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A NEW HARDY-HILBERT-TYPE INTEGRAL INEQUALITY INVOLVING AN
EXPONENTIAL-POWER KERNEL FUNCTION

Christophe Chesneau

ABSTRACT. This article investigates a new Hardy-Hilbert-type integral inequality
involving a kernel function combining exponential decay and a singular power
term. The main novelty lies in this feature, as well as in the fact that the resulting
constant factor is expressed explicitly in terms of the gamma function. Further-
more, we demonstrate the versatility of the proposed inequality by deriving two
additional integral inequalities. The proofs are presented in detail and can be
followed step by step.

1. INTRODUCTION

Integral inequalities constitute a fundamental component of mathematical anal-
ysis. They are essential for exploring the properties of functions, obtaining esti-
mates for the solutions of differential and integral equations, and establishing
bounds across many branches of mathematics. These inequalities connect the local
characteristics of functions, such as convexity, monotonicity, and differentiability,
to their global integral behavior.
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Classical examples include the Cauchy-Schwarz integral inequality, which pro-
vides bounds for inner products and integrals of product functions (see, for exam-
ple, [10]). The Hölder integral inequality generalizes this framework to Lp spaces
and is fundamental to functional analysis (see, for example, [14]). The Jensen
integral inequality links convexity with integration (see, for example, [11]), illus-
trating how the integral of a convex function compares with the function evaluated
at the mean. The Grönwall integral inequality offers crucial estimates for the solu-
tions of differential equations and serves as a fundamental tool in stability analysis
(see, for example, [7]). Similarly, the Poincaré integral inequality relates the norm
of a function to the norm of its derivatives on bounded domains (see, for exam-
ple, [7]), making it central to the theory of Sobolev spaces and the study of partial
differential equations.

The Hardy integral inequality is another pivotal result in analysis, establishing
a relationship between a function and its integral mean (see, for example, [8]).
The Hilbert integral inequality, a classical and influential result, provides an upper
bound for a double integral involving a singular kernel function (see, for exam-
ple, [8]). The Hardy-Hilbert integral inequality is a synthesis of these two results,
establishing a double integral bound for non-negative functions with a symmetric
kernel function. It naturally extends both the Hardy and Hilbert integral inequali-
ties, unifying their analytical depth (see, for example, [8]).

Due to the significant implications of the Hardy-Hilbert integral inequality, many
researchers have sought to expand and refine it in various ways. A comprehensive
overview of these developments can be found in the survey [3] and the mono-
graph [21]. Recent advances in the field include contributions exploring new
forms, applications and generalisations within diverse analytical frameworks, as
presented in [1,2,4–6,9,12,13,15–20].

In this article, we contribute to the theory of integral inequalities by introducing
a new variation of the Hardy-Hilbert integral inequality involving a double integral
of the form ∫ ∞

0

∫ ∞

0

e−λ(x+y)

(x+ y)µ
f(x)g(y)dxdy,

where f and g are two functions satisfying suitable integrability conditions, and
µ and λ are real parameters subject to certain constraints. The novelty of our



A NEW HARDY-HILBERT-TYPE INTEGRAL INEQUALITY 79

approach lies in the structure of the kernel function

K(x, y) =
e−λ(x+y)

(x+ y)µ
,

which is notably inhomogeneous and exhibits a richer analytical behavior than
the classical kernel functions considered in the previously cited works. Combining
exponential decay with a singular power term, this kernel function provides a
broader framework for studying weighted Hardy-Hilbert-type integral inequalities
and their potential applications in functional and operator analysis. The constant
factor obtained involves the gamma function. Building on this result, two other
new integral inequalities are established.

The remainder of this article is organized as follows: In Section 2, we present
some preliminary results and establish the notation used throughout the article.
Section 3 develops the main theorem, together with its proof, examples, and other
results. Finally, concluding remarks and potential directions for future research
are given in Section 4.

2. PRELIMINARIES AND NOTATIONS

For the sake of convenience, we set out several key notations in this section.
Firstly, we recall the definitions of some well-known special functions. The gamma
function is defined by

Γ(x) =

∫ ∞

0

tx−1e−tdt

for any x > 0.
The beta function is defined by

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt =
Γ(x)Γ(y)

Γ(x+ y)

for any x, y > 0.
We also adopt standard notation from measure theory. Let (X,F , ν) be a mea-

sure space and let I ∈ F . For p ∈ (1,∞), we define

Lp(I) =

{
ν-measurable function f : I → R :

∫
I

|f |pdν < ∞
}
.
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Our focus will be on the case where X is the set of real numbers R, I = [0,∞),
and ν is the Lebesgue measure.

