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ON INEQUALITIES RELATED TO GENERALIZED SIGMOID FUNCTIONS
Christophe Chesneau

ABSTRACT. The sigmoid function is widely utilized across various fields, such as
statistics and biochemistry. It has been the subject of extensive research aimed
at discovering its properties and extending its definitions. This paper examines
the generalized sigmoid function, where the exponent —x is replaced to a smooth
function —g(«). Building upon Nantomah’s work in 2019, we derive and analyze
several inequalities that characterize the convexity of this new definition.

1. INTRODUCTION

The sigmoid function [6], characterized by its S-shaped curve, is a fundamental
mathematical construct defined by the formula
1 x
14+e 1+4+e€
for any z € R. This function is distinguished by its smooth transition between

asymptotic limits, providing a bounded, continuous mapping from the real line to
the interval (0, 1).

The sigmoid function appears to be beneficial in various fields. In statistics and
machine learning, it is known as the activation function of the logistic regression
[10]. This regression is a data analysis technique used to model the relationship
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between a dependent binary variable and one or more independent variables.
Adopting standard notations, the corresponding key equation reads as follows:
ePotbiz

Y= 1+ 650+51x'

In biochemistry and pharmacology, the Hill-Langmuir equation [7]], modelled by
the sigmoid function, denotes two interrelated equations that describe how ligands
bind to macromolecules depending on the concentration of the ligand. Adopting
standard notations, the corresponding key equation reads as follows:
e

Kq+[L]™

In ecology, the sigmoid function is used to describe a logistic population growth

7

[12]. This type of growth happens when the growth rate declines as the population
reaches the carrying capacity. Adopting standard notations, the corresponding key
equation reads as follows:
N = ok :
No + (K — Ny)e Akt

Due to its usefulness, many mathematicians have attempted to derive properties

related to this function. For example, U. A. Ezeafulukwe et al. [4] considered the
sigmoid function defined on a complex plane and deduced several properties. One
result is they proved that, for any z € {w € C: |w| < 1},

Re (1 + Z;/;S)) >0

if and only if Re(c(2)) > 0. Now, one interesting direction is to study its convexity.

It is well-known that the sigmoid function is convex on (—o0,0) and concave on
(0,00). Nantomah [|6] discovered various results related to the sigmoid function
and the convexity of the means functions. For example, he showed that o(z) is
AH-convex. In other words, for any x,y > 0,
o (210 > ooty
2 )o@ +oly)
In the end of the paper by Valdés [11], he asked a new research topic by con-

structing a general version of a sigmoid function as shown below.
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Definition 1.1. Let g : R — R be a smooth function. We define the generalized
sigmoid function o : R — R by the formula
o(z)

1 e9(x)
T lte9@ 14 es@”

Its first and second derivatives are given as follows:
oy L €Y (@)
(1 + e9())2’

g () (1 + 1) + (/@)1 = 1)
(1 + e9®)3 '

In this paper, we explore the various inequalities associated with the new defi-

o'(x) =

nition of generalized sigmoid functions. In particular, we examine properties such
as sub-additivity and the convexity of mean functions, as well as Grumbaum-type
inequalities and other miscellaneous results. We establish conditions for g(x) that
ensure the inequalities hold. For example, we have shown that if g(x) is concave,
then o(x) is logarithmically concave.

The rest of the paper is organized as follows: Section |2| provides the founda-
tional definitions and lemmas. Section [3| presents the main results of our study,
while Section 4] offers a discussion and conclusion.

2. PRELIMINARIES

Definition 2.1. [8] Let I C Rand f : I — R. We say that f is sub-additive (or
super-additive) if f(x) + f(y) > (or <) f(z +y) forany z,y,xz +y € I.

Lemma 2.1. [8] Let I CRand f : I — R. If m is decreasing (or increasing),
X

then f is sub-additive (or super-additive).

From now on, unless specified, I that we are considering in this section will be an
open sub-interval of (0, c0), which makes it a convex set.

