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ON INEQUALITIES RELATED TO GENERALIZED SIGMOID FUNCTIONS

Christophe Chesneau

ABSTRACT. The sigmoid function is widely utilized across various fields, such as
statistics and biochemistry. It has been the subject of extensive research aimed
at discovering its properties and extending its definitions. This paper examines
the generalized sigmoid function, where the exponent −x is replaced to a smooth
function −g(x). Building upon Nantomah’s work in 2019, we derive and analyze
several inequalities that characterize the convexity of this new definition.

1. INTRODUCTION

The sigmoid function [6], characterized by its S-shaped curve, is a fundamental
mathematical construct defined by the formula

σ(x) =
1

1 + e−x
=

ex

1 + ex

for any x ∈ R. This function is distinguished by its smooth transition between
asymptotic limits, providing a bounded, continuous mapping from the real line to
the interval (0, 1).

The sigmoid function appears to be beneficial in various fields. In statistics and
machine learning, it is known as the activation function of the logistic regression
[10]. This regression is a data analysis technique used to model the relationship
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between a dependent binary variable and one or more independent variables.
Adopting standard notations, the corresponding key equation reads as follows:

y =
eβ0+β1x

1 + eβ0+β1x
.

In biochemistry and pharmacology, the Hill-Langmuir equation [7], modelled by
the sigmoid function, denotes two interrelated equations that describe how ligands
bind to macromolecules depending on the concentration of the ligand. Adopting
standard notations, the corresponding key equation reads as follows:

θ =
[L]n

Kd + [L]n
.

In ecology, the sigmoid function is used to describe a logistic population growth
[12]. This type of growth happens when the growth rate declines as the population
reaches the carrying capacity. Adopting standard notations, the corresponding key
equation reads as follows:

N =
N0K

N0 + (K −N0)e−λKt
.

Due to its usefulness, many mathematicians have attempted to derive properties
related to this function. For example, U. A. Ezeafulukwe et al. [4] considered the
sigmoid function defined on a complex plane and deduced several properties. One
result is they proved that, for any z ∈ {w ∈ C : |w| < 1},

Re
(
1 +

zσ′′(z)

σ′(z)

)
> 0

if and only if Re(σ(z)) > 0. Now, one interesting direction is to study its convexity.
It is well-known that the sigmoid function is convex on (−∞, 0) and concave on
(0,∞). Nantomah [6] discovered various results related to the sigmoid function
and the convexity of the means functions. For example, he showed that σ(x) is
AH-convex. In other words, for any x, y > 0,

σ

(
x+ y

2

)
≥ 2σ(x)σ(y)

σ(x) + σ(y)
.

In the end of the paper by Valdés [11], he asked a new research topic by con-
structing a general version of a sigmoid function as shown below.
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Definition 1.1. Let g : R → R be a smooth function. We define the generalized
sigmoid function σ : R → R by the formula

σ(x) =
1

1 + e−g(x)
=

eg(x)

1 + eg(x)
.

Its first and second derivatives are given as follows:

σ′(x) =
eg(x)g′(x)

(1 + eg(x))2
,

σ′′(x) =
eg(x)(g′′(x)(1 + eg(x)) + (g′(x))2(1− eg(x)))

(1 + eg(x))3
.

In this paper, we explore the various inequalities associated with the new defi-
nition of generalized sigmoid functions. In particular, we examine properties such
as sub-additivity and the convexity of mean functions, as well as Grumbaum-type
inequalities and other miscellaneous results. We establish conditions for g(x) that
ensure the inequalities hold. For example, we have shown that if g(x) is concave,
then σ(x) is logarithmically concave.

The rest of the paper is organized as follows: Section 2 provides the founda-
tional definitions and lemmas. Section 3 presents the main results of our study,
while Section 4 offers a discussion and conclusion.

2. PRELIMINARIES

Definition 2.1. [8] Let I ⊆ R and f : I → R. We say that f is sub-additive (or
super-additive) if f(x) + f(y) > (or <) f(x+ y) for any x, y, x+ y ∈ I.

Lemma 2.1. [8] Let I ⊆ R and f : I → R. If
f(x)

x
is decreasing (or increasing),

then f is sub-additive (or super-additive).

From now on, unless specified, I that we are considering in this section will be an
open sub-interval of (0,∞), which makes it a convex set.

Definition 2.2. [3] Let f : I → R. We say that f is convex (or concave) if

f(λx+ (1− λ)y) ≤ (or ≥) λf(x) + (1− λ)f(y)

for any x, y ∈ I and λ ∈ (0, 1).
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Lemma 2.2. [9] Let f : I → R be a twice differentiable function. If f ′′(x) ≥ (or ≤) 0

for any x ∈ I, then f is convex (or concave).

