is an adjointable mapping between the A-
modules X and Hy, f € Hy and V,(p) = (¢4, hy) x,. Then,
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1) For p,q € S, K(p,q) = >; Vi(p)(¥;(¢))* which is convergent in S x S and

I e < ICF BT il x-
2) Furthermore, if {h,,p € S} is dense in X then,

H.fHHK =

I1(f, h{))u|lx and there exists an unique f*in X such that:

fﬁ = <f7 hz)>HK = Zz<f()> <¢Za h(')>X>HK¢3i‘

Proof. 1) Let’s consider p, ¢ € S. We have (K, ¥;)u, = (¥, K,)5;, = (Vi(p))"
Hence, from the Parseval identity:

If U,(p) =

K(p,q) = (K, = (K. < {p, Uit
=1
=1
<¢z7 >X’ then h - < p7¢i>X¢i = z(\pz(p»*qbz Hence’ by

setting b’ = I, Wi(p)¢,,, we have

(3.1)

For f

=3 wi()o

€ Hi, (f, By e = il Wil ) mye 0 then (f, 17 )u, € X

For any p € X, let’s remark that since (h,,, h())x = (Z ( (D)0, > (Wi(L)) bs,)

Si(Wi(p)*Wi(-), then (F(), (hy, hey)xc e = (F, Si(Wap) Wil D = 5 Walp)(f, 0

and

<<f h()>HK7h > = <Z<f7 \Iji(')>HK¢ivhp>X

= <Z<f’ Wi(Nugedis ) (Wi(p) di) x

%

_ Z(f, () Ui(p).

Then’ <f()7 <hp7 h(-)>X> <<f h >HK7 >X‘

Using the assumptions and the equahty above, we have:

flp) =

FOECPe = (FO, (b b)) xme = (F 7)), hp)x which

implies that:

(3.2)

F =L R e 1 e < 1O Py il



2)

(3.3)
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For fy, € X, and using (3.1)),
(fo, (F 1y )me)x = <fo7z<f Wi()) ki) x
= Z f \Ij HK f07¢7,>

We also have:

(fo,hey)x = <Z<f07 bi) x Dis h)) x
<Z<f0a¢z>X¢mZ( ( ))*¢1>X

=1

= Z fo, 0i) x Vi (.).

Then: <<f07 h(-)>X7 f)HK = Zi(an ¢Z>X<\Ij2()7 -]E:>HK = Zz <f07 ¢Z>X<f7 WZ()>EK
We obtain finally:

(for (F b1 x = ((fo b)) xo Fine-

If fo € Ker(L) then we obtain (fo, h())x = L(fo)(.) = 0. We get in (3.3)
(fo, (f By )hue) x = 0 and (f, by))u, € [Ker(L)*.

If {h,,p € X} is dense in X, then [Ker(L)]* = X, which implies that L
is an isometry between [Ker(L)|* and R(L)
f* € [Ker(L)]* such that, from (3.2)):

fo=L7f = (F 0y and (| fllie = 1Fx = 11(F A7) il x-
For the adjoint L* of the isometry L between [Ker(L)|* and Hg, we
have L* = L~! hence, we obtain:

L' f=f= Z<fﬁa¢i>X¢i
Z ¢Za >HK¢’L

, then there exists an unique

The following part of our main results presents the approximation theorems.
Consider the linear operator T : Hx — X. If we assume that T is adjointable,
we consider its adjoint operator 7* and the following kernel:
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k(p,q) = (T"TK(.,q), T*TK(.,p))u, on S x S.

Then, we have
Theorem 3.2. For ¢ € X, there exists ( € Hy such that:

(3.4) inf | T(¢) — ellx = IT(C) — ¢llx

(eHk
if and only if, for the reproducing kernel space hy,
T*p € hy
Furthermore, if the existence of the best approximation ¢ is ensured, then there exists

an unique extremal function ¢ with the minimum norm in Hy, and the function ¢ is
written in the form

v

(3.5) C(p) = (T"p, T"TK(.,p))n,,p € S.