Definition 2.2. [\3] Let f : I — R. We say that f is convex (or concave) if

fz+ (1 =Ay) < (or 2) Af(z) + (1= A)f(y)

forany x,y € I and X € (0,1).
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Lemma 2.2. [9]] Let f : I — R be a twice differentiable function. If f"(z) > (or <) 0
for any = € I, then f is convex (or concave).

Definition 2.3. [3] Let f : I — R. We say that f(z) is logarithmically concave on I
if forany z,y € I,

Q=

F(E+2) = )ik,

a

1 1
Wherea,b>1and—+g:1.
a

Lemma 2.3. [3] Let f : I — R. If In(f(x)) is concave, then f(x) is logarithmically
concave.

Definition 2.4. [1] We say that a function M : (0,00) x (0,00) — (0,00) is a mean
function if it satisfies each of the following.
(D) M(z,y) = M(y,x).
(i) M(xz,z)=x.
(4i1) © < M(z,y) < yforxz <.
(iv) M(Ax,\y) = AM(z,y) for A > 0.

Example 1. [5] Below are examples of well-known mean functions.

(i) Arithmetic mean: A(x,y) = ’ ; Y

(17) Geometric mean: G(x,y) = \/xy.

2
(¢i1) Harmonic Mean: H(z,y) = L
T4y
2 2
(v) Quadratic Mean: Q(x,y) = L ;—y .

Definition 2.5. [1|] Let f : I — (0,00) be a continuous function. Let M and N be
any two mean functions. Then we say that f is M N-convex (or M N-concave) if

f(M(z,y)) < (or =) N(f(z), f(y))
forany x,y € I.

Example 2. Below are examples of how we define M N-convex functions when M
and N are arithmetic, geometric, and harmonic means.

(@) fis GG-convexon I if for any x,y € I,

f(VEY) < V(@) f(y).



ON INEQUALITIES RELATED TO GENERALIZED SIGMOID FUNCTIONS 409

(i1) fis AH-convexon I if for any x,y € I,
T +y 2f(x)f(y)
< .
(50 < i
(ii1) fis HH-convex on I if for any x,y € I,
(2 < Mt
z+y) = fla)+ fy)
Lemma 2.4. [1|] Let f : I — (0, 00) be a differentiable function. Then we have each
of the following. In parts (iv)-(ix), I is of the form (0, 3), where 8 € (0, c0).

(1) f(x)is AA-convex (or AA-concave) on I if and only if f'(z) is increasing (or

decreasing).

(i) f(x)is AG-convex (or AG-concave) on I if and only if [(z)

/()
()

(iii) f(z)is AH-convex (or AH-concave) on I if and only if - ~=%5 is increasing

(f(2))

zf'(x)
/(=)

is increasing (or

decreasing).

(or decreasing).

(iv) f(z) is GG-convex (or GG-concave) on I if and only if

Is increasing
(or decreasing).

(v) f(z) is GA-convex (or G A-concave) on I if and only if x f'(x) is increasing
(or decreasing).

(vi) f(x)is GH-convex (or GH-concave) on I if and only if o (@

(f(2))?

is increasing

(or decreasing).
(vii) f(z) is HA-convex (or H A-concave) on I if and only if 2 f'(x) is increasing
(or decreasing).
z*f'(z)
f(x)
2?f' ()

(ix) f(x)is HH-convex (or HH-concave) on I if and only if ——— is increasing

(f(x))?

(viii) f(z) is HG-convex (or HG-concave) on I if and only if is increasing

(or decreasing).

(or decreasing).

flz) -1

Lemma 2.5. [2)] Let « > 0 and [ : (o, 00) — R. If the function hy(x) = is

T
increasing on (a, o), then the function ho(x) = f(z?) satisfies the Grumbaum-type

inequality
1+ hQ(Z) Z hg(l’) + hQ(y>,
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where x,y > « and z* = x® + y> If hy is decreasing, then the inequality is reversed.

3. MAIN RESULTS

Theorem 3.1. If 9 + 1 — x¢'(z) > (or <) 0, then o(x) is sub-additive (or super-
additive) on R.

