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ON A SPECIAL HILBERT-TYPE INTEGRAL INEQUALITY DEMONSTRATED
VIA A HYPERBOLIC TANGENT CHANGE OF VARIABLES

Christophe Chesneau

ABSTRACT. This article introduces a new Hilbert-type integral inequality that is
defined on the unit square and involves a singular integrand. A sharp upper
bound is established using a change of variables based on the hyperbolic tangent
function. As with classical Hilbert-type integral inequalities, the constant factor =
arises naturally. Furthermore, other inequalities are derived from the main result,
including a new cosine-Hilbert-type integral inequality.

1. INTRODUCTION

The Hilbert integral inequality is a classical and fundamental result in analysis.
Its usual formulation can be stated as follows. Let f,g : (0,4+00) — (0,+00) be
two functions. Then we have

400 400 f(x)g(y) +o0 ) 1/2 400 ) 1/2
(1.1 /0 i x—wdxdy§w< i f (:v)dx) (/0 g (y)dy> ,

provided that the two integrals on the right-hand side converge. The constant
factor 7 is optimal and cannot be replaced by a smaller value. The Hilbert integral
inequality has deep connections to operator theory, harmonic analysis, and the
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theory of special functions. For further details, we refer the reader to the books
[[4,9,11,12], the comprehensive survey [1]], and the key papers [2,5-8,(10].

A less well-known but related integral inequality is as follows. Let f, g : (0, +00)
— (0,400) be two functions. Then we have

+oo ptoo +oo 1/2 +oo 1/2
(1.2) /0 i %dwdy§w<o fZ(l’)dx) (/0 gQ(y)dy> :

provided that the two integrals on the right-hand side converge. See [12, Theorem
2.2 with p = 2]. It is also proved that the constant factor  is optimal. This result
is interesting because it provides a counterpart to the classical Hilbert integral
inequality, where the integrand depends on 1/(1 + xy). This demonstrates the
flexibility of Hilbert-type integral inequalities in handling different mathematical
scenarios. Furthermore, it has applications in operator theory, harmonic analysis
and related fields, where such integral operators arise naturally.

In this article, we continue the study of Hilbert-type integral inequalities, in-
troducing a new variation in the definition of the central double integral. More
precisely, we rigorously prove the following. Let f,¢g : (0,1) — (0,4+0c0) be two

functions. Then we have
1/2

[ [ 2020 0y < ([ ) ([ eom)

provided that the two integrals on the right-hand side converge. Here, the double
integral is defined on the unit square, and the integrand depends on 1/(1 — zy),
which is singular at (z,y) = (1, 1). This modification distinguishes the result from
the classical Hilbert-type integral inequalities. The proof also exhibits a degree of
originality, relying on a change of variables using the hyperbolic tangent function,
the Cauchy-Schwarz integral inequality, and a specific integral formula involving
the hyperbolic cosine function. Based on this new result, we also derive an asso-
ciated integral inequality depending on a single function. Further applications in-
clude deriving a series inequality and a new Hilbert-type integral inequality based
on the cosine function.

The remainder of the article is organized as follows. The main theorem is de-
veloped in the next section. Applications are given in Section [3| A conclusion is
presented in Section
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2. MAIN THEOREM

The formal statement of our main result is given in the following theorem,
alongside its detailed proof.

Theorem 2.1. Let f,g: (0,1) — (0,+00) be two functions. Then we have

/01 /01 %dmg < (/01 fQ(x)dx) " (/01g2(y)dy) 1/2,

provided that the two integrals on the right-hand side converge.

1 —/ / fl—xy dxdy.

We note that, for any =,y € (0,1),

Proof. First, let us set

1 >0
1—ay —
Furthermore, we recall that, for any z € R,
e —e’* e“+e”* 1
tanhz = ——, coshz:+—, sech z = .
e +e* 2 cosh z

Considering the hyperbolic tangent change of variables
r =tanhu, y = tanhw,

with x = 0 when v = 0, x — 1 when u — 400, y = 0 when v = 0, y — 1 when
v — 400, and the derivatives

dr = sech® udu, dy = sech® vdw,
we can write

sech? u sech? vdudv.

