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THE SPECTRAL ANALYSIS OF NEWLY DEFINED NORLUND MATRICES: THE
EIGENVALUES AS AN OPERATOR ON C AND (), SPACES

Moses Kwabena Yeboah! and Mohammed Muniru Iddrisu

ABSTRACT. This paper investigates the spectral analysis of newly defined Norlund
infinite matrix: the eigenvalues as an operator on the sequence spaces ¢, and
c. The newly defined Norlund matrix, a conception of Cesaro matrix, has been
greatly studied in the context of summability theory. However, its spectral analysis
on the sequence space ¢y and ¢ stay mostly undiscovered. This paper explored
and presented the spectral analysis of newly defined Norlund Infinite matrix: the
eigenvalues of a Norlund Infinite matrix as an operator on the sequence space cgy
and c. Through the eigenvalue problem Zx = Ax. The findings at the end of the
research are Z € B(cp) has no eigenvalues and Z € B(c) has the set 1 and their
spectra presented.

1. INTRODUCTION

Mathematicians have been motivated by the study of infinite matrices and their
properties for over a century. Norlund matrices are widely used in the field of
functional analysis, operator theory, and numerical analysis. The Norlund infinite
matrix, first described by Niels Erik Norlund in 1920, is a significant expansion of
the Cesaro matrix, with far- reaching implications for various disciplines of math-
ematics, including approximation theory, functional analysis, and number theory.
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A crucial aspect of understanding the characteristics of infinite matrices as an op-
erator on sequence spaces lies in explaining their spectral analysis, particularly
the eigenvalues, which serve as a fundamental determinant of their functional
characteristics. However, the eigenvalues of a Norlund matrices as an operator
on sequence spaces remain unexplored. Understanding the spectral properties of
Norlund matrices is essential for grasping their beginning characteristics. Norlund
matrices are structured as infinite matrices represented by:

211 R12 <13
221 R22 223

(1.1) Z =

231 R32 233

where the elements of (z;;) are complex numbers. These matrices have been thor-
oughly investigated within the framework of sequence spaces, particularly the
spaces ¢ and ¢q,. The space c includes all convergent sequences, while ¢, encom-
passes sequences that converge to zero. The spectral analysis of Norlund matrices
focuses on their eigenvalues and eigenvectors. While eigenvectors are non-zero
vectors that produce an estimated interpretation of themselves when witnessing
a direct transformation, eigenvalues are scalar amounts that show how much a
direct transformation alters a vector. This paper aims to add further present some
analysis on the theoretical structure surrounding spectral analysis of infinite ma-
trices focusing on Norlund matrices as bounded linear operators on the sequence
spaces ¢q and c.

2. PRELIMINARIES

2.1. Norlund Matrices. A newly defined Norlund matrix Z = (z,) is generated

from a sequence weight p, and is defined by 7,k = P};;k, for 0 < k <n.
In this study we consider the weight sequence Py = P, = P, = m where m is a

constant, that is m = 1, P, = 0 for k¥ > 3. Then the cumulative sum becomes,

m, n=20
2.1) Zng =4 2m, n=1
3m, n>0
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Equation (2.1)) defines a Norlund matrix Z = (Z,k) by means of:

P
(2.2) Do = }Sk for 0<k<n

Hence, the matrix 7 is given as

(2.3) Z =

O O Wi =
O Wi wi=N= O
cr Wk WIR WL O O
e W W O O O

e QoI

This is tri-diagonal average matrix starting from row 2.

2.2. Sequence Spaces. Sequence spaces are mathematical structures that con-
sists of sets of sequences with certain characteristics and operations. Sequence
spaces, such as ¢y play a crucial role in functional analysis. The space ¢, is
equipped with norms that assist the exploration of convergence and boundedness.
It consists of sequences that converge to zero being it real or complex numbers.
For example, having these sequences x,, = % and x, = (_Tl)n belong to ¢y where
n is a natural number. Also, the space ¢ comprises of all convergent sequence of
complex or real values. The sequence z,, = "

T oon

and x,, = 2+ = where n is a natural
number, belong to c. Both of these spaces are Banach spaces under the supremum
norm ||z||s = sup,, |z,

2.3. Eigenvalues. They are the unique real numbers that is related to the set of
linear equations in matrix equation. Eigenvalues associated with matrices and
linear transformation, are fundamental concepts in functional analysis and linear
algebra. They offer significant new viewpoint on how these changes depict the be-
haviour of systems. Let us explore the problem obtaining vectors (vector columns)
z(z # 0) and numbers \ (real or complex) given the square matrix Z such that:

2.4) Zr = \u.

