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SUBCLASS OF ANALYTIC FUNCTIONS RELATED TO MITTAG-LEFFLER
FUNCTION

Akanksha Sampat Shinde! and P. Thirupathi Reddy

ABSTRACT. The subclass of analytic functions related to the Mittag-Leffler func-
tion can be explored through the lens of fractional calculus and complex analysis.
The Mittag-Leffler function generalizes the exponential function and plays a cru-
cial role in various fields such as fractional differential equations and complex
analysis.The target of this paper is to introduce a new subclass and obtained coef-
ficient bounds, distrotion properties, radii of starlike, convex and close-to-convex,
extreme points, hadamard product and closure theorems.

1. INTRODUCTION

Let A denote the class of all functions u(z) of the form

(1.1) u(z) =z + Z anz",
n=2

in the open unit disk £ = {z : |z| < 1}. Let S be the subclass of A consisting of
univalent functions and satisfy the following usual normalization condition «(0) =
0 and «/(0) = 1. We denote by S the subclass of A consisting of u(z) which are all
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univalent in F. A function u € A is a starlike function of the order v(0 < v < 1) if
it satisfies

(1.2) %{Z;‘(S')} >, (z € B).

We denote it by the class S*(v). A function u € A is a convex function of the order
v(0 < wv < 1) if it satisfies
2u”(2)
1. 14+ ——= E).
(1.3) 51%{ +u/(2>}>v,(ze )
We denote this class with K (v).
For u € A given by (1.1)and g(z) given by

(1.4) g(z) =z + Z by 2"
n=2
Their convolution (or Hadamard product), denoted by (u * g), is defined as
(1.5) (wrg)(z) =2+ anbyz" = (gxu)(2), (z € B).
n=2

Note that u x g € A.
Let 7" denote the class of functions analytic in £ that are of the form

(1.6) u(z) =z — Zanz”, (a, >0, z€ E)
n=2

and let 7*(v) =T N S*(v), C(v) =T N K(v).

The class 7*(v) and allied classes possess some interesting properties and have
been extensively studied by Silverman [16]] and Orhan [[14].

The study of operators is fundamental in geometric function theory, complex
analysis, and related areas. Several derivative and integral operators can be ex-
pressed by convolution of certain analytic functions. It should be noted that this
formalism helps future mathematical research as well as a better grasp of the
geometric properties of such operators. The following defines the familiar Mittag-
Leffler function F,(z) introduced by Mittag- Leffler [12] and its generalization
E, - (z) introduced by Wiman [19],

Ey(z) =5, F(UZTHH) and B, . (z) = 3,0 raryy» Where v, 7 € C,R(v) > 0 and
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PR(7) > 0. We define the function @, -(z) by
Qur(2) = 2(1) By 7 (2).

Observe that the function £, , contains many well-known functions as its special
case, for example,

e —1
Ev(2) = ¢, Biaz) = ——,
inh
By (2%) = coshz, Byy (—2%) =cosz, Eyy(2%) = . z,
z
. ) ;
Eap (_22) = SanQ E3(2) = 2 e 4 2e727" cos <§21/3>]

1
and Fy(z) = 5 [cos 21/ + cosh 2] .

The Mittag-Leffler function appears naturally in the solution of fractional order
differential and integral equations. In the study of complex systems and super
diffusive transport, in particular, fractional generalisation of the kinetic equation,
random walks, and Levy flights. Several properties of Mittag-Leffler function and
generalized Mittag-Leffler function can be found, e.g., in [1,3-9].
Now, for f € A, we define the following differential operator ®%' (v, 7)u: A — A

by

D (v, T)u(z) =u(z)* Qy.(2),

Dy, Tu(z) = (1= N (u(2) * Qur(2)) + Az(u(2) * Qur(2))

(v, Tu(z) =25 (DY " (v, 7) f(2)) .
If u is given by (1.1) then from the definition of the operator ©}'u it is easy to see
that

1.7) DV (v, T)u(z) = z + Z ont (A v, T)agz",
n=2

where

1.8) 0,1 = =D - 1)+ 1]

Note that

(1) when v =0 and 7 = 1, we get Al-Oboudi operator [2],
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(2) whenwv =0,7 =1and A = 1, we get Salagean operator [17],
(3) when m =0, we get E,, .(z), Srivastava et al. [18].

Now, by making use of the differential operator ®}'(v, 7)u, we define a new sub-
class of functions belonging to the class A.

Definition 1.1. For0 < h < 1,0 < 0 < 1, and 0 < ¢ < 1, we denote by TS;’?;)T(h, 7,9)
the subclass of u consisting of functions of the form (1.6]), whose geometric condition

satisfies
DT (v, T)u(z) )
D (v, T)u(2)

(@5 ) -

o (DY (v, T)u(z)) + (1 - h)
where D7 (v, T)u(z) is given by (1.7).