/+oo /+°°f (tanh u)g(tanhv)

1 — tanhutanh v

Let us now simplify the corresponding integrand. Using the hyperbolic identity
1 — tanh u tanh v = cosh(u — v) sech usech v,

we have

1 9 9 sech u sech v
sech” usech®v = ————.
1 — tanhutanhv cosh(u — v)
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Hence, the integral becomes

I /+oo +°0 f(tanh u)g(tanh v) sech u sech v
cosh(u — )

+oo +oo
/ / Jo(w)9o dudv
cosh(u — v)

fo(u) := f(tanhu)sechwu, g.(v) := g(tanhv)sechv.

dudv

where

Noticing that, for any u,v € R, cosh(u — v) > 0, the Cauchy-Schwarz integral
inequality gives

+oo “+oo
I = / / - 2 X lg 02(1)) dudv
cosh / —v)  cosh'?(u—wv)

(2.1) < JV2RV?

where

+oo  p+4o00 f2 +oo  p+too 2
J = / / ——————dudv, K := / / ———————dudv.
cosh(u — v) cosh (u— v)

Applying the Fubini-Tonelli integral theorem, we get

1= ) s

Performing the change of variables w = v — u, dw = dv, and using the known

00 1
d pu—
/Oo cosh(x) =T
(see [3, 3.511 1]), we have

+o00 1 +00 1 400 1
/ —_— dv = / dw < / dw = 7.
o cosh(u —v) _. coshw e COshw

This and the change of variables x = tanh u give

integral formula

+o00 +o00 1
(2.2) J<7 fo(u)du == f*(tanh u) sech® udu = 7T/ f(z)dx
0 0 0
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Proceeding in a similar way (with the change of variables y = tanh v), we obtain

K= (L e o

—+o00 1
(2.3) < w/ gs(v)dv = 7?/ 9°(y)dy.
0 0
It follows from Equations (2.1)), (2.2)) and (2.3) that

I< (w /01 f2(93)d93) " (W /01 gQ(y)dy) "

1/2

— (/01 fQ(x)dx> " (/Ong(y)dy) :
/ / fla dajdy<7r(/ a dm)1/2 (/Ong(y)dy)

This completes the proof. O

so that
1/2

To the best of our knowledge, this is the first time that this particular integral
inequality has been established. In a sense, it complements Equations and
(1.2), yielding the same upper bound for a fundamentally different double inte-
gral. The proof is also innovative, notably in its use of the hyperbolic tangent
function. The optimality of the constant factor 7 is not addressed here, leaving an
avenue for future work, as discussed in Section

3. APPLICATIONS

3.1. Secondary theorem. The formal statement of our secondary result is given
in the following theorem, with the detailed proof provided thereafter.

Theorem 3.1. Let f : (0,1) — (0,400) be a function. Then we have

/01 ( 01 %dxydy <7 /01 fA(x)dx

provided that the integral on the right-hand side converges.

_ ([ f@ l,)
L.—/O (o 1—:Eyd dy.

Proof. Let us set
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By the Fubini-Tonelli integral theorem, we can write
1 1 1
L:/ ( f (=) dw)( f (=) dx)dy
o 1— xy 0o 1—ay
"
(3.1 dxdy,
1 — a:y

where

gi(y) = ) 1f_(:1;)yd

Applying Theorem [2.1] to the functions f and g;:, we obtain

0 [ [0y ([ ) ([ swm)

We have

1 1 1 2
(3.3) /ng(y)dy:/o (0 1f_(92ydx> dy = L.

It follows from Equations (3.1)), (3.2)) and (3.3) that

1 1/2
L<r ( fQ({L’)diL’) L2,
0

L<n /01 S (x)dx
/01 ( 01 1f_(?ydx>2 dy < /0 P

This concludes the proof. O

This simplifies to

so that

This result has important applications in operator theory. More precisely, it
establishes the boundedness of the integral operator

()= [ L

11—y

0

as a mapping from L?(0,1) to L?(0,1). This property can be useful for studying
spectral properties, estimating the norms of related operators, and analyzing inte-
gral equations in applied and theoretical contexts.
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3.2. A proposition. We present another elegant consequence of Theorem in
the following proposition. It involves a series and an integral.