The non-zero vector x is referred to as the eigenvectors agreeing to the eigenvalues
A and the number ) is referred to as the eigenvalues of the matrix Z. This problem
is known as the eigenvalue problem. With I being the identity matrix, we may find
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the eigenvalues by noting that Zx = Alx. Hence, equation (2.4) can be rewritten
as:

(2.5) Zxr = N,
(2.6) Zx — Mz =0.
Thus

(2.7) x(Z —AN) =0.

The non-trivial solution to equation (2.7)), that actually reflects the linear system,
is found if and only if the matrix Z — Al of this system is unique. This is the
instance for which

(2.8) det(Z — AI) = 0.

Hence, the equation for determining eigenvalues \ is obtained and equation (2.8)
is the characteristics equation.

2.4. Operator Theory. This is a branch of functional analysis that deals with the
exploration of linear operators on vector spaces. It gives a vital structure for ex-
ploring and comprehending the features of linear transformations. The following
are key concepts in operator theory.
i. Linear Operators.

This is a mapping between vector spaces that preserves the operations of

vector addition and scalar multiplication. If X and Y are vector spaces

over a field C or R, the function Z : X — Y is a linear operator if:

a. Additivity:

(29) Z(I’l —+ .CL’Q) = Z(ZL’1> -+ Z(I‘Q) for e and To € X.

b. Homogeneity: Z(\zx1) = AZ(z;) for all x; € X and scalars \. These
properties collectively give the complete definition of linearity:

(2.10)  Z(A\xy + pxs) = MZ(xq) + pZ(xe) Vry,z9 € X and scalars p, A

The context for bounded linear operators on normed spaces, as well
as spectral analysis, is established in Banach’s foundational work on
linear operations ( [[1]]).



THE SPECTRAL ANALYSIS OF NEWLY DEFINED NORLUND MATRICES 5

ii. Boundedness: A linear operator Z : Y — Y between normed vector spaces
X and Y is bounded if there exists a constant M > 0 such that:

(2.11) |Zz|| < M|z||, VrelX.

All bounded linear operators between normed spaces are continuous. On the other
hand, all continuous linear operators are bounded ( [6]); ( [9]).

2.5. Banach Spaces. The concept of a Banach space is basic to the study of mod-
ern functional analysis named after the Polish mathematician Stefan Banach. It
generalizes the familiar notion of Euclidean space to possibly infinite-dimensional
settings. The development of Banach space theory provides a unified framework
for discussing continuity, convergence and boundedness of operators in abstract
vector spaces.

Definition 2.1. Let X be a vector space over the field C or R, equipped with a norm
||-||. Then (X, ||-]|) is called a Banach space if it is complete with respect to the metric
induced by the norm. That is, every Cauchy sequence {x,} C X converges to a point
x € X such that

(2.12) lim ||z, — X|| = 0.
n—oo

The completeness property ensures that Banach spaces are closed under the limit
operations, making them a perfect setting for various analytical constructions and
fixed-point theorems. Many foundational results in analysis, such as the Uniform
Boundedness Principle, the Hahn-Banach Theorem and the Banach Fixed Point
Theorem are within the context of Banach spaces ( [5]1); ( [3[]). Two classical
examples examples of Banach spaces that are relevant to this study are sequence
spaces ¢q and c. Both spaces are provided with the supremum norm defined by

(2.13) |2]| o = sUp |2, ].
neN

With this norm, both ¢y and ¢ are complete normed vector spaces and therefore
Banach spaces ( [11]]);( [5]). Their completeness under the supremum norm is an
important characteristic that allows for the application of diverse tools from func-
tional analysis, such as compact operators and spectral theory. They are also im-
portant in the study of operator theory and matrix transformations. Primarily, op-
erators defined by infinite matrices, for instance the Norlund matrix, act naturally
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on ¢y and ¢, and examining their behaviour needs an understanding of the linear
and topological structure of these spaces ( [[6]) ( [9]). The Banach space con-
text ensures that limits of sequences and operator norms are well-defined, which
is essential for spectral analysis in this thesis. Moreover, since both ¢, and ¢ are
subspaces of the ¢*° of all bounded sequences, they acquire numerous topological
functional characteristics that make them appropriate for studying bounded linear
operators. For instance, any linear transformations represented by a matrix that
maps bounded sequences to sequences converging to zero can be viewed as an
operator from /> to ¢ ( [111) ; ( [6]).

