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ON SEVERAL NEW CONVEX INTEGRAL THEOREMS
Christophe Chesneau

ABSTRACT. This article presents several fundamental theorems relating to con-
vex integral inequalities. Each theorem has the potential to serve as a valuable
intermediary tool in a wide range of analytical applications. The two main cate-
gories of results considered are convex simple integral theorems, involving single
integrals, and convex double integral theorems, based on double integrals. Full,
detailed proofs are provided that are designed to be easily reproducible, requir-
ing only minimal preliminary knowledge. Comprehensive examples illustrate the
theory.

1. INTRODUCTION

Convexity plays a key role in mathematical analysis and optimization, forming
the basis of many significant inequality results. For the sake of completeness, the
formal definition of a convex function is provided below.

Definition 1.1. Let a,b € R U {fo00} with b > a. A function ¢ : [a,b] — R is said

to be convex on [a,b] if, for any x,y € [a,b] and )\ € [0, 1], the following inequality
holds:

(1.1) A+ (1= Ny) < Ap(z) + (1= Np(y).

If the inequality is reversed, f is called concave on |a, b].
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Geometrically, the graph of a convex function lies below the straight line seg-
ment joining any two points on its curve. Many classical inequalities, including the
Jensen and Hermite-Hadamard integral inequalities, fundamentally rely on the
convexity property of functions. Consequently, studying convex integral inequali-
ties provides valuable insight into the structure and behavior of convex functions
and their associated integral means. For comprehensive discussions and important
references related to convex functions and inequalities, see [1-12].

This article presents and derives several theorems concerning convex integral
inequalities. Seven such theorems are established in total, each of which has the
potential to serve as a valuable intermediary tool in a wide range of analytical
applications. The convex simple integral theorems are distinguished from the con-
vex double integral theorems based on whether they use single or double integrals.
Some of the obtained convex double integral theorems are related with the Hardy-
Hilbert-type integral inequalities. See [[13]]. The proofs are presented in full detail
and are designed to be easily reproducible, requiring only basic prior knowledge.
Examples of basic exponential and power convex functions are given to illustrate
the theory.

The remainder of this article is organized as follows: Section |2 presents the
convex simple integral theorems, while Section [3|is devoted to the convex double
integral theorems. Section 4{ provides concluding remarks.

2. SIMPLE INTEGRAL THEOREMS

This section contains four convex simple integral theorems, each with distinct
features.

2.1. First theorem. The first convex simple integral theorem is given below.

Theorem 2.1. Let ¢ : [0,1] — [0, 00) be a convex function. Then we have

/ (1 - 2)pla)da > 1 / a(—a)de > L (%) |

Proof. Making the change of variablesy =1 —z, y € (0,1), we get
1

/0 (1 —2z)p(x)dr = /o yp(1—y)dy = | zp(1 — z)dz.

0
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Therefore, we have

/01(1 —x)p(x)dr = % (/01(1 — x)p(z)dx + /01(1 — J})Q@(;p)dx)

:% (/01(1 — o)pl)dr + /01 2ol — x)dx)

(2.1) :%/0 (1 —2)p(x) +xp(l — x))dz.

For any x € |0, 1], the convexity of ¢ on [0, 1], especially the basic convexity in-
equality with A = x, implies that

(1 —z)p(x) +xp(l —x) = p(e(l —2) + 2(1 —2)) = ¢ (22(1 - 2)).
Therefore, we have

3| (0= ael) +apt—a)de =5 [ oe1-m)an

Combining this with equation (2.1]), we get

/0 (1—2)p(x)dx > %/0 ¢ (2x(1 — x)) dz.

The first inequality is demonstrated.
By the Jensen integral inequality for the convex function ¢ and the probability
measure 1y ;)(x)dx, where 1 denotes the indicator function, we obtain

%/Olgp(zxu—x))dxz%¢</012x(1—x)dx) =3 (%)

This concludes the proof. O

Clearly; if ¢ is concave instead of convex, the two inequalities are reversed.
As an example of Theorem let us consider the convex function p(z) = e™*.
Then we have

1 1 1 1 1
0.367 ~ e = / (1 —2)p(r)dr > 5/ ©(22(1 — z))dx = 5/ e~ 2=y
0 0 0

and

1/1 —2e(1-z) g 1/1 (2z(1 — z))d > Lo (L L1 0.358
— e xr = — a — T ua — — = —€ ~ U. .
2/, 2, 7 =2¥\3) " 2
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We therefore derive simple lower and upper bounds for the complex integral
[ e2*(0=2)dz.. These bounds are relatively sharp.