2. COEFFICIENT INEQUALITY

In the following theorem, we obtain a necessary and sufficient condition for
function to be in the class 7'S\" (%, 0, ).

Theorem 2.1. Let the function u be defined by (1.6). Then u € T'SY"(h,0,¢) if and
only if

[e.e]

(2.1) > [an = 1) +s(no + 1= RGN v, T)an < 5o+ (1—h)),
n=2

where 0 < ¢ < 1,0<h < 1and 0 < o < 1. The result (2.1)) is sharp for the function
u(z) =z — slo+{1=h) 2" n > 2.

[A(n —1) +<s(no +1— h)|em (A, v, T)

Proof. Suppose that the inequality holds true and |z| = 1. Then we obtain
(@ .ty - HEDME)

z

-9

DY (v, T)u(z)> ‘

z

o <@T(U,7)u(z))/ + (1 —h)

‘ th—l U, T) a2t
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—slo+( Zna—i—l— YO (N, v, T)anz" !
n=2

i [A(n—1)4+<s(no+1—h)]o"(\ v, T)a, — (o + (1 —h))

n=2

IN
o

Hence, by maximum modulus principle, u € T'S)"(h,0,¢). Now assume that
u € TS\ (h,0,5) so that
B (D5, ru(z)y - HlDE)

z

(D7 (v, T)ulz)) + (1 — ) BT

z

<g, z€ k.

Hence

’h ((@;”(U, u(z)) — M)

z

<g

- (@;ﬂ(v, (=) + (1 h)—QT(U’T)U(z)) ‘ |

z

Therefore, we get

|_ Z h(n - 1)¢Zl()\’ v, T)anznil

n=2
<cslo+( f:nO'—f—l— )T (N, v, T)anz" " .
n=2
Thus i,
> [an—1) +s(no + 1= h)|gr (A, v, 7)a, < s(o+ (1 — h))
and this conT;?letes the proof. O

Corollary 2.1. Let the function u € T'SY (h,0,<). Then

s(c+(1—n)) n
S =)+ o+ 1= hjerOno) 0 T2
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3. DISTORTION AND COVERING THEOREM

We introduce the growth and distortion theorems for the functions in the class
TS;?;JT(FL, 0,5).

Theorem 3.1. Let the function u € T'S}',(h,0,<). Then
(o +(1—nh))

. 2
oo nh o iomy = M)
(o +(1—h)) 2
< .
=P e Go +1-m)
The result is sharp and attained for
. s(c+(1—=") 2
) e <Go 1R
Proof.
u(z) = |z = > anz"| < Izl + D anlz" < |2+ 12 ) an.
n=2 n=2 n=2
By Theorem 2.1 we get
= s(o+ (1 —h))
3.1 n < .
G- ;a [ +<(20 + 1= h)lop (A v,T)
Thus ( (1)
slo+ - 2
MO e <o+ 1= m]
Also
[u(2)] > |2 = Y anl2" > |2 = 2D an
n=2 n=2
s(o+(1—h)) 2
> |z — .
e TS W e ey ) L
[

Theorem 3.2. Let u € T'SY'"(h,0,c). Then

B 2¢(c + (1 —h))
o (N v, T)[h+ (20 + 1 — h)]

2¢(c + (1 —h))
(A v, TR+ <520 + 1 — h)]

2] < [ (2)] < 1+

2,
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with equality for

Mo+(-m)
(A, v, T)[h+¢(20 + 1 — h)]

u(z) =z —
Proof. Notice that

o5 (Ao, T)h+<s(20+1—h Znan

Zn (n—1)+¢(no+1—=h)o"(\ v, 7)ay,
n=2

(3.2) <¢(o + (1 = h)),
from Theorem [2.1l Thus

o0
1-— E na,z" "t
n=2

(3.3) §1—i—|z[2nangl—i—|z]q25

n=2

(@) =

o0
<1+ Znan\zw’l
n=2

2¢(c + (1 —h))
v, T)A+s(20+1—h)]

On the other hand

") =|1- Znanz"’1 >1- Znan\zw’l
n=2 n=2
= 26(0 + (1 — h))
3. >1-— n>1— .
G4 2112 e 2 = B G o+ 1)
Combining (3.3)) and (3.4), we get the result. O

4. RADII OF STARLIKENESS, CONVEXITY AND CLOSE-TO-CONVEXITY

In the following theorems, we obtain the radii of starlikeness, convexity and
close-to-convexity for the class 7S\’ (%, 0, <).