Proposition 3.1. Let f : (0,1) — (0,+00) be a function. Then we have

f (/Olw’“f(x)dx)2 < w/ol f(z)da

k=0

provided that the integral on the right-hand side converges.

Proof. Applying Theorem [2.1]with g = f, we obtain

/01 /o1 %dﬁdy < (/01 f2($)dx) 12 (/01 f2(y)dy) 1/2
(3.4) . /01 .

Let us now work on the double integral. Since z,y € (0,1), the geometric series
expansion and the uniform convergence give

[ 2 [ [ i ot
*“//
([ (o
([ enom)

It follows from Equations (3.4) and (3.5] - ) that

f (/01 :v’“f(:c)d:c)2 < w/ol f2(x)dx

k=0

(3.5) =

?TM* Mz

This ends the proof. O

This inequality is interesting because it gives a sharp bound on the sum of all
moments of a function. This has applications in analysis, operator theory, and
understanding the structure of functions through their moments.



332 Christophe Chesneau

3.3. Another proposition. To conclude this section, the following proposition
presents a new Hilbert-type integral inequality involving the cosine function. This
is also a non-trivial consequence of Theorem

Proposition 3.2. Let f,g: (0,7/4) — (0, +00) be two functions. Then we have

/;/4 /OW/4 %dmdy <7 </07r/4 fQ(I)dI> " </O7r/4 g2(y)dy> 1/2,

provided that the two integrals on the right-hand side converge.

Proof. First, let us set

We note that, for any =,y € (0,7/4),

1

cos(z +y) — 0

Considering the arctangent change of variables
r = arctanu, Yy = arctanuv,

with 2 = 0 when v = 0, x = 7/4 when v = 1, y = 0 when v = 0, y = 7/4 when
v = 1, and the derivatives

we can write

M / / f(arctan u)g(arctan v) 1 dudo.
cos(arctan u + arctan v) (1 4+ u?)(1 + v?)

Let us now simplify the corresponding integrand. Using the trigonometric identity
1 —wv
VI u) (I +0?)

cos(arctan u + arctanv) =

we have
1 1 1

cos(arctan u + arctanv) (1 + u2)(1 +v2) (1 —ww)/(I+u2) (1 +0?)
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Hence, the integral becomes

t t
M= / / (arctan u)g(arctan v)

(1 —uw)y/ 1—|—u2)(1+02)

(3.6) / / falu dudv
1—uv

where

_ [flarctanw) _ glarctanv)
fot) =" W= A

It follows from Theorem that

(3.7) //fﬁl_m) ddv<7r(/ 2 (u du)l/z(/olgi(v)mJ)

The change of variables © = arctan u gives

! f2 arctanu
2 (
(3.8) | i / faninrl / ISE

Proceeding in a similar way (with the change of variables y = arctan v), we obtain

1 1 /4
(3.9) /Ogi(v)dvz/o Mdv:/ﬂ 9*(y)dy.

1+ 02
It follows from Equations (3.6), (3.7), (3.8) and (3.9) that

M<n ( / . fQ(w)dw) N ( / . 92(y)dy> -
so that
/;/4 /;/4 %dmdy <7 </07r/4 fz(x)da:> " </07T/4 gQ(y)dy> 1/2.

This completes the proof. O

1/2

To the best of our knowledge, this is the first time that a Hilbert-type integral
inequality with a cosine ratio feature has been established. This opens the door to
further generalization and applications in harmonic analysis.
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4. CONCLUSION

In this article, we have contributed to the theory of Hilbert-type integral in-
equalities by introducing a new variation. The main features of this result are the
double integral defined over the unit square and the singular integrand depend-
ing on 1/(1 — xy). The obtained upper bound coincides with that of the classical
Hilbert integral inequality. Our proof techniques, which are based on the hyper-
bolic tangent function, are also original and may inspire further developments in
this area. The applicability of this result has been demonstrated in various ways.

Possible directions for future work include establishing the optimality of the ob-
tained constant factor, extending the inequality to the L? setting, and generalizing
it to higher-dimensional domains.
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