2.2. Second theorem. The theorem below completes Theorem [2.1]by considering
fol x(x)dx instead of fol(l — z)p(z)dr.

Theorem 2.2. Let ¢ : [0,1] — [0, 00) be a convex function. Then we have

/01 zp(z)de > %/01 p(a® + (1 —2)*)dw > %so (;) :

Proof. Making the change of variablesy =1 —z, y € (0,1), we get

/01 rp(x)de = /01(1 —y)p(l —y)dy = /01(1 — 2)p(1 — z)dx.

Therefore, we have

/lx () = (/lego(x)dx + /01 :mp(x)dx)
(/ 2)dz + /1(1 (1 — x)dx)

(2.2) 5/0 (xp(x) + (1 —2)p(l —x)) dz.

For any z € [0, 1], the convexity of ¢ on [0, 1] gives

wp(@) + (1= 2)p(1— ) > p (@ x a+ (L—2) x (1-2)) = ¢ (2> + (1 - 2)%)
Therefore, we have

1

5/0 (xp(z) + (1 —2)p(l —x))dx > %/0 © (;ﬁ + (1 - g;)2) dr.

Combining this with equation (2.2]), we get

/01 vp(x)dr > %/01 ¢ (2 + (1 —2)?) du.

The first inequality is shown.
By the Jensen integral inequality for the convex function ¢ and the probability
measure 1y qj(x)dx, we find that

%/Olgo(ﬁ—l—(l—x)?)dazz%gp(/ol(w2+(1—x)2)d:1:):%gp(g).
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This ends the proof. O

Clearly; if ¢ is concave instead of convex, the two inequalities are reversed.
As an example of Theorem let us consider the convex function p(z) = e™*.
Then we have

1 1 1 1 1
T
0 2 Jo 2 Jo
and
1 [ e 2 1 [ 1 /2\ 1
5| e de = 24 (1—a)?)de> s (5] = e ¥? ~0.256.
2/06 T 2/0g0(517 +( x))m_2¢(3) 5¢

We can therefore derive simple lower and upper bounds for the complicated inte-
gral [ e**~(=’dz. These bounds are relatively sharp.

2.3. Third theorem. The third convex simple integral theorem is given below.

Theorem 2.3. Let ¢ : [0,00) — [0,00) be a convex function with ¢(0) = 0, and
f:10,1] — [0, 00) be a function such that

/ (L= 0 (1)) dt < oc.

For any z € [0, 1], we define

F(z) = /0 F(t)dt.
Then

| eanas < [[a-op ()
0 0
Proof. For any x € (0, 1], we set
1 [ 1
- 5/0 F(t)dt = F().

Then F(z) = xm,. Since ¢ is convex on [0,00) and ¢(0) = 0, we have, for any
rel0,1]]andu >0

plru) = o ((1—2) x 0+ 2 xu) < (1-2)p(0) +zp(u) = xp(u).
Applying this with © = m, gives

(2.3) o (F(x) = plem,) < zp(m.,).
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By the Jensen integral inequality for the convex function ¢ and the probability
measure (1/x)1j4(t)dt, we obtain

dm) = (3 [ rwae) < [Couwyan

Combining this with equation (2.3]), we find that

¢ (F(x)) < /:@(f(t))dt.

Integrating in x over [0, 1] and using the Fubini-Tonelli integral theorem, we get

/ d:v</ / dtdx—/ol (/tlda:>gp(f(t))dt

/0 (1= o (F(1)) dt

This completes the proof. O

Clearly, if ¢ is concave instead of convex, the inequality is reversed.
As an example of Theorem let us consider the convex function p(z) = 27,
with p > 1. Then we have

/01 FP(z)dx < /01(1 — O fP()dt

This bound can be used in the context of L, integral norm inequalities. It can also
be seen as a simple variant of the Hardy integral inequality.

