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ON TWO NEW THEOREMS ON CONVEX INTEGRAL INEQUALITIES
Christophe Chesneau

ABSTRACT. This paper presents two new integral inequalities involving a convex
function and an auxiliary function satisfying mild analytical conditions. Ilustra-
tive examples, including cases on the unit interval, are provided to demonstrate
the applicability of the obtained results.

1. INTRODUCTION

Convex analysis is fundamental to various branches of mathematics. Convex
functions, in particular, form the theoretical basis for many key results, such as
major inequalities, duality principles and stability theorems. A precise definition
is stated below. Let « € RU{—o0} and b € RU{+o0} be such that a < b. A function
f :[a,b] — R is called convex (on [a,b]) if, for any pair of points =,y € [a,b] and
A € [0, 1], the following inequality is satisfied:

(1.1) FOz+ (1= Ny) < M) + (1= N f(y).

One of the most notable results in this area is the Hermite-Hadamard integral
inequality. A precise formulation is given below. Let a,b € R with a < b, and
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f i [a,b] — R be a convex function. Then the following double inequality holds:

() < [ o< B30

This classical result therefore establishes a fundamental relationship between the
value of a convex function at the midpoint of an interval and its mean integral, as
well as its values at the endpoints. It forms the basis for numerous generalizations
and applications in analysis. Further information on convex functions and related
inequalities can be found in [1-14].

In this paper, we contribute to the convex analysis by establishing two new
integral inequalities involving a convex function. A distinctive aspect of these
results lies in their dependence on an auxiliary function ¢, which is assumed to
satisfy mild conditions. In particular, the first inequality takes the form

[ 1w < [ w,

where f : [a,b] — R denotes the convex function of interest, and w : [a,b] —
[0, +00) denotes a weight function determined by (. The second inequality is more
sophisticated, involving three integrals. Several illustrative examples are provided
to demonstrate the applicability of the obtained results, including specific cases
on the unit interval [0, 1]. The proofs primarily rely on integral operations, such
as changing the variables and integrating by parts, together with the convexity
inequality expressed in Equation ((1.1J).

The remainder of this paper is organized as follows: In Section [2, we present
the main theoretical results and corresponding proofs. Finally, Section (3| offers
concluding remarks and potential directions for future work.

2. RESULTS

2.1. First theorem. The theorem below presents our first convex integral inequal-
ity, followed by its proof and some examples. It is mainly based on an appropriate
change of variables and the inequality in Equation (1.1].

Theorem 2.1. Let a,b € R with b > aand 0 € [a,b], f : [a,b] — R be a convex
function with f(0) = 0, and ¢ : [a,b] — [0,+0c0) be a differentiable increasing
function such that p(a) = a, ¢(b) = b, and, for any = € [a,b], ¢(x) < x. Then the
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following inequality is satisfied:
b b
/ f(z)dz g/ Mf(m)dm,

provided that the integrals involved converge.

Proof. Making the change of variables y = o(x) with ¢~'(a) = a and ¢~1(b) = b,
and applying the convex inequality to f in Equation (I.1I) with A = ¢(x)/x € [0, 1]
and f(0) = 0, we get

(a)

b ©7t(b)
[ = [ @)

(2.1) = / Mf(x)dx

Therefore, making a minor change in notation of the first integral, we obtain
b b,
[ s@ar< [ pya
a a T

This completes the proof. O

Theorem [2.1]is interesting because we do not necessarily have, for any z € [a, b],
' (x)p(x)
T
The obtained inequality is thus not trivial.
Some examples of Theorem [2.1| are given below.

> 1.

e Setting a,b € R, and
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with p > 1, the assumptions required on ¢ in Theorem are satisfied.
For a convex function f : [a,b] — R with f(0) = 0, Theorem [2.1] gives

/abf(:c)dx Sp/abi (a+ (b—a) (g:;)p) (Z:Z)p_lf(:c)dx.

In particular, setting a = 0 and b = 1, we get

1 1
/ f(z)dz <p / 2?7V f () dw.
0 0

To be more specific, taking f(x) = e* — 1 and p = 2, we check that

1 1
/ (" —1)dr ~ 0.7182 < 0.7699 ~ 2/ r?(e* — 1)dz.
0 0
e Setting a,b € R, and
o) =2 — NNz —a)(b—x)

with A € [0,1/(b — a)), the assumptions required on ¢ in Theorem are
satisfied. For a convex function f : [a,b] — R with f(0) = 0, Theorem [2.1]
gives

b bq
/a flz)dr < /a - (x =AMz —a)(b—2)) (1= Aa+b—2x)) f(x)dx.

In particular, setting a = 0 and b = 1, we get

/0 flz)dx < /0 (I=X1—2))(1—=X1-22)) f(x)dx.

To be more specific, taking f(z) = ¢* — 1 and A = 1/2, we check that

1
/ (6" — 1)dz ~ 0.7182 < 0.7470
0

~ /01 (1 - %(1 _ x)) (1 _ %(1 _ 29[,-)) (" —1)da.

These two numerical examples demonstrate how precise the result is.

To the best of the knowledge of the author, these are new convex integral in-
equalities in the literature.