Theorem 4.1. Let u € T'SY (h,0,5). Then u is starlike in |z| < Ry of order p, 0 <
p < 1, where

(= p)(Aln = 1) +<(no + 1 — h)dr (N, v,7) |
4.1) Ry = mf{ = o+ A=) } , n>2.

n
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Proof. w is starlike of order p, 0 < p < 1 if

- { zu/(2) } .
u(z)
Thus it is enough to show that
_ o —1 n—1 - -1 n—1
)| S0 Den!| S el
u(2) 1—> apzn ! 1= aylz|"!
n=2 n=2
Thus
(4.2) wlz) 1‘ <1-pif iwanwl <1.
u(z) — (1—-p)

Hence by Theorem (4.2) will be true if

n=p s o (B =)+ (no + 1= W)op (0. 7)
1—p - (o4 (1 —h)
or if
(1= p)(A(n — 1) +(no + 1 = B))gp(A,v,7)] 77
4.3) z| < n ., n> 2.
i (= p(o + (1= )
The theorem follows easily from (4.3)). O

Theorem 4.2. Let u € T'SY (h,0,c). Then u is convex in |z| < R, of order p, 0 <
p < 1, where

A=) (A = 1) + <(no +1 = B)Er(Av,7) | T
4.4) Rz—llnlf{ lre R } nz2

Proof. u is convex of order p, 0 < p < 1 if

w{ie 2,

Thus it is enough to show that

u(2) - —nggn(n —1Da,z"! 3 gg n(n — 1)a,|z|"*
u'(z) | -

oo o
1—5" na,zn! 1= nay|z|*!
n=2 n=2
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Thus

(4.5) ‘%

1=pir 3 <1

Hence by Theorem [2.1], (4.5) will be true if
n(n — /)) 21 < (h(n —1) +s(no +1—h)gp' (A v,7)

1- s(c+ (1 —h)
or if
(1=p)(A(n—1)+s(no+1— h))¢m(k,vﬁ)} et
4.6 < n n > 2.
O nn— p)sto + (1= ) "=
The theorem follows easily from (4.6)). O

Theorem 4.3. Let u € T'S}";' (h,0,<). Then u is close-to-convex in |z| < R of order
p, 0 < p <1, where

(= p) (A= 1)+ (no + 1= R)gm(A, v, 7)|
4.7) Ry = 121“{ o A=) } e

Proof. u is close-to-convex of order p,0 < p < 1 if

R{u'(2)} > p.

Thus it is enough to show that

W' (z) — 1| = ‘ Znan -l <Znan|z|" !

Thus

(4.8) W'(z)—1|<1—pif Z(lﬁ
n=2

)an\z|”’1 <1

Hence by Theorem (4.8) will be true if

et < (A(n — 1) + <(no + 1 — k)¢ (N, v, 7)
1 - B slo+(1—h)

or if

(1=p)(Mn—=1)+s(no+1—h)gp(A\v,7)] "
ne(o + (1 —h))

The theorem follows easily from (4.9). O

(4.9) |z| < ,n > 2.
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5. EXTREME POINTS

In the following theorem, we obtain extreme points for the class 7'S}"" (h, o, <).

Theorem 5.1. Let uy(z) = z and

o+ (1—=h))
[A(n = 1) +<(no + 1 = B)]gi (A, v,7)
Then u € T'SY"[(h,0,<) if and only if it can be expressed in the form

un(z) =2 — 2" forn=23,---.

n=1

u(z) = Z@nun(z), where 6, > 0 and Zen =1
n=1

Proof. Assume that u(z) = > 6,u,(z), hence we get
n=1

> (o + (1 —h))b, n
[A(n —1) 4+ ¢(no+ 1 —h)|o™(\, v, 7)

u(z) =z —

n=2

Now, u € T'S)" (R, 0,5), since

i [A(n—1)4+¢s(no+1—h)]o" (N, v, T) " (o + (1—h))b,
s(o+ (1 —h)) [A(n —1) 4+ ¢(no + 1 = h)|gm(\, v, T)

n=2

n=2

Conversely, suppose u € T'SY (h,0,<). Then we show that u can be written in
the form > 0,u,(2).
n=1
Now u € TS} (h,0,<) implies from Theorem

o+ (1—h))
[A(n — 1) +s(no + 1 — h)]gm(A\,v,T)

ay <

Setting 6, = [h(”_l)Jri((’;‘:H:Z)){W(A’”’T) an,n=2,3,---and §; =1 — Y 6,, we obtain
n=2

u(z) = §1 Opun(2). O
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6. HADAMARD PRODUCT
In the following theorem, we obtain the convolution result for functions belongs

to the class T'SY" (h, o,¢).