Definition 2.2. A paranorm z on a linear space X, is a function z : X — R such
that the following conditions are satisfied:

i. z(0) = 0, where 0 represents the zero vector;
ii. 2(z) >0 VrelX;
iii. z(z) = z(—x);
iv. z(x +y) < z(z) + 2(y);
v. If (A, is a sequence of scalars with \,, — A and (x,,)J° is a sequence in X
with x,, — x, then z(\,x,, — A\;) — 0, thus continuity of multiplication.

In the context of ¢, and ¢, which are important to this paper, paranorms can be
used to define topologies where standard norms may not be applicable or may be
too restrictive. For instance, certain matrix categories of ¢, can form paranormed
spaces under functionals induced by summability methods or matrix transforma-
tions ( [[111); ( [[81). The paranorm structure enables the exploration of linear op-
erators, such as the Norlund matrix, under broader convergence condition, specif-
ically in the study of infinite matrices and their spectrum.

Definition 2.3. A seminorm z on a linear space X, is a function p : X — R defined
by
i. z(x) > 0;
ii. z(z+y)

x () + 2(y);
iii. z(Az) = ||

<
Alz(x). where A € K(R/C).

2
z
In contrast to a norm, a seminorm has the ability to assign a value of zero to non-

zero vectors. This makes seminorms useful for defining topologies where conver-
gence behaviours or equivalence classes are more important than exact distances
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( [4D); ( [10]). Seminorms are the building blocks of locally convex topologies,
which are widely used in sequence space theory, distribution theory and dual anal-
ysis ( [71); ( [111). In the context of this thesis, seminorms offer a versatile tool
for characterizing topologies weaker than the norm topology. The topology of
pointwise convergence on these spaces is induced by the family of seminorms:

(2.14) pr(z) = |zg|, foreach k € N.
Definition 2.4. Linear topological space. It is a vector space X over the field C or R,

equipped with a topology T such that the following conditions are fulfilled:

a. The scalar multiplication map
(2.15) KxX =X, (a,y)— azx, Iiscontinuous.
b. The addition map
(2.16) +: X xX = X, definedby (z,y)— x+vy, Iscontinuous.

where K = R or C.

These conditions ensure that the vector space operations are compatible with the
topology, making X a topological vector according to ( [|9]) and ( [[11]).

If the topology T is generated by a norm, then the linear topological space results
to a normed space. Also, if the space is complete, then it is a Banach space. Thus,
every Banach space is a linear topological space, but not every linear topological
space is complete or normable. In particular, ¢, and ¢ are classical examples of
linear topological space when equipped with the supremum norm

(2.17) |%||oe = Supnen|Tyl,

these spaces become Banach spaces and as well as linear spaces ( [11]); ( [6]).
This topological structure is important when investigating bounded linear opera-
tors, such as the newly defined Norlund matrix which acts on these spaces.

2.6. Spectrum of a Bounded Linear Operator. Let X be a Banach space over
the field C, and let Z : X — X be a bounded linear operator. The spectrum of Z,
denoted by o(Z), is the set of all complex numbers A € C such that the operator
Z — M is not invertible as an operator on X. That is,

(2.18) o0(Z) ={\ e C:Z — A is not invertible on X'} .
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By the spectral theory of bounded linear operators on Banach spaces, the spec-
trum o(Z) is a non-empty, compact subset of the complex plane and satisfies the

inclusion:
(2.19) a(Z)yCT{reC: A <|Z|}.

The spectrum is typically classified into three (3):
a. Point Spectrum (0,(Z)): The set of eigenvalues of Z, thus, all A € C such
that Z — \I is not injective ( [9]).
b. Continuous Spectrum (¢.(Z)): The set of A € C such that Z—\I is injective
and has dense range, but is not subjective ( [3]]).
c. Residual Spectrum (o,(Z)): The set of A € C such that Z — AI is injective,
but its range is not dense in X ( [11]]).

Definition 2.5 (Spectral Radius). The spectral radius of Z is defined as:
(2.20) r(Z) =sup{|A\| : A € 0(Z)}.
([3,9D).