Definition 2.3. [3] Let f : I → R. We say that f(x) is logarithmically concave on I

if for any x, y ∈ I,
f
(x
a
+

y

b

)
≥ (f(x))

1
a (f(y))

1
b ,

where a, b > 1 and
1

a
+

1

b
= 1.

Lemma 2.3. [3] Let f : I → R. If ln(f(x)) is concave, then f(x) is logarithmically
concave.

Definition 2.4. [1] We say that a function M : (0,∞)× (0,∞) → (0,∞) is a mean
function if it satisfies each of the following.

(i) M(x, y) = M(y, x).
(ii) M(x, x) = x.

(iii) x < M(x, y) < y for x < y.
(iv) M(λx, λy) = λM(x, y) for λ > 0.

Example 1. [5] Below are examples of well-known mean functions.

(i) Arithmetic mean: A(x, y) =
x+ y

2
.

(ii) Geometric mean: G(x, y) =
√
xy.

(iii) Harmonic Mean: H(x, y) =
2xy

x+ y
.

(iv) Quadratic Mean: Q(x, y) =

√
x2 + y2

2
.

Definition 2.5. [1] Let f : I → (0,∞) be a continuous function. Let M and N be
any two mean functions. Then we say that f is MN -convex (or MN -concave) if

f(M(x, y)) ≤ (or ≥) N(f(x), f(y))

for any x, y ∈ I.

Example 2. Below are examples of how we define MN -convex functions when M

and N are arithmetic, geometric, and harmonic means.

(i) f is GG-convex on I if for any x, y ∈ I,

f(
√
xy) ≤

√
f(x)f(y).
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(ii) f is AH-convex on I if for any x, y ∈ I,

f

(
x+ y

2

)
≤ 2f(x)f(y)

f(x) + f(y)
.

(iii) f is HH-convex on I if for any x, y ∈ I,

f

(
2xy

x+ y

)
≤ 2f(x)f(y)

f(x) + f(y)
.

Lemma 2.4. [1] Let f : I → (0,∞) be a differentiable function. Then we have each
of the following. In parts (iv)-(ix), I is of the form (0, β), where β ∈ (0,∞).

(i) f(x) is AA-convex (or AA-concave) on I if and only if f ′(x) is increasing (or
decreasing).

(ii) f(x) is AG-convex (or AG-concave) on I if and only if
f ′(x)

f(x)
is increasing (or

decreasing).

(iii) f(x) is AH-convex (or AH-concave) on I if and only if
f ′(x)

(f(x))2
is increasing

(or decreasing).

(iv) f(x) is GG-convex (or GG-concave) on I if and only if
xf ′(x)

f(x)
is increasing

(or decreasing).
(v) f(x) is GA-convex (or GA-concave) on I if and only if xf ′(x) is increasing

(or decreasing).

(vi) f(x) is GH-convex (or GH-concave) on I if and only if
xf ′(x)

(f(x))2
is increasing

(or decreasing).
(vii) f(x) is HA-convex (or HA-concave) on I if and only if x2f ′(x) is increasing

(or decreasing).

(viii) f(x) is HG-convex (or HG-concave) on I if and only if
x2f ′(x)

f(x)
is increasing

(or decreasing).

(ix) f(x) is HH-convex (or HH-concave) on I if and only if
x2f ′(x)

(f(x))2
is increasing

(or decreasing).

Lemma 2.5. [2] Let α ≥ 0 and f : (α,∞) → R. If the function h1(x) =
f(x)− 1

x
is

increasing on (α,∞), then the function h2(x) = f(x2) satisfies the Grumbaum-type
inequality

1 + h2(z) ≥ h2(x) + h2(y),
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where x, y ≥ α and z2 = x2 + y2. If h1 is decreasing, then the inequality is reversed.

3. MAIN RESULTS

Theorem 3.1. If eg(x) + 1 − xg′(x) ≥ (or ≤) 0, then σ(x) is sub-additive (or super-
additive) on R.

Proof. We will only prove the first case. Note that(
σ(x)

x

)′

=

(
eg(x)

x(1 + eg(x))

)′

= −eg(x)(eg(x) + 1− xg′(x))

x2(1 + eg(x))2
.

Also eg(x) and x2(1 + eg(x))2 are positive for any x ∈ R. Thus for σ(x) to be sub-
additive, we require eg(x) + 1− xg′(x) ≥ 0 from Lemma 2.1. □

Corollary 3.1. We have each of the following.

(i) If g(x) is decreasing on (0,∞), then σ(x) is sub-additive on (0,∞).
(ii) If g(x) is increasing on (−∞, 0), then σ(x) is sub-additive on (−∞, 0).