Proof: We will only prove the first case. Note that
o(z)\" e9(@) / eI (9 41 — 3¢/ (2))
x (1l +es@) ) 22(1 + e9(@))2 '
Also 9@ and 22(1 + ¢9)? are positive for any 2 € R. Thus for ¢(z) to be sub-
additive, we require 9*) + 1 — x¢/(x) > 0 from Lemma [2.1] O

Corollary 3.1. We have each of the following.
(1) If g(x) is decreasing on (0, c0), then o(x) is sub-additive on (0, c0).
(43) If g(x) is increasing on (—o0,0), then o(z) is sub-additive on (—o0, 0).

Proof. For (i), as ¢/(z) > 0 and = > 0, we obviously have ¢9®) + 1 — z¢/(z) > 0.
Thus o(x) is sub-additive on (0,cc) from Theorem Part (ii) can be proven
analogously. O

Example 3. Let g(x) = z", where n € N. Then we have each of the following.
(@) o(x) is sub-additive on R if and only if 1 <n < 3.
(¢3) If nis odd, then o(x) is sub-additive on (—o0,0).

From here, I, I, I, that we are considering will be open-intervals.

Theorem 3.2. Define [} = {z € R: g(x) < 0} and I, = {x € R: g(z) > 0}. If
I, I, # (), then we have each of the following.

(4) If g(z) is convex on Iy, then o(x) is convex and AA-convex on I;.

(43) If g(x) is concave on I, then o(z) is concave and AA-concave on Is.

Proof. We will only prove (i). As g(x) is convex, ¢"(x) > 0. Also, for z € I, we
have e9*) < 1. So

O_// (x) —

T g (@) (1 + ) + (g/ (@)1 = 1)
({+ eo@)p =0
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for any x € [,. Hence o(x) is convex on ;. o(z) is then AA-convex consequently
from Lemma O

As a remark, the condition I # () guarantees that we can construct / which is an
interval. If there is 2y € R such that g(xy) < 0, then due to the continuity of g,
there exists an open ball B centered at z, such that g(z) < 0 for any = € B.

: 1 :
Example 4. The function o(x) = [ENEEEE is convex on (—1,0) as g(z) = (z +
e €T
1,

92—
1)? — 2 is convex and negative on (—1,0).
Theorem 3.3. If g(z) is concave for x € R, then o(z) is logarithmically concave.

Proof. As g(z) is concave, g”(x) < 0. Observe that

o (@) | A+ er)g"(2) — (g(2))*(er™)
1 = = <
(Ino(z)) (a(w) ) (1 + e9(*))2 <0
for any x € R. So In(o(z)) is concave. Hence o(x) is logarithmically concave by
Lemma (3.3 O

Theorem 3.4. If g(x) is concave for (0, c), then o(x) is AG- and AH-concave.

Proof. Being AG-concave is a direct consequence from Lemma and Theorem
Now, as g(xz) is concave, we have ¢”(x) < 0. Note that

o'(x) \ _ (d@) _g"(x) —(g(2))?

(g(x))Q eg(ff) eg(m) -
o'(x)

(o(x))?
Lemma [2.4] d

for any = € (0,00). So is decreasing. Hence o(z) is AH-concave from

From Theorems|[3.5|to we restrict I, I}, and I, to be of the form (0, 3), where
B € (0,00), as suggested in Lemma 2.4,

Theorem 3.5. Define I = {x € (0,00) : x¢'(x) < 1}. If I # (), then we have each of
the following.
(4) If g(z) is convex and increasing on I, then o(x) is GG- and G H-convex on 1.

(i3) If g(x) is concave and decreasing on I, then o(z) is GG- and G H-concave on
I
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Proof. We will only prove (i). As g(x) is convex and increasing, ¢”(z) > 0 and
g'(z) > 0. So

(%) - (75)

_2g"(2) + ¢'(2) + 2e?Pg"(x) + /W g/ () (1 — 2g/(x))

>
1+ cs)2 =0
e @ J(@)(1 — 2g/(@))
xo'(x 1—x¢(x
>
(<a<a:>>2) (5 ) et ="
for any x € I. So Smé_)) and U(gj(;:) are increasing. Hence o(z) is GG- and
o
G H-convex on I from Lemma Iﬁl ]

Theorem 3.6. Define I; = {x € (0,00) : g(x) < 0} and I, = {x € (0,00) : g(x) >
0}. If I, I, # (), then we have each of the following.

