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ABSTRACT. This study introduces a third-order nonlinear delay differential equa-
tion (DDE) model designed to simulate the dynamics of educational quality, align-
ing specifically with the goals of Sustainable Development Goal 4 (SDG 4). The
model is structured to incorporate time lags which accurately reflect real-world
systemic delays in areas such as policy implementation, resource allocation, and
feedback from learning outcomes. Educational quality is the primary depen-
dent variable, with the DDE’s delay components capturing the inertia inherent
in complex educational systems. Using the rigorous Lyapunov’s direct method,
augmented with integral terms, the research theoretically proves the uniform as-
ymptotic stability and convergence of solution pairs under bounded conditions.
This theoretical finding is crucial, as it ensures that initial disparities or differ-
ences between various educational states will asymptotically diminish over time,
converging toward a stable, common equilibrium. The study validates these the-
oretical results through extensive numerical simulations performed in Mathemat-
ica. These simulations, which include phase portraits and qualitative analysis
across varying delay magnitudes, confirm that small time delays are critical for
promoting stable, bounded solutions and achieving rapid convergence to the de-
sired quality standard.
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1. INTRODUCTION

The Sustainable Development Goals (SDGs), established by the United Na-
tions in 2015, provide a global blueprint for addressing critical challenges like
poverty and inequality [1], [2]. SDG 4, which focuses on ensuring inclusive and
equitable quality education, is considered a foundational pillar for achieving over-
all sustainability [3]. Mathematical modeling [4] is an essential tool for advanc-
ing SDG objectives in education by simulating complex scenarios, optimizing re-
source allocation, and forecasting long-term outcomes. Recent efforts emphasize
integrating mathematical approaches into sustainability education to foster critical
thinking and problem-solving skills necessary for tackling SDG challenges [5].

In modeling SDG-based educational quality, nonlinear delay differential equa-
tions (DDEs) are particularly effective because they capture the inherent complex-
ities and time lags—such as delays in policy implementation or resource alloca-
tion—within educational systems . Unlike traditional ordinary differential equa-
tions, DDEs incorporate time delays τ , reflecting real-world phenomena like the
postponed effects of reforms or the gradual adoption of sustainable curricula. Non-
linearity accounts for feedback loops and threshold behaviors, such as saturation
in learning outcomes or complex interactions among variables like teacher train-
ing (T ) and resource availability (R) [4,7].

The utility of nonlinear DDEs has been demonstrated in various dynamic sys-
tems, including biological networks, where delays influence long-term stability
and behavior [12]. For educational quality, these models simulate evolution over
time, representing the inertia of institutional change. A critical aspect of these
models is convergence of solutions, which ensures that quality indicators reach
desired equilibria despite initial disturbances. Convergence analysis verifies the
robustness of SDG interventions by checking if different initial conditions tend
toward the same steady state [7].

To rigorously establish convergence in such systems, Lyapunov’s direct method—
also known as the second method—serves as a cornerstone, extending from ordi-
nary differential equations to DDEs via adaptations like Razumikhin functions or
Krasovskii functionals [7, 8]. This method involves constructing a positive def-
inite scalar function whose time derivative along system trajectories is negative
semidefinite, implying stability and potential convergence to equilibria. For DDEs,
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the Razumikhin approach modifies the standard Lyapunov function by imposing
conditions that bound the function’s values over the delay interval, facilitating es-
timates of convergence rates such as exponential, finite-time, or fixed-time [9].
In particular, Lyapunov functions from delay-free systems can be augmented with
integral terms to form functionals for DDEs, preserving global asymptotic stabil-
ity and ensuring solution convergence [10]. For delayed partial differential sys-
tems, exponential stability has been analyzed using similar Lyapunov-based tech-
niques [11]. Optimization frameworks further leverage Lyapunov’s method for
DDEs, extending Malkin’s approach to derive stability conditions [9,11].