Proof. For (i), as g′(x) ≥ 0 and x ≥ 0, we obviously have eg(x) + 1 − xg′(x) ≥ 0.
Thus σ(x) is sub-additive on (0,∞) from Theorem 3.1. Part (ii) can be proven
analogously. □

Example 3. Let g(x) = xn, where n ∈ N. Then we have each of the following.

(i) σ(x) is sub-additive on R if and only if 1 ≤ n ≤ 3.
(ii) If n is odd, then σ(x) is sub-additive on (−∞, 0).

From here, I, I1, I2 that we are considering will be open-intervals.

Theorem 3.2. Define I1 = {x ∈ R : g(x) < 0} and I2 = {x ∈ R : g(x) > 0}. If
I1, I2 ̸= ∅, then we have each of the following.

(i) If g(x) is convex on I1, then σ(x) is convex and AA-convex on I1.
(ii) If g(x) is concave on I2, then σ(x) is concave and AA-concave on I2.

Proof. We will only prove (i). As g(x) is convex, g′′(x) ≥ 0. Also, for x ∈ I1, we
have eg(x) ≤ 1. So

σ′′(x) =
eg(x)(g′′(x)(1 + eg(x)) + (g′(x))2(1− eg(x)))

(1 + eg(x))3
≥ 0
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for any x ∈ I1. Hence σ(x) is convex on I1. σ(x) is then AA-convex consequently
from Lemma 2.4. □

As a remark, the condition I ̸= ∅ guarantees that we can construct I which is an
interval. If there is x0 ∈ R such that g(x0) < 0, then due to the continuity of g,
there exists an open ball B centered at x0 such that g(x) < 0 for any x ∈ B.

Example 4. The function σ(x) =
1

1 + e2−(x+1)2
is convex on (−1, 0) as g(x) = (x +

1)2 − 2 is convex and negative on (−1, 0).

Theorem 3.3. If g(x) is concave for x ∈ R, then σ(x) is logarithmically concave.

Proof. As g(x) is concave, g′′(x) ≤ 0. Observe that

(lnσ(x))′′ =

(
σ′(x)

σ(x)

)′

=
(1 + eg(x))g′′(x)− (g′(x))2(eg(x))

(1 + eg(x))2
≤ 0

for any x ∈ R. So ln(σ(x)) is concave. Hence σ(x) is logarithmically concave by
Lemma 3.3. □

Theorem 3.4. If g(x) is concave for (0,∞), then σ(x) is AG- and AH-concave.

Proof. Being AG-concave is a direct consequence from Lemma 2.4 and Theorem
3.3. Now, as g(x) is concave, we have g′′(x) ≤ 0. Note that(

σ′(x)

(σ(x))2

)′

=

(
g′(x)

eg(x)

)′

=
g′′(x)− (g′(x))2

eg(x)
≤ 0

for any x ∈ (0,∞). So
σ′(x)

(σ(x))2
is decreasing. Hence σ(x) is AH-concave from

Lemma 2.4. □

From Theorems 3.5 to 3.7, we restrict I, I1, and I2 to be of the form (0, β), where
β ∈ (0,∞), as suggested in Lemma 2.4.

Theorem 3.5. Define I = {x ∈ (0,∞) : xg′(x) < 1}. If I ̸= ∅, then we have each of
the following.

(i) If g(x) is convex and increasing on I, then σ(x) is GG- and GH-convex on I.
(ii) If g(x) is concave and decreasing on I, then σ(x) is GG- and GH-concave on

I.
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Proof. We will only prove (i). As g(x) is convex and increasing, g′′(x) ≥ 0 and
g′(x) ≥ 0. So (

xσ′(x)

σ(x)

)′

=

(
xg′(x)

1 + eg(x)

)′

=
xg′′(x) + g′(x) + xeg(x)g′′(x) + eg(x)g′(x)(1− xg′(x))

(1 + eg(x))2
≥ 0

and (
xσ′(x)

(σ(x))2

)′

=

(
xg′(x)

eg(x)

)′

=
xg′′(x) + g′(x)(1− xg′(x))

eg(x)
≥ 0

for any x ∈ I. So
xσ′(x)

σ(x)
and

xσ′(x)

(σ(x))2
are increasing. Hence σ(x) is GG- and

GH-convex on I from Lemma 2.4. □

Theorem 3.6. Define I1 = {x ∈ (0,∞) : g(x) < 0} and I2 = {x ∈ (0,∞) : g(x) >

0}. If I1, I2 ̸= ∅, then we have each of the following.

(i) If g(x) is convex and increasing on I1, then σ(x) is GA- and HA-convex on
I1.

(ii) If g(x) is concave and decreasing on I2, then σ(x) is GA- and HA-concave on
I2.