Other examples of functions ¢ depending on exponential, logarithmic or trigono-
metric functions can be considered.



ON TWO NEW THEOREMS ON CONVEX INTEGRAL INEQUALITIES 71

The integral inequality described below is a consequence of Theorem com-
bined with the Holder integral inequality. For any p > 1 and ¢ satisfying 1 /p+1/q =
1, the following inequality is satisfied:

[ oo { ([ (£ ) "k ([ prorar)

Depending on the definitions of f and ¢, the Holder integral inequality can thus
be improved,; it is the case if

/ab (go’(xisom)q et

Further inequalities of a similar nature can be derived by considering alternative
weight function constructions based on their interaction.

To conclude this section, note that if f is concave rather than convex, the in-
equality in Theorem is reversed.

2.2. Second theorem. The theorem below presents our second convex integral
inequality, followed by its proof and some examples. It is mainly based on Theo-
rem [2.1] and a suitable integration by parts.

Theorem 2.2. Let a,b € R with b > aand 0 € [a,b], f : [a,b] — R be a convex
function with f(0) = 0, and ¢ : [a,b] — R be a differentiable increasing function
such that ¢(a) = a, ¢(b) = b, and, for any = € [a,b], p(z) < x. Then the following
inequality is satisfied:

[ w5 [0 < Lo - aren + 5 [P S

provided that the integrals involved converge.

Proof. It follows from Theorem [2.1]| that
b b,
(2.2) / flx)dx < / Mf(x)daz.

The rest of the proof involves developing the integral on the right-hand side. An
appropriate integration by parts using [0?(z)] = 2¢(z)¢'(x), p(a) = aand ¢(b) = b
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gives
b e, x b Iy
/ R ¢4y = E*ﬂ(x%f@)} e 0= 10),,
b ,x
ed =3 (o0 -Fol) -} [ ¢0 P
+%/a 902($)f;:§)d

e =50/0-af@) -3 [ P [pwlPae

2 x?
It follows from Equations (2.2)) and (2.3)) that
! 1 b
[ o3 [0 < L00) - as@n + 5 [ @@ G

This completes the proof. O

Multiplying by 2, an equivalent formulation of Theorem is
/' ’ flz
2 [ e+ [ 0 Dar < 00 - aren + [ @@ Gar

Upon analyzing the proof in detail, we can see that Theorems [2.1] and [2.2] are
in fact equivalent. It can be noted that, unlike Theorem Theorem [2.2] does
not involve ¢’. Additionally, a distinctive feature of Theorem is its use of
the derivative f’, which is rather uncommon in the context of convex integral
inequalities.

Some examples of Theorem [2.2] are given below.

e Setting a,b € R, and

o) =a+ (b—a) <§:Z)p

with p > 1, the assumptions required on ¢ in Theorem are satisfied.
For a convex function f : [a,b] — R with f(0) = 0, Theorem [2.2| gives

/bf(a:)da:+%/ab <a+ (b—a) (i:z)pf f’;:ﬁda:

<3010 @)+ § [ (o 0-0 (222 )
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In particular, setting a = 0 and b = 1, we get

1 1 1
/0 f(x)dx+%/0 P () de < %f(1)+%/0 2PV f(2)dx.

To be more specific, taking f(z) = ¢* — 1 and p = 2, we check that

1 1
/ (e* —1)dzx + —/ ?e’dr =1 < 1.0516
0 2 Jo

2 2
e Setting a,b € R, and

1 1 [t
z—(e—l)—i——/ z?(e* — 1)dz.
0

o) =2— NNz —a)(b—x)

with X € [0,1/(b — a)), the assumptions required on ¢ in Theorem [2.2] are
satisfied. For a convex function f : [a,b] — R with f(0) = 0, Theorem 2.2
gives
’ I 2 ['(2)
f(x)dx + 5 (x =AMz —a)(b—1x))" ——=dz
a a x
fl@),

2

< %(bf(b)—af(a))vL%/a (= Az —a)(b—x))°

In particular, setting a = 0 and b = 1, we get

/0 f(x)dx + %/0 (1= XN1—2))°f(x)de
<5/+5 [ (=A1=2) f@.

To be more specific, taking f(z) = ¢* — 1 and A = 1/2, we check that

1 1 1 2
/ (e —1)dx + —/ x (1 ——(1- x)) e’dr ~ 1.09328
0 2 Jo 2

1 1 [t 1 .
<1.1220~ =(e—1) + = l—=(1—2)) (e —1)dz.
2 2 J, 2

These two numerical examples demonstrate how precise the result is.
To the best of the knowledge of the author, these are new convex integral in-
equalities in the literature.
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To conclude this section, note that if f is concave rather than convex, the in-
equality in Theorem [2.2]is reversed.

3. CONCLUSION

In this paper, we have established two new integral inequalities involving a
convex function and an auxiliary function ¢ satisfying mild analytical conditions.
Some examples illustrate the applicability and robustness of the proposed ap-
proach in different settings. Future research may focus on exploring analogous
inequalities for classes of s-convex or logarithmically convex functions, as well as
on developing multidimensional and fractional integral versions of the results.
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