3. RESULTS

The main result is highlighted in the next subsection, with two additional results
presented in a subsequent one.

3.1. Main Result. Our main result is established in the theorem below. We em-
phasize the originality of the kernel function and the constant factor that depends
on the gamma function.

Theorem 3.1. Let p, q > 1 be the Hölder conjugate exponents, i.e., 1/p+1/q = 1. Let
µ ∈ (0, 1) and λ > 0. Then, for any Lebesgue measurable functions f, g : [0,∞) →
[0,∞) with f ∈ Lp([0,∞)) and g ∈ Lq([0,∞)), we have∫ ∞

0

∫ ∞

0

e−λ(x+y)

(x+ y)µ
f(x)g(y)dxdy

≤ ω(λ, µ, p)

(∫ ∞

0

(f(x))pdx

)1/p (∫ ∞

0

(g(y))qdy

)1/q

,

where

ω(λ, µ, p) = p−1/pq−1/qλµ−1Γ(1− µ).(3.1)

Proof. Firstly, using a standard property of the gamma function, the following in-
tegral relation comes from a natural change of variables:

1

(x+ y)µ
=

1

Γ(µ)

∫ ∞

0

tµ−1e−t(x+y)dt.

Hence, the explicit term of the integrand can be expressed as

e−λ(x+y)

(x+ y)µ
=

1

Γ(µ)

∫ ∞

0

tµ−1e−(t+λ)(x+y)dt.

Let us make the change of variables s = t + λ. Then t = s − λ and t ∈ (0,∞)

corresponds to s ∈ (λ,∞). Thus

e−λ(x+y)

(x+ y)µ
=

1

Γ(µ)

∫ ∞

λ

(s− λ)µ−1e−s(x+y)ds.
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Since all the terms in relation are non-negative, the Fubini-Tonelli integral theorem
gives

J :=

∫ ∞

0

∫ ∞

0

e−λ(x+y)

(x+ y)µ
f(x)g(y)dxdy

=
1

Γ(µ)

∫ ∞

λ

(s− λ)µ−1I(s)ds,(3.2)

where

I(s) :=
(∫ ∞

0

f(x)e−sxdx

)(∫ ∞

0

g(y)e−sydy

)
.

Let us examine each of these integrals. By the Hölder integral inequality, we derive∫ ∞

0

f(x)e−sxdx ≤
(∫ ∞

0

(f(x))pdx

)1/p (∫ ∞

0

e−sqxdx

)1/q

=

(∫ ∞

0

(f(x))pdx

)1/p

(sq)−1/q.

Similarly, we find that∫ ∞

0

g(y)e−sydy ≤
(∫ ∞

0

(g(y))qdy

)1/q

(sp)−1/p.

Hence, using the equality 1/p+ 1/q = 1, we have

I(s) ≤
(∫ ∞

0

(f(x))pdx

)1/p (∫ ∞

0

(g(y))qdy

)1/q

p−1/pq−1/qs−1.(3.3)

Combining Equations (3.2) and (3.3), we get

J ≤ p−1/pq−1/q

Γ(µ)

(∫ ∞

0

(f(x))pdx

)1/p(∫ ∞

0

(g(y))qdy

)1/q ∫ ∞

λ

(s− λ)µ−1s−1ds.

(3.4)

Let us express the last integral term of this upper bound. We consider the change
of variables s = λ/(1 − t), i.e., t = 1 − λ/s. Then s ∈ (λ,∞) corresponds to
t ∈ (0, 1). A calculation involving the beta function gives∫ ∞

λ

(s− λ)µ−1s−1ds = λµ−1

∫ 1

0

tµ−1(1− t)−µdt = λµ−1B(µ, 1− µ).
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Using the formula B(µ, 1− µ) = Γ(µ)Γ(1− µ), we obtain∫ ∞

λ

(s− λ)µ−1s−1ds = λµ−1Γ(µ)Γ(1− µ).(3.5)

Combining Equations (3.4) and (3.5), and simplifying Γ(µ), we