Theorem 6.1. Let u,g € T'S(h,0,¢,9). Then ux g € T'S(h,o,(, V) for

o0 o0 [e.9]

u(z) =z — a,z2", g(z) =z — Z b,2" and (ux g)(z) = z — Z anbnz",
n=2 n=2 n=2
where
2 _ _
(> ¢*(c+ (1 —=h))h(n—1)

[h(n — 1) +¢(no+1—h)]2g"(\,v,7) —2(c + (1 —h))(no +1—h)

Proof. u € TSY](h,0,5) and so

6. :’2 b= t) sl MR OT)
and
6.2) g [A(n —1) —i—;((:j_—é—ll_—hi)i;]gb?()\, v, r)bn <1
We have to find the smallest number ¢ such that
6.3) g [A(n —1) +<g((:ij(ul1_—hf)z;]¢,?@, v, T)anbn <1
By Cauchy-Schwarz inequality
6.4) g; [h(n — 1) +g<((:i ?11_—3]%”@, v, T) Vb <1
Therefore it is enough to show that
[A(n —1) +((no +1 — )]gﬁzl()\,vﬂ')a .
(o +(1=h) o

< [i(n — 1) +¢(no + 1 —h)]o7 (A, v, T) .

N (o +(1—-n))
That is
6.5) Jab < [i(n — 1) +¢(no+1— h)|¢

[M(n—1)+{(noc+1—h)|s
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From (6.4)

(c+ (1 —h))
Vapb, < .
T (= 1) + <(no + 1= W00 v,7)
Thus it is enough to show that

(o +(1—nh))
[A(n —1) 4+ ¢(no+ 1 — h)|¢m™(\, v, 7)

which simplifies to

[A(n—1)4+¢(no+1—h)|C

S =D+ o+ 1= R)s

s%(c+ (1= h))A(n —1)
[h(n—1)+¢(no+1—h)]2¢"(\,v,7) —*(c+ (1 —h))(no+1—h)

¢ =

7. CLOSURE THEOREMS

We shall prove the following closure theorems for the class 7'SY'; (R, 0,).

Theorem 7.1. Let u; € T'SY/(h,0,5),j =1,2,...,s. Then

g(z) = Z cjuj(z) € TSV, (h,0,5)
j=1

n=2

o S
For uj(z) =z — Y a,;2", where ) ¢; = 1.
j=1

Proof. We have

S o0 S [e.9]

g(z) = Z cju;(z) =z — Z Z Cjan ;2" =2 — Zenz",

j=1 n=2 j=1 n=2

where e, = 3 c¢;an ;. Thus g(2) € TSY"] (R, 0,¢) if
=1

J

= [(n = 1)+ ¢(no + 1 — h)]e™(\ v, T)
2 o+ (1-n) st

that is, if

= [Aln = 1) +¢(no + 1 — R)¢7 (N, v, T)
2 (o +(1-h) €t
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h(n —1) +< (no +1—h)gr(\ v, 7T)
_Zc]; . (1 —h)) Qp, 5

SZCJ' =1.
j=1

Theorem 7.2. Let u, g € TS}/ (h,0,<). Then

h(z)=z-Y (a2 +02)2" € TSV (h,0,5),
n=2
where
_ 2 _
. 2h(n — 1)¢*(o + (1~ h)

[A(n —1) +<s(no+1—h)2e"(\,v,7) —25%2(c + (1 — h))(no+1—h)
Proof. Since u,g € T'SY";/(h,7,), so Theorem [2.1]yields

2 [ (A(n—1) +<¢(no +1—hm)em\ v, 1) 17
Z[ o+ 1-h) } =1
n = [ ((n — 1) + < Nen(n 7). 12
h(n —1)+c(no+1—~h))o7 (A v, T
Z[ o+ (1-h) b”l =1

We obtain from the last two inequalities

21 [(n—1)4+<s(no+1—h)emNo, )], 5 .,
LD ot (W) | i<

But h(z) € TS(h,0,(,q,m), if and only if
= [A(n = 1)+ C(no +1 = k)] (N, v, 7)
— (lo+(1—=h)
where 0 < ¢ < 1, however implies (7.2)) if
[A(n —1) + ¢(no +1 = h)|¢7' (A, v, 7)
(lo+(1—h))
1 {(h(n — 1) +5(no+1—h)gr\v, )7
2 s(c+ (1 —h))

(7.2) (a2 +12) <1,

n n
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Simplifying, we get
2h(n — 1)¢*(c + (1 — h))
[(n —1)+<s(no+1—h)2e"(\v,7) —2¢%(c + (1 — h))(no+1—h)

¢z

O

Conclusion: In this paper, we have introduced and studied a specific subclass of
analytic functions defined through the use of a Mittag-Leffler function. By lever-
aging the properties of this Mittag-Leffler function, we have been able to derive
several interesting results regarding the coefficient estimates, growth and distor-
tion theorems, and radii of starlikeness and convexity for the functions within
this subclass. The study of this specific subclass of analytic functions defined by
Mittag-Leffler function not only enhances our theoretical understanding but also
has significant implications for applied mathematics and other scientific domains.
Further research in this area promises to yield even richer and more comprehen-
sive insights.
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