Definition 2.6 (Spectrum of Lower Triangular Matrix). Let Z = (z,x) be a lower
triangular matrix operator (i.e., z,, = 0 for k > n) acting on a Banach space, and
assume the rows are uniformly bounded. Then the spectrum of Z is given by:

(2.21) 0(Z) ={zmm :n € N},

where z,,, denotes the diagonal entries of Z, and the closure is taken in the complex
plane ( [2}9,11]).

Remark 2.1. For a bounded lower-triangular matrix acting on classical sequence
spaces such as cq and c, it is known that the spectrum is often equal to the closure of
the set of diagonal entries. This principle is applied in Section to characterize the
full spectrum of the Norlund matrix operator under consideration.

3. MAIN RESULTS

This section introduces the main results of the paper. We explore the bounded-
ness of the newly defined Norlund Matrix Z as an operator on ¢, and ¢, determine
its eigenvalues and describe its spectrum. The analysis emphasizes the differences
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in the spectral behavious Z on ¢, and ¢ and supported by a graphical representa-

tion of spectrum matrix Z on ¢, and c.

3.1. Boundedness of the Operator Z on ¢y and c.

Lemma 3.1. Let Z € B(cy) and suppose every row sum of Z equals 1. Then for any
T € ¢, the sequence Zx converges to O.

Proof. Since = € ¢y, for any ¢ > 0 there exists N € N such that |z,| < ¢ for all
n > N. Given that Z has row sums equal to 1, we have:

| Zz|oo < ||z]|oo.
This implies that Zz € ¢y, and therefore, Zx converges to 0. O

Theorem 3.1. The Norlund matrix operator Z = (z,;) is a bounded linear operator
on the Banach spaces ¢y and c. That is, Z € B(cy) N B(c) and ||Z]| < 1.

Proof From equation (2.3) each row of Z has at most two nonzero entries, and
the row sums satisfy:

Z |2nk| = {1 forn > 0.

k=0
Thus,

(3.1) sup Z|an| =1 < 0.

neN —0

Therefore for all x € ¢, or ¢, and define the operator Z = (z,;) acting on z as:

(3.2) (Zx), = Z 2k Th-
k=0
Our focus is bounding |(Zx),| uniformly over all n. Applying Triangle Inequality,
we have
(3.3) (Zx)al = 1) zunan] <D |zl
k=0 k=0

Since x € ¢y or ¢, it is bounded and we define:

(3.4) [ ]| s = supla|.
keN
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Hence,

(3.5) |zk| < ||z]|s for all k.

Putting equation (3.5]) into equation (3.3)) gives:

(3.6) D lzarllzel < llzlloo D lznel-
k=0 k=0

By the boundedness of the row sums,

(3.7) Z|Z”k| =1 forall n.

k=0
Hence,
(3.8) [(Z2)n| < l#]loo

Taking the supremum over all n, we get

3.9) [Z]|cc = sup |(Z2)n] < |[#]|-
neN
This proves that Z is a bounded operator on both ¢, and ¢, with operator norm at
most 1:
(3.10) 1Z] < 1.

Hence, Z € B(c¢y) N B(c), which validates the spectral analysis of Z in the frame-
work of bounded linear operators. O

Corollary 3.1. Under the assumptions of Theorem if the Norlund matrix Z has
row sums equal to one, then:

i. For every x € ¢y, we have Zx € ¢y, so Z(cy) C co.
ii. For every x € ¢, we have Zz € ¢, so Z(c) C c.

3.2. The eigenvalues on ¢y and c.

Theorem 3.2. Let p = (p,).>0 be a sequence of non-negative real numbers such that:

i. po >0,
ii. P, =Y 7 _,pr — 00asn— oo,
i, lim 2% = 0.

n—o0 n
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Define the Norlund matrix Z = (z,) by

(

1 ifn=0, k=0,
L ifn=1 k=01,
(3.11) Znk = 4 2 f
% ifn>2, k=n—2n-—1,n,
0 otherwise.

Then the eigenvalue equation Zx = Az has the following properties:

(1) The matrix Z defines a bounded linear operator on both cq and c.

(2) The matrix Z has no eigenvalues on the sequence space cq.

(8) The operator Z has a unique eigenvalue A = 1 on the sequence space c, with
the corresponding eigenvector x = (1,1,1,...).