(4) If g(x) is convex and increasing on Iy, then o(x) is GA- and H A-convex on
L.

(43) If g(x) is concave and decreasing on I, then o(z) is GA- and H A-concave on
L.

Proof. We will only prove (i). As g(x) is convex and increasing, ¢”(z) > 0 and
g (z) > 0. Also, for x € I}, we have ¢9®) < 1. So

/ / xeg(x) /(I) /
woe) = ({5 o)
_ O a(g"(@) (L4 e”D) + (¢ (2))*(1 = e?@)) + ¢'(@) (1 + /D)) 0
(1 + e9®))3 -
and
2 v (22O (@)

Aalolg L+ ) a1 ) 4 2 2)( + )
1 4 e9(@))3

>0

)
for any z € I,. So xo'(z) and z%¢’(x) are increasing. Hence o(z) is GA- and
H A-convex by on /; from Lemma O
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Theorem 3.7. Define I = {x € (0,00) : xg'(x) < 2}. If I # (), then we have each of
the following.

(4) If g(x) is convex and increasing on I, then o(z) is HG- and H H-convex on 1.
(i) If g(x) is concave and decreasing on I, then o(x) is HG- and H H-concave on
I

Proof. We will only prove (i). As g(x) is convex and increasing, ¢”(z) > 0 and
g'(z) > 0. So

(o) - ()

_2%g"(x) + 22g'(x) + 2%/ g (x) + 2’y (2) (2 — 29/ (x))
- (1+ este))2

>0

and

(o)) e -

forany x € I. So L

(ﬁﬂw):(%%gy:amm+yme—wvm>O

o'(z) and el €9

o(x) (o(x))?
on [ from Lemma O

are increasing. Hence o(z) is H(G-convex

Theorem 3.8. If g(x) is increasing, then o(x) satisfies the Grumbaum-type inequality
1+0(2%) > o(2?) + o(y?),

where x,y € (0,00) and 2% = 2% + 32

Proof. Note that ¢/(z) > 0 as g(x) is increasing. Define ¢ : (0,00) — R by

B o(x)—1 . 1
) = x  a(1 4 es@)
Then we have -
g(x)

T 21t es@) ot @) =
This means ¥(z) is increasing. Hence by Lemma we obtain the desired result.
U

o(x+1)

Theorem 3.9. Define &(x) = ()

for x € R. If g(x) is concave, then &(x) is

decreasing.
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Proof. As g(z) is concave, we have ¢”(x) < 0. Note that

(d(@)’ B ( J(z) ))’ (1+e)g"(z) = (g (@)*(e™) _

o(z) 1+es@ ) — (1 + es(@))2

for any x € R. Thus the function

o'(x)

is decreasing on R. Now, observe that

o(x)
, ox+1) (d(x+1) o(x)
= — <
&) o(x) (U(x +1) o(x)) 0
as % is decreasing. Since o(z) is always positive, hence £(x) is also decreasing.
o\x

O

Theorem 3.10. Define o(z) = In(1 + e9®)) — o(z) for v € R. If g(x) is increasing
(or decreasing), then o(x) — o(x) is increasing (or decreasing).

Proof. We will only prove the first case. As g(z) is increasing, we have ¢'(z) > 0.
Note that

| SWg@) W) () ()
(o(z) —o(2)) = (1 +Zg(x)) o (1 _|_€gg(x))2 - (1 +eg?x))2 =0

for any = € R. Hence p(x) — o(x) is increasing. O

4. DISCUSSION AND CONCLUSION

In this paper, we have presented many inequalities involving a generalized sig-
moid function. We can see that the convexity and concavity of ¢(z) mostly depend
on g(x). These results could be used for modelling in various fields. For future
research, we could consider applying the sigmoid function to a complex domain.
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