Proof. For any ¢ € Hy and using the reproducing kernel K (p,q) in Hg, T*T( is
written in the form:

[T*Td (p) = (T*TC7 K<'7p))HK - (Cv T*TK(vp))HK

The range of T*T coincides with the reproducing kernel h;. Let P be the orthogo-
nal projection of Hx onto (Hx © Ker(T*T). Then, we have:

[T T = [1PC e
We assume that the best approximations  satisfying (3.4) exist. Then, we have:

IT(0) = ellx < llvo — #llx

for all ¢, in R(T'). Hence, ¢ = T + ¢ for some ¢ € X © R(T). Since Ker(T*) =
X © R(T), T*T¢ = T*¢, and we have T*y € h,.
Conversely, let (; € Hyg with T*T'¢(; = T*¢. We choose ¢; in R(T') such that

lor — ellx < |lwo — @llx

for all g in R(T'). Then, T*T'(; = T*¢, and T'(; = ¢ because T is one-to-one on
R(T). Hence, we have, from the previous inequality:

I7() — ellx = inf I7(0) —

By setting ( = P(;, we see that ¢ is a unique element in Hy such that
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T(¢) - = inf ||T(¢) —
IT(C) = ¢llx = mmf [IT(C) — ¢llx

and ¢ has the minimum norm in Hy because the family of functions ¢; satisfying

(3.4) is exactly { + Ker(T*T).

Finally, we shall derive the expression (3.5). Since 7*T is an isometry of Hx ©
Ker(T*T) onto hy, its adjoint S is the inversion of 7*T'. Hence, we have

C(p) = [ST*U(p) = (ST*¢, K (.. p))uye = (T, T*TK (., )1y

For the next theorems, we assume that X is a Left-Hilbert .A-module.

Theorem 3.3. Let h a Hilbert A-module X- valued function from an abstract set S
into a Hilbert A-module X. If for some {s;,j € I} of S, {hs,,j € I} is a complete
orthonormal system in X, then for the RKHM Hy admitting the reproducing kernel

K(p,q) = (hg, hy) x with p,q € 5,
we have the sampling property
fla) = X K(q.5))f(s;) on X, for all f € Hy.
Proof.
1) We know that f(q) = (f(.), h(q))x. Since h(q) = X;(h(q), hs,) xhs,,
Fl@) = (f(). @) x = (F(), D (P(a), hs,) xhs; ) x
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Theorem 3.4. For the Hilbert C*—modules X, let J be a linear map on X with
values in A. Let h a Hilbert A-module X- valued function from an abstract set S
into a Hilbert A-module X. If for some {s;,j € I} of S, {hs,,j € I} is a complete
orthonormal system in X, we have the following results.
1) Let xy an element of X with the minimum norm such that
(2, hs;)x =b;,j €I CIandfor (X)"={z € X, |z||x< B}.
Then,
[Tz = Jwol| < BX [ Ths, |
2) Let f € Hy and consider some fixed {b; € A,j € I'} such that I' C I where
Ep(q) = Xy, K(q,85)f(s;) is called the truncation error. we have:

IE/ (@)llx< BY_ [1K(q,55)-

I'cl
for any f € (Hg)" where (Hi)" = {f € Hg; || f||lu, < B}.

Proof. 1) Let x be an element of X, x = ¥ ;c; hy, (2, hs)x = ey hs;bj +
Yjent hs; (T, hs;) x, wehave xg = 35, hy;b; hence, v—xo = 35 p hs; (@, s ) x
and, Jo — Jro = Xjenr J(hg, ) (@, hs;) x

|Ja = Jaoll= || S T, h)xl < 3 TGk, (e, b)) x|
jenr’ jenr’
< > )M, b))l x -
jel\I’
< Y T (hs) Nl x s, x
jenr
< B Y [T (hs)lllhs, ] x
jel\I’
< B Y [[J(hs)ll-
jenr
and we have the desired result.
2) Let’s put:
X HK?(X>//: (HK)/lv‘](x) :f(

q),
and b; = f(sz) =(f(), K(, sj))u, Then, J(zo) = fola) = X1 K(q, ) (s;)

and J(z) = f(q) = Xjer K(q,85) f(55)-
We thus obtain 2) from 1).
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