Proof. We will only prove (i). As g(x) is convex and increasing, g′′(x) ≥ 0 and
g′(x) ≥ 0. Also, for x ∈ I1, we have eg(x) ≤ 1. So

(xσ′(x))′ =

(
xeg(x)g′(x)

(1 + eg(x))2

)′

=
eg(x)(x(g′′(x)(1 + eg(x)) + (g′(x))2(1− eg(x))) + g′(x)(1 + eg(x)))

(1 + eg(x))3
≥ 0

and

(x2σ′(x))′ =

(
x2eg(x)g′(x)

(1 + eg(x))2

)′

=
eg(x)x(x(g′′(x)(1 + eg(x)) + x(g′(x))2(1− eg(x))) + 2g′(x)(1 + eg(x)))

(1 + eg(x))3
≥ 0

for any x ∈ I1. So xσ′(x) and x2σ′(x) are increasing. Hence σ(x) is GA- and
HA-convex by on I1 from Lemma 2.4. □
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Theorem 3.7. Define I = {x ∈ (0,∞) : xg′(x) < 2}. If I ̸= ∅, then we have each of
the following.

(i) If g(x) is convex and increasing on I, then σ(x) is HG- and HH-convex on I.
(ii) If g(x) is concave and decreasing on I, then σ(x) is HG- and HH-concave on

I.

Proof. We will only prove (i). As g(x) is convex and increasing, g′′(x) ≥ 0 and
g′(x) ≥ 0. So(

x2σ′(x)

σ(x)

)′

=

(
x2g′(x)

1 + eg(x)

)′

=
x2g′′(x) + 2xg′(x) + x2eg(x)g′′(x) + xeg(x)g′(x)(2− xg′(x))

(1 + eg(x))2
≥ 0

and (
x2σ′(x)

(σ(x))2

)′

=

(
x2g′(x)

eg(x)

)′

=
x(g′′(x) + g′(x)(2− xg′(x)))

eg(x)
≥ 0

for any x ∈ I. So
x2σ′(x)

σ(x)
and

x2σ′(x)

(σ(x))2
are increasing. Hence σ(x) is HG-convex

on I from Lemma 2.4. □

Theorem 3.8. If g(x) is increasing, then σ(x) satisfies the Grumbaum-type inequality

1 + σ(z2) ≥ σ(x2) + σ(y2),

where x, y ∈ (0,∞) and z2 = x2 + y2.

Proof. Note that g′(x) ≥ 0 as g(x) is increasing. Define ϑ : (0,∞) → R by

ϑ(x) =
σ(x)− 1

x
= − 1

x(1 + eg(x))
.

Then we have

ϑ′(x) =
1

x2(1 + eg(x))
+

eg(x)g′(x)

x(1 + eg(x))2
≥ 0.

This means ϑ(x) is increasing. Hence by Lemma 2.5, we obtain the desired result.
□

Theorem 3.9. Define ξ(x) =
σ(x+ 1)

σ(x)
for x ∈ R. If g(x) is concave, then ξ(x) is

decreasing.
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Proof. As g(x) is concave, we have g′′(x) ≤ 0. Note that(
σ′(x)

σ(x)

)′

=

(
g′(x)

1 + eg(x)

)′

=
(1 + eg(x))g′′(x)− (g′(x))2(eg(x))

(1 + eg(x))2
≤ 0

for any x ∈ R. Thus the function
σ′(x)

σ(x)
is decreasing on R. Now, observe that

ξ′(x) =
σ(x+ 1)

σ(x)

(
σ′(x+ 1)

σ(x+ 1)
− σ′(x)

σ(x)

)
≤ 0

as
σ′(x)

σ(x)
is decreasing. Since σ(x) is always positive, hence ξ(x) is also decreasing.

□

Theorem 3.10. Define ϱ(x) = ln(1 + eg(x)) − σ(x) for x ∈ R. If g(x) is increasing
(or decreasing), then ϱ(x)− σ(x) is increasing (or decreasing).

Proof. We will only prove the first case. As g(x) is increasing, we have g′(x) ≥ 0.
Note that

(ϱ(x)− σ(x))′ =
eg(x)g′(x)

(1 + eg(x))
− eg(x)g′(x)

(1 + eg(x))2
=

(eg(x))2g′(x)

(1 + eg(x))2
≥ 0

for any x ∈ R. Hence ϱ(x)− σ(x) is increasing. □

4. DISCUSSION AND CONCLUSION

In this paper, we have presented many inequalities involving a generalized sig-
moid function. We can see that the convexity and concavity of σ(x) mostly depend
on g(x). These results could be used for modelling in various fields. For future
research, we could consider applying the sigmoid function to a complex domain.
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