When assessing convergence via pairs of solutions, Lyapunov’s direct method is
particularly effective. By considering the differences between two solutions and
defining a Lyapunov functional on these differences, one can demonstrate that
the discrepancies diminish over time, leading to asymptotic convergence [13–16].
This pair-wise approach, often employing quadratic forms augmented with delay
integrals, has been used to derive criteria for solution convergence in nonlinear
systems, including those with stochastic perturbations or neutral terms [17]. In
SDG educational models, this methodology can verify that diverse initial states—
representing varying educational baselines—converge to targeted quality levels,
enhancing the predictive reliability of delay-inclusive frameworks [5,18].

Past results underscore the evolution of these techniques. Early works focused
on qualitative analysis of nonautonomous nonlinear DDEs, establishing bound-
edness and convergence under specific growth conditions [7, 8, 13, 15]. Subse-
quent advancements incorporated forcing terms and biological applications, deriv-
ing global convergence criteria for perturbed models like Mackey–Glass or food-
limited populations [20, 21]. In sustainability education, mathematical modeling
has been linked to SDGs through teacher training programs, where pre-service
educators develop modeling tasks addressing goals like clean water (SDG 6) or
responsible consumption (SDG 12), fostering competencies via mixed-methods
evaluations that reveal significant knowledge gains and attitudinal shifts [5, 22].
These studies build on UNESCO guidelines and emphasize interdisciplinary inte-
gration, though gaps remain in delay-inclusive models for educational dynamics.



48 I. Omoko, T. Alabi, and P. Danso

Building on prior work ( [13–15]) concerning the stability and convergence of
Delay Differential Equations with forcing terms, this research proposes a third-
order nonlinear DDE model for SDG-based educational quality introducing time-
lagged arguments that reflect real-world lags in policy implementation and sys-
temic response. The model is given by:

(1.1)
x′′′(t) + µx(t− τ)x′′(t− τ) + α

[
1− (x′(t− τ))

2
]
= P (t− τ)

P (t− τ) = a1T (t− τ) + a2R(t− τ) + a3L(t− τ),

where x(t) is educational quality, and P (t) aggregates inputs from teacher effec-
tiveness (T ), resources (R), and learning outcomes (L). By applying Lyapunov’s
direct method to pairs of solutions, the study establishes uniform asymptotic sta-
bility and convergence, providing new criteria that accommodate bounded inputs
and enhance the theoretical understanding of delay-inclusive educational dynam-
ics.

2. SYSTEM FORMULATION

System (1) becomes:

x′(t) = y(t)(2.1)

y′(t) = z(t)(2.2)

z′(t) = P (t− τ)− µx(t− τ)z(t− τ)− α
(
1− y2(t− τ)

)
(2.3)

This formulation captures:

(i) Systemic inertia and memory.
(ii) Momentum and self-regulating feedback loops.

(iii) Delayed responses to policy interventions and external influences.

3. ASYMPTOTIC STABILITY OF DELAYED DIFFERENTIAL EQUATION MODEL FOR

SDG-BASED EDUCATIONAL QUALITY

The affirmative finding of Asymptotic Stability suggests that, provided certain
parameters (µ, α, and the delay τ) are within specific bounds, the education sys-
tem possesses an inherent self-correcting capability that drives it back toward the
SDG 4 quality target. This property considers the unforced system, obtained by
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setting the external input P (t− τ) = 0 in the original DDE (1) The trivial solution
is x = 0.

Theorem 3.1 (Asymptotic Stability of the Unforced System). Assume the following
condition holds:

(i) Positive Definiteness: A Lyapunov-Krasovskii functional V (x) exists and is
positive definite,

(ii) Negative Definiteness: its time derivative V̇ along the trajectories of the un-
forced system (2), (3), (4) is negative definite in a neighborhood of the origin,
satisfying:

dV

dt
≤ −ρ2

[
x2(t) + y2(t) + z2(t)

]
for some constant ρ2 > 0, µ > 0, α > 0, and the delay τ > 0 are fixed,

then the trivial solution x = 0 of the unforced system is Asymptotically Stable:

lim
t→∞

x(t) = lim
t→∞

y(t) = lim
t→∞

z(t) = 0.

Proof. The proof relies on constructing a suitable Lyapunov functional V (x) and
demonstrating that the system’s dynamics ensure V̇ remains negative definite,
which is the necessary condition for asymptotic stability for the trivial solution.
Scalar function is defined by

(3.1) 2V = x2 + y2 + z2 + 2xy + 2xz + 2yz +

∫ 0

t−τ

(ξ1x
2(s) + ξ2y

2(s) + ξ3z
2(s))ds,

can be rewritten as

(3.2) 2V = (x+ y + z)2 + ξ1(t)x
2(t− τ) + ξ2y

2(t− τ) + ξ3z
2(t− τ). ≥ 0.

Time derivatives give

(3.3) V̇ =
∂V

∂t
x′(t) +

∂V

∂t
y′(t) +

∂V

∂t
z′(t)

∂V

∂t
x′(t) = (x+ y + z + ξx2(t− τ))y

= (xy + y2 + yz + ξ1yx
2(t− τ)) = (x2 + 2y2 + z2) + a1(x

2 + y2)(r(t))2)

∂V

∂t
y′(t) = (x+ y + z + ξ2y

2(t− τ))z

= (xz + z2 + yz + ξ2zy
2(t− τ)) = (x2 + y2 + 2z2) + a2(y

2 + z2)(r(t))2)
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∂V

∂t
z′(t) = (x+ y + z + ξ3z

2(t− τ))(−µx(t− τ)z(t− τ)− α
(
1− y2(t− τ)

)
= (−xµx(t− τ)z(t− τ)− yµx(t− τ)z(t− τ)− zµx(t− τ)z(t− τ)

+ ξ3z
2(t− τ)µx(t− τ)z(t− τ)) + αx− αy − αz

+ αξ3z
2(t− τ) + y2(t− τ))xµx(t− τ)z(t− τ)

− yy2(t− τ))µx(t− τ)z(t− τ)

− zy2(t− τ))µx(t− τ)z(t− τ) + ξ3z
2(t− τ)αy2(t− τ))

∂V

∂t
z′(t) ≤ −c1x

2z(r(t))2 − c2µxyz(r(t))
2 − c3µxz

2(r(t))2 + c4ξ3µz
3r(t))3

+ α | x | −α | y | −α | z | +αc5ξ3z
2(r(t))2 + c6y

2x2z(r(t))4

− c7µxy
3z(r(t))3 + c8xy

2z2(r(t))4 + c9ξ3z
2αy2(r(t))4

∂V

∂t
z′(t) ≤ −c1x

2z(r(t))2 − c2µxyz(r(t))
2 − c3µxz

2(r(t))2 + c4ξ3µz
3r(t))3 + α | x |

− α | y | −α | z | +αc5ξ3z
2(r(t))2 + c6y

2x2z(r(t))4 − c7µxy
3z(r(t))3

− c8xy
2z2(r(t))4 + c9ξ3z

2αy2(r(t))4

V̇ = (x2 + 2y2 + z2) + a1(x
2 + y2)(r(t))2) + (x2 + y2 + 2z2) + a2(y

2 + z2)(r(t))2)−

− c1x
2z(r(t))2 − c2µxyz(r(t))

2 − c3µxz
2(r(t))2 + c4ξ3µz

3r(t))3 + α | x |

− α | y | −α | z | +αc5ξ3z
2(r(t))2 + c6y

2x2z(r(t))4 − c7µxy
3z(r(t))3

+ c8xy
2z2(r(t))4 + c9ξ3z

2αy2(r(t))4

(3.4) V̇ ≤ −ρ1(x
2 + y2 + z2) + d(x2 + y2 + z2)(r(t))2)