Proof. We aim to solve the equation Zz = Az. Let us apply the matrix form of Z
to a general sequence x = (xg, 21, Ta,...):

1 0 0 0 o Zo
% % 0 0 T T
i1 1 T T
(3.12) 5033 =Y
035 353 "= & &
0 0 % % % Ty Ty
The operator Z acts as:
Zo ifn=0,
(3.13) (Zx), = %(x0~|—a;1) if n=1,
%(xn_2+a:n_1+xn) ifn>2
Casel:n=0

(Z[L’)o =Ty = )\ZEQ — ()\ — 1)5B0 =0.

So, either o = 0or A =1

Case2:n =1 .
(ZI)l = 5(?[]0 +ZE1) = )\1'1

(3.14) To+ T = 2 r; — Ty = .T1<2)\ — 1)
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Case 3: n =2 |
(Zx)y = g(:vo + 1 + 22) = Axo
(315) To+T1+ To = 3)\[L’2

Putting x from equation (3.14) into (3.15))
212X — 1) + 21 + g = 3o
20 1 — 21 + 21 + 22 = 3
2AT1 + 19 = 3)Axo
Isolating x;
(2X\)x1 = 3Ty — 9

(BA—1)

(3.16) T1="gy

X2

Case4:n =3

1
(Zl‘)3 = g(l’l + o + 1'3) = )\Ig

(317) X1+ X9+ Xz = 3)\[L’3

Putting equation into equation (3.17)

3A—1

%[L’Q + Ty + a3 = 3)\$3
3A—1

( o\ I‘Q-FZL‘Q) + x5 :3)\1‘3

3A—1
LEQ( o\ +1) + x3 :3)\1‘3

3A—1+2\
T2 (T) +x3 = 3)\.3(,’3

oA —1
IL‘Q( o\ ) :3)\173—1'3
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(3.18) 9 (‘”2; 1) = 5(3\ — 1).

If X\ # 1, then equation results in zo = (2\—1)z; and equation and
become difficult recursions that, unless A\ = 1 which generally result in non-
constant sequences that are bounded or do not converge to zero. Hence, no other
values than 1 yields a convergent or null result in ¢y and ¢ unless z = 0. On the
other hand if A = 1 is a solution then equation yields to zp = (2(1) — 1)z, =
r, and equation also yields zy + 1 + 25 = 3x,. Since xy = z1, let’s suppose
To = T1 = Ty = ¢, then:

¢+ c+c=3c = holds.

Same with equation (3.17)
X1+ a9+ 123 =313 = if 21 =19 =123 =c,then 3c=3c.

All equations are satisfied for x = (1,1,1,1,...) where A = 1.

Hence, on ¢y any non-zero eigenvector must be constant, which is not allowed
in ¢p, so, no eigenvalues exist on ¢, therefore Z € B(c;) possess no eigenvalues.
On ¢ a constant sequence = = (1,1,1,---) satisfies Zx = z, so A = 1 is the only
eigenvalue on c. O

Remark 3.1. This theorem demonstrate that under standard conditions of the weight
sequence, the Norlund matrix Z exhibits distinct spectral behaviour on the sequence
space ¢y and c. The constant sequence 1 € ¢ remains uniform, yielding the eigenvalue
of 1, whiles ¢y has no eigenvalue.

Example 1. Let p, = 1 for all n > 0. Then P, = n+1, and B = =5 — 0.
The resulting matrix Z is the Cesaro matrix Cy, which satisfies the conditions of the

theorem: it has no eigenvalues on ¢y and has eigenvalue of 1 on c.

3.3. The Spectrum of Norlund Type Matrix Operator Z = (z,;) on the Se-
quence spaces ¢y and c.

3.3.1. The spectrum of the matrix Z on c.
In this subsection, we investigate the spectrum of the Norlund matrix Z = (z,;) as
an operator on the Banach space c;.
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Theorem 3.3 (Point Spectrum on c¢y). The point spectrum of the Norlund matrix
operator Z on cq is empty, and its full spectrum is given by

U<Z|Co) = [07 1]7 UP<Z|00) = @

Proof. Suppose there exists a non-zero vector x € ¢, such that Zz = Az for some
A € C. As previously shown in the proof of Theorem the recurrence relation
that arises from the eigenvalue equation forces x to be constant sequence:

(3.19) x=(c,coe...).

However, constant sequence do not belong to ¢, unless ¢ = 0. Hence, Z has no
non-zero eigenvectors in ¢y and the point spectrum is empty with the interval [0, 1]:

(3.20) 0(Zle) = 1[0,1], 0,(Z]e, = 0).