2.4. Fourth theorem. The fourth convex simple integral theorem is given below.

Theorem 2.4. Let § > 0, ¢ : [0,00) — [0,00) be a convex function with ¢(0) = 0,
and f : [0,00) — [0, 00) be a function such that

/Ooocp(f(t))tﬂdt < 00.

Then, we have

[e (G [ ra)ariae< g [T oo
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Proof. By the Jensen integral inequality for the convex function ¢ and the proba-
bility measure (1/x)1j 4 (t)dt, we get

o (3 [rw) <1 [Coanar

Multiplying both sides by z~* and integrating over (0, o), we obtain

/OOo @ (é /OI f(t)dt) v Pdr < /Oooi (/0190 (f(t)) dt) By
N e

By the Fubini-Tonelli integral theorem, we have

[T [t = [T ([Te i) a

_ [ Log, 1 [7 5
—/ w(f(t»ﬁt dt 5/0 o (f(t) tPdt.

0
Combining this with equation (2.4)), we get

[Te (3 [ i) arae< 5 [T oot

This concludes the proof. O

As an example of Theorem let us consider the convex function ¢(z) = a7,
with p > 1. Then we have

/OOO (é /Ox f(t)dt)pxﬁdx < %/OOO fe()t " dt.

This bound can be used in the context of L, integral norm inequalities. It can also
be seen as a simple variant of the Hardy integral inequality.

3. DOUBLE INTEGRAL THEOREMS

This section contains three convex double integral theorems, each with distinct
features.

3.1. First theorem. The first convex double integral theorem is given below.
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Theorem 3.1. Let p > 1, q be its Holder conjugate, i.e., 1/p+1/q=1, ¢ : [0,1] —
[0, 00) be a convex function, and f, g : [0,00) — [0, c0) be two functions such that

/ fP(@)dz < oo, / 9 (y)dy < oc.
0 0
Then we have

// sty (gg y>f($)g(y)d$dy
<m< A (/ fa dx) (/Ooogq(y)dy)l/q.

In particular, taking ¢ = 1 recovers the Hardy-Hilbert integral inequality, i.e.,

[ spramonsar < i ([ o)™ ([ o)™

Proof. Let us consider the change of variables
x = ut, y=u(l—1), u € (0,00), t € (0,1).

The Jacobian is J(u,t) = u, so drdy = ududt. We also have x + y = u and
z/(x 4+ y) = t. Therefore, we derive

3.1) /OOO /OOO - i ~ (x . y) F@)g(y)dady — /01 o) (t)dt.

where

/ Flut)g(u(l — £))du.

Let us now bound this integral. Applying the Holder integral inequality to J(t)
with exponents p and ¢, we get

t) < (/OOO fp(ut)du) ” (/Ooo ¢i(u(l — t))du) "

Let us now perform changes of variables in each integral of this upper bound. For
the first, setting v = ut, v € (0, 00), so du = dv/t, we obtain

/ fputdu—t_l/ 2 (v
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For the second, setting w = u(1 —t), w € (0,00), so du = dw/(1 — t), we derive

ot opaa= -0 ([T grtwian).
Hence, we have

s <o ([ paa) " ([ s "

Substituting this in equation (3.1)) gives

/0°° /0°° z Jlr y? (x _:i y) f(@)g(y)dzdy

(3.2) < </Ooo fp(:r)d:E) . (/OOO gq(y)dy) v /01 ()t YP(1 —t)"Vaar.

Let us now bound this last integral using the convexity of ¢ on [0, 1]. For any

t € [0, 1], we have the linear upper bound
p(t) =e((1 —1) x 0+ 1 x 1) < (1—1)p(0) +tp(1).
Therefore, we have

/1 (p(t)t*l/p(l — t)*l/th < (,0(0) /1(1 o t)tfl/p(l _ t)il/th

1
—l—go(l)/ tx t7YP(1 —t)"Yadt.
0

Simplifying the integrands, identifying beta integrals and using 1 — 1/q = 1/p, we
get

p

1 1 1 1
/ (1— )t~ YP(1 — ) Viat = / t~YP(1 —t)VPdt = B (1 — -1+ —)
0 0 p
and
1 1 11
/ tx tP(1— ) Medt = / =1 — )74t = B (2 S —) .
0 0 pp
Using the classical gamma/beta identities and the reflection formula I'(z)I'(1—2) =
7/ sin(nz) for any z € (0,1), we get

p(ipry) () () =5 0-0)r G) = vt
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and

o(2-55) =) G) =1 0-0)r G) -

Hence, we have

' -1/p 1/q
/0 p(t)t (1—t)"dt < pein(r/p)

Combining this with equation (3.2) gives

[ e (ery)f(w)g(y)da:dy
<t (#0006t (o) ([ o)

This ends the proof. U

(¢(0) + (p— 1)(1)).

As an example of Theorem let us consider the convex function ¢(z) = e ”.
Then we have

/ / T4y Y e/t Z+y)f<x)g(y)dxdy

a0+ 07) ([ o) ([ Tom)

This bound can be used in the context of Hardy-Hilbert-type integral inequalities.

3.2. Second theorem. The second convex double integral theorem is given be-
low.

Theorem 3.2. Let ¢ : [0,00) — [0, 00) be a convex convex function such that

/ p(t)dt < oo,
0

and k : [0,00) — [0, 00) be a function such that

/OOO k(t)dt < oo.

5 y) k(x +y)drdy < (/OOO k(t)dt) /OOO o(z)dz.

Then we have

IS
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Proof. By the convexity of ¢ on [0, o0), for any z,y > 0, we have

¢ (55Y) < 5 ) + o0,

2

Multiplying by k(z + y), integrating and using a symmetry in the roles of the
variables = and y, we get

IS
RYAN

y) k(z + y)dzdy

< [ )+ o) ke + y)dody
o Jo
1 o0 o
:5/ / o(z)k(x + y)dzdy + = / / k(x +y)dzdy
o Jo
1 o o
:—/ / o(x)k(r + y)dxdy + = / / (x + y)dzdy

(3.3) / / k(x + y)dzdy.

Making the change of variables t = x + y, t € (x, o), and majorizing, we get

/ / x+yda:dy—/ooogo(x)</Oook(9c+y)dy>dx
:/O o(z) (/x k(t )dt) dr < (/OOO k(t)dt) /OOO o(z)dz.

Substituting this in equation (3.3)), we obtain

/UOO /Ooow ($+y> k(x + y)dxdy < (/Ooo k(t)dt) /Ooo o(z)dz.

This completes the proof. O

—x

As an example of Theorem let us consider the convex function p(z) = ¢
Then we have

/ / @2 (4 y)dady < (/OOO k(t)dt) /Ooo o(x)dr = /OOO k(t)dt.

This bound can be applied to diverse kinds of double integral inequalities.

3.3. Third theorem. The third convex double integral theorem is given below.
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Theorem 3.3. Let ¢ : [0,00) — [0,00) be a convex function, and f,g : [0,00) —
[0, 00) be two functions such that

/ f(z)dx < oo, / y)dy < 0.
Then we have

N R ACO L[ C) BT e SV
/o / 2@ + )" dy§2/o (U xa)w) oy 4

(f % g)(u) = / C F(t)g(u— t)de

is the standard convolution product on [0, c0).

where

Proof. By the convexity of ¢ on [0, o0), for any z,y > 0, we have

e(@) + ¢(y) = 2¢ (x ;L y) :

so that
1 B 1
o(x) +oy) ~ 20((x+y)/2)

Therefore, we have

< flz
(3.4) / / ‘HO d dy_z/ / x—l—y/Q da:dy

Making the change of var1ables v=x+yandv ==z, u € (0,00), v € (0,u), and
using the Tonelli-Fubini integral theorem, we obtain

L1 st = [ s (] st

1
- / (F # 9)0) g

Substituting this in equation (3.4) gives

T _f@ely) L ) —
I o) + )" t [ e ) o)

This ends the proof. U

As an example of Theorem let us consider the convex function p(z) = e™".
Then we have
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| L ey < 5 [ )=z

This bound can be used in the context of Hardy-Hilbert-type integral inequalities.

4. CONCLUSION

In this article, we present seven theorems that offer new perspectives on applica-
tions of convex functions in the context of both simple and double integral inequal-
ities. Several examples are provided to illustrate the theory. Potential directions
for future work include extending these results to higher-dimensional integrals,
exploring applications in optimization and probability theory, and investigating
connections with other classes of inequalities.
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