where

ρ1 = min{c1, c2, c3, ...c9}, c1, c2, c3, ...c9, a1, a2 > 0, c1µx ≤ d1 > 0,

c2µy ≤ d2 > 0, c3ξiαz ≤ d3 > 0, c4ξ3µz ≤ d4 > 0,

(3.5) V̇ ≤ −ρ2(x
2 + y2 + z2) < 0 as t −→ ∞

□
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4. CONVERGENCE OF SOLUTIONS FOR THE DELAY DIFFERENTIAL MODEL OF

EDUCATIONAL QUALITY

The Lyapunov-based convergence theorem establishes uniform asymptotic sta-
bility for pairs of solutions under bounded and continuous assumptions, demon-
strating that differences (x1(t)−x2(t)), y1(t)−y2(t)), (z1(t))−z2(t)) approach zero as
t → ∞. This theorem, augmented with integral terms in the Lyapunov functional
to handle delays, extends classical results for nonlinear DDEs. For the educational
sector, this implies that diverse initial conditions—reflecting varying institutional
baselines or regional disparities—converge to a common high-quality equilibrium,
provided delays are managed effectively. Such predictability aids policymakers
in forecasting long-term impacts of SDG 4 interventions, reducing uncertainty in
resource planning and enhancing accountability

Definition 4.1. Any pair of solutions (1), (2), (3), (4) converges if (x1 − x2) −→
0, (y1 − y2) −→ 0, (z1 − z2) −→ 0 as t −→ ∞.

Theorem 4.1. [Uniform Asymptotic Convergence of Solution Pairs] Let (x1(t), y1(t),
z1(t)) and (x2(t), y2(t), z2(t)) be two solutions of the delayed system (1), assume:

(i) All solutions and external inputs (i.e., T (t), R(t), L(t)) are bounded and con-
tinuous for all t ≥ 0, µ > 0, α > 0, and τ > 0 are fixed parameters,

(ii) (µn1 − αn2) > 0,
(iii) (ξ2c4 + ξ1c2) > 0, n1, n2, c1, n2 > 0,
(iv) The initial functions x(t), y(t), z(t) are continuous and bounded on [−τ, 0].

Here ∆x = x1 − x2, ∆y = y1 − y2, ∆z = z1 − z2, and ξ1, ξ2, ξ3 > 0 are positive
constants. Then, there exists a choice of constants ξ1, ξ2, ξ3 such that the derivative of
V (t) along the solutions satisfies:

dV

dt
≤ −δ

[
(∆x(t))2 + (∆y(t))2 + (∆z(t))2

]
for some δ > 0.

Therefore,
lim
t→∞

∆x(t) = lim
t→∞

∆y(t) = lim
t→∞

∆z(t) = 0.

That is, the pair of solutions converge asymptotically, and the system exhibits uniform
convergence in the sense of Lyapunov.
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Proof. Replacing respectively x, y, z in (1), (2), (3), (4) by the pair of solutions
(x1 − x2), (y1 − y2), (z1 − z2), we introduce the Lyapunov function

2V = (x1 − x2)
2 + (y1 − y2)

2 + (z1 − z2)
2 + 2(x1 − x2)(y1 − y2)

+ 2(x1 − x2)(z1 − z2) + 2(y1 − y2)(z1 − z2)

+

∫ 0

t−τ

ξ(x1 − x2)
2(s) + ξ2(y1 − y2)

2(s) + ξ3(z1 − z2)
2(s)ds

2V = (x1 − x2)
2 + (y1 − y2)

2 + (z1 − z2)
2 + (x1 − x2)

2 + (y1 − y2)
2

+ (x1 − x2)
2 + (z1 − z2)

2 + (y1 − y2)
2 + (z1 − z2)

2 + ξ(t)(x1 − x2)
2(t− τ)

+ ξ2(y1 − y2)
2(t− τ) + ξ3(z1 − z2)

2(t− τ)

V ≥ (x1 − x2)
2 + (y1 − y2)

2 + (z1 − z2)
2 + (x1 − x2)

2 + (y1 − y2)
2

+ (x1 − x2)
2 + (z1 − z2)

2 + (y1 − y2)
2 + (z1 − z2)

2 + ξ1τ
2(t)(x1 − x2)

2

+ ξ2τ
2(t)(y1 − y2)

2 + ξ3τ
2(t)(z1 − z2)

2

≥ ξ4

(
(x1 − x2) + (y1 − y2)

2 + (z1 − z2)
2

V ≥ 0

Using (5), time derivatives will yield,

∂V

∂t
x′(t) = (x1 − x2 + (y1 − y2) + (z1 − z2) + ξ1(x1 − x2)

2(t− τ))(y1 − y2)

= (x1 − x2)(y1 − y2) + (y1 − y2)
2 + (z1 − z2)(y1 − y2)

+ ξ1(x1 − x2)
2(t− τ))(y1 − y2)

≤ c1
(
(x1 − x2)

2 + (y1 − y2)
2
)
+ (z1 − z2)

2 + ξ1c2τ
2(t)(x1 − x2)

2(y1 − y2)
1/2

∂V

∂t
y′(t) = (x1 − x2) + (y1 − y2) + (z1 − z2) + ξ2(y1 − y2)

2(t− τ))(z1 − z2)

∂V

∂t
y′(t) = 1/2

(
(x1 − x2)

2 + (z1 − z2)
2) + 1/2

(
(y1 − y2)

2 + (z1 − z2)
2)

+ (z1 − z2)
2 + ξ2τ

2(y1 − y2)
2(t− τ)) | (z1 − z2) |

≤ 1/2((x1 − x2)
2 + (z1 − z2)

2) + 1/2((y1 − y2)
2 + (z1 − z2)

2) + (z1 − z2)
2
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+ ξ2c4τ
2(t)(y1 − y2)

2(z1 − z2)
1/2

≤ c5(x1 − x2)
2 + (y1 − y2)

2 + (z1 − z2)
2 + ξ2c4τ

2(t)(y1 − y2)
2(z1 − z2)

1/2

∂V

∂z
z′(t) =

(
(x1 − x2) + (y1 − y2) + (z1 − z2) + ξ3(x1 − x2)

2(t− τ)

)(
P (t)

− µ(x1 − x2)(t− τ)(z1 − z2)(t− τ)− α(1− (y1 − y2)
2(t− τ)

)
= (x1 − x2) + (y1 − y2) + (z1 − z2) + ξ3(z1 − z2)

2(t− τ))a1T (t− τ)

+ a2R(t− τ) + a3L(t− τ) + µ(x1 − x2)(t− τ)(z1 − z2)(t− τ)

− α
(
1− (y1 − y2)

2(t− τ)
)

∂V

∂z
z′(t) =

(
(x1 − x2) + (y1 − y2) + (z1 − z2)

)(
P (t) +

(
ξ3(x1 − x2)

2(t− τ)

)
P (t)

−
(
µ(x1 − x2)(t− τ)(z1 − z2)(t− τ)

)
((x1 − x2) + (y1 − y2) + (z1 − z2))

−
(
α(1− (y1 − y2)

2(t− τ)

)
((x1 − x2) + (y1 − y2) + (z1 − z2))

=

(
(x1 − x2) + (y1 − y2) + (z1 − z2)

)
·

(
a1T (t− τ) + a2R(t− τ) + a3L(t− τ)

)
− µn1

(
(r(t))2((x1 − x2)

2 + (y1 − y2)
2 + (z1 − z2)

2

)
− α

(
(x1 − x2)

2

+ (y1 − y2)
2 + (z1 − z2)

2)

)1/2

+ αn2(r(t))
2

·
(
(x1 − x2)

2 + (y1 − y2)
2 + (z1 − z2)

2)

)
= a4(r(t))

3

(
(x1 − x2)

2 + (y1 − y2)
2 + (z1 − z2)

2)

)1/2

− µn1

(
(r(t))2((x1 − x2)

2 + (y1 − y2)
2 + (z1 − z2)

2

)
− α

(
(x1 − x2)

2
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+ (y1 − y2)
2 + (z1 − z2)

2)

)1/2

+ αn2(r(t))
2

·
(
(x1 − x2)

2 + (y1 − y2)
2 + (z1 − z2)

2)

)
∂V

∂z
z′(t) ≤ −(µn1 − αn2)(r(t))

2

(
(x1 − x2)

2 + (y1 − y2)
2 + (z1 − z2)

2

)
+ a4((r(t))

3 − α)

(
(x1 − x2)

2 + (y1 − y2)
2 + (z1 − z2)

2)

)1/2

V̇ = c1

(
(x1 − x2)

2 + (y1 − y2)
2) + (z1 − z2)

2 + ξ1c2τ
2(t)(x1 − x2)

2(y1 − y2)
1/2

+ c5(x1 − x2)
2 + (y1 − y2)

2 + (z1 − z2)
2 + ξ2c4τ

2(t)(y1 − y2)
2(z1 − z2)

1/2

− (µn1 − αn2)(r(t))
2

(
(x1 − x2)

2 + (y1 − y2)
2 + (z1 − z2)

2

)
+ a4((r(t))

3 − α)

(
(x1 − x2)

2 + (y1 − y2)
2 + (z1 − z2)

2)

)1/2

V̇ ≤ −((µn1 − αn2)(r(t))
2 − c1 − c5)

(
(x1 − x2)

2 + (y1 − y2)
2 + (z1 − z2)

2

)
+ ((ξ2c4 + ξ1c2)τ

2(t) + a4((r(t))
3 − α)

(
(x1 − x2)

2 + (y1 − y2)
2 + (z1 − z2)

2)

)1/2

V̇ ≤ −n

(
(x1 − x2)

2 + (y1 − y2)
2 + (z1 − z2)

2

)
, n > 0

The above inequality implies that V (t) decreases to zero, indicating the conver-
gence of the pair of solutions, i.e (x1 − x2) → 0, (y1 − y2) → 0, (z1 − z2) → 0 as
t → ∞, validating the theorem (2). □

5. SIMULATION AND NUMERICAL VERIFICATION

Simulations via Mathematica code confirm that for small values of delay terms τ ,
solutions converge (stable) whereas for larger values τ , instability and divergence
occur.
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Fig. 1. The plot of the stability in SDG Model at P (t− τ) = 0.
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Fig. 2. Convergence of (x1 − x2) at µ = 1, α = 1, τ = 0.1, P = 3.
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Fig. 3. Convergence of x1, x2 at µ = 1, α = 0.1, τ = 1, P = 3.
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Fig. 4. Convergence of (y1 − y2) at µ = 1, alpha = 1, τ = 0.1, P = 3.
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Fig. 5. Convergence of y1, y2 at µ = 1, α = 1, τ = 0.1, P = 3.
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Fig. 6. Convergence of (z1, z2) at µ = 1, α = 1, τ = 0.1, P = 3.
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Fig. 7. Convergence of z1, z2 at µ = 1, α = 1, τ = 0.1, P = 3.
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Fig. 8. The Lyapunov function experiences energy decay.
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Fig. 9. Lyapunov derivative satisfies Convergence at τ = 0.1, µ = 0.5, P = 1.
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Fig. 10. Phase Portrait of x,y,z dimension at τ = 0.1, µ = 0.5, P = 1.
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Fig. 11. Phase Portrait of x,z trajectories at τ = 0.1, µ = 0.5, P = 1.
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Fig. 12. Phase Portrait of y,z trajectories center with curves at
τ = 0.1, µ = 0.5, P = 1. .

Fig. 13. Wolfram code shows convergence of pair of solutions.
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Fig. 14. Wolfram code shows shows asymptotic analysis of the pair of solutions.
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Fig. 15. Effect of delays at τ = 1
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Fig. 16. Effect of delays at τ = 0.03
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Fig. 17. Effect of delays at τ = 0.01

6. RESULTS AND DISCUSSION

The numerical analysis in Figure 1 shows that With dV
dt

≤ 0, V (t) positive definite
where P(t) = 0, standard results for delay differential equations imply asymptotic
stability: x(t), y(t), z(t) → 0 as t → ∞. Figures 2-6 visually confirm the con-
vergence of the pair of solutions. The trajectories for educational quality and its
derivatives (x1(t), x2(t), etc.) remain close due to small initial differences. With
specific parameter values (τ = 0.1, 0.03, 0.05, µ = 0.5, P = 1), the solutions exhibit
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stable, bounded behavior. This damping effect is attributed to the negative term,
−µx(t−τ)z(t−τ), which helps to reduce the growth of z(t) (acceleration), thereby
promoting convergence.

Figure 7 and 8 represent analysis of the Lyapunov function V (t) and its deriva-
tive,

Phase Portraits in Figures 9a, b, c illustrate the dynamics of the trajectories in
three-dimensional (x, y, z) space. Starting from slightly different initial points,
the trajectoriesconverge spirally to a similar path, confirming that the differences
∆x,∆y,∆z tend to zero. Two-dimensional projections further show that conver-
gence manifests as overlapping curves for the (x, y), (x, z), and (y, z) pairs.

The analysis of delays (Figures 14-17) indicates that systems with small delays
exhibit stable behavior where solutions remain bounded and the pair of solutions
converges asymptotically (∆(t) → 0). Specifically, short delays (τ < 0.1) enhance
the robustness of quality improvement, allowing for rapid impacts from teacher
training (τT ) or resource deployment (τR). Conversely, medium-to-large delays
(τ > 1) lead to instability and divergence, highlighting the need for efficient policy
implementation.

7. SUMMARY AND CONCLUSION

The comprehensive analysis encompassing theoretical convergence proofs via
the Lyapunov’s direct method, numerical verification using Mathematica, and qual-
itative analysis of delay magnitudes provide significant insights for the educational
sector.

The Lyapunov-based convergence theorem formally establishes the uniform as-
ymptotic stability of solution pairs under continuous and bounded assumptions,
proving that the solution differences (∆x,∆y,∆z) approach zero over time. For
SDG 4, this means that varied initial educational conditions, such as **regional
disparities or institutional baselines, will converge to a shared high-quality equilib-
rium, provided that the systemic delays are effectively managed. This predictabil-
ity is valuable for policymakers in forecasting the long-term impacts of SDG 4
interventions, aiding in resource planning and enhancing accountability.

The numerical verification of the Lyapunov derivative dV
dt

≤ −δ[(∆x(t))2 +

(∆y(t))2 + (∆z(t))2] confirms its negative definiteness within stable regimes. This
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approach can be utilized as a tool for assessing policy robustness, allowing for
simulating scenarios, such as the effects of a delay in teacher training (τT ), to
inform evidence-based reforms.

Simulations confirm that small delays (τ < 0.1) drive rapid convergence, while
medium-to-large delays (τ > 1) induce oscillations or divergence. Phase portraits
clearly show stable trajectories merging for small delays, contrasting with chaotic
divergence for larger ones, underscoring the destabilizing influence of prolonged
lags. These findings highlight the necessity of minimizing implementation delays
to meet SDG 4 targets, as short lags (e.g., ≈ 0.03) ensure prompt responses to
external inputs P (t), thereby optimizing investments in teachers (T ), resources
(R), and learning outcomes (L).

At the learner level, the predicted stable convergence supports the development
of resilient educational pathways, ensuring that initial disadvantages (e.g., in ac-
cess or prior knowledge) are reduced over time. Decreased delays in resource
allocation and learning feedback lead to smoother quality momentum (y(t)) and
acceleration (z(t)), fostering consistent progress and lowering dropout risks. Ul-
timately, this translates to more equitable access to quality education, consistent
with SDG 4’s emphasis on inclusivity.

In conclusion, this model advances both the theoretical and applied dimensions
of educational modeling by offering a delay-aware framework for policy design
that improves sector efficiency and learner success.
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