U
Remark 3.2. The absence of eigenvalues for the Norlund matrix Z on c¢q emphasizes
on how the structure of the space affects spectral properties. Although constant se-

quences solve the eigenvalue equation Zx = Ax, they do not belong to ¢, unless they
are trivial.

Theorem 3.4 (Spectral radius theorem). Let X be a Banach space and let Z € B(X)
be a bounded linear operator. The spectral radius of Z, r(Z) := sup{|A| : X €
o(Z)}, satisfies:
r(Z) = lm |Z™"" = inf | 27"
n—00 n>1

In particular, r(Z) < || Z||, and o(Z) is a nonempty compact subset of the closed disk
{reC: A <2l }
Proof. Since Z is a bounded linear operator on the sequence space ¢, with || Z]| < 1,
by Theorem the spectral radius satisfies:
(3.21) r(Z) = lim || 27|V <1,

n—oo
and thus the spectrum is contained within the closed unit disk:

(3.22) 0(Z]e) C{AeC: A< 1}
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Remark 3.3. The spectral radius result provides an essential bound for the spectrum
of the operator Z on c¢y. Knowing that ||Z|| < 1 immediately restricts the spectrum
to lie within the closed unit disk in the complex plane ( [3,9|]]). This confirms that
no spectral value can have modulus greater than 1, which aligns with the observed
diagonal entries and their accumulation behavior. Such bounds are valuable in op-
erator theory as they offer insight into stability and long-term behavior of iterated
operators.

Theorem 3.5 (Full spectrum via diagonal entries). Let Z = (z,) be a bounded
lower triangular matrix operator on a Banach sequence space c¢o. That is, z,; = 0
whenever k > n, and the rows of Z are uniformly bounded. Then the spectrum of Z

is given by the closure of its diagonal entries: 0(Z) = { zp, : n € N }.

Proof. Applying the result for lower triangular matrices from Definition we
consider the diagonal entries of Z, which are given by:
1111
3.23 diag(Z)=(1,=,=,=,=,... |.
(3.23) iag(Z) (,2,3,3,3, )
This sequence accumulates at 0 with the interval of [0, 1]. Hence, the full spectrum
of Z on ¢ is;

(3.24) 0(Z|e,) = {% ‘n € N} u{0} =[0,1].
O

Remark 3.4. This result enables the determination of the spectrum of certain struc-
tured operators, such as the Norlund matrix Z, by examining the limit points of its
diagonal entries and it has been established that ||Z|| < 1. Hence, by Definition
the spectrum of Z is contained within the closed unit disk:

(3.25) 0(Z]e,) C{A € C A <1}
This provides a bound for the location of the spectrum.
3.3.2. The spectrum of the matrix Z on c.

Proposition 3.1. The spectrum of the operator Z on the space c is the interval |0, 1],
and its point spectrum consists of the singleton {1}:

o(Zle) = 0,1, op(Z]e) = {1}.
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Proof. As before, Z € B(c) and ||Z]| < 1, so
o(Z|l.) C{ e C:|A <1}
The constant sequence (z = 1,1,1,...) € ¢ satisfies
Jr=x = A= 1.

Hence, A = 1 is an eigenvalue with corresponding eigenvector in ¢, 0,(Z|.) = {1}.

To describe the full spectrum, we again apply Theorem to the structure Z.
Since the diagonal entries z,, — 0 as n — oo, and Z is lower-triangular with
bounded row sums, the spectrum on ¢ must include the closure of these diagonal
values. Hence, the closure of this set gives:

o(Z].) = G 1 €N} = [0, 1].

Graphical Representation of spectrum matrix Z on ¢y and ¢

Im(A)
1
Unit Disk
0.5
=l €o0,(Z|
o(Z]e) Re(\)
-1 —05 0.5 (Z)1= [0, 1]
—0.5
=1

FIGURE 1. Spectrum of the Norlund matrix Z on the complex plane.
As shown, the spectrum the newly defined Norlund matrix 7 lies
entirely within the interval [0, 1] on the real axis. This reflects the fact
that the newly defined Norlund matrix is a compact operator with
spectral values accumulating at 0. The red point at A = 1 indicated
the presence of an eigenvalue in the point spectrum o,(Z|c), which
corresponds to a nontrivial solution of the equation Zx = x in the
space c. No such eigenvalue exists in ¢y, highlighting the topological
distinctions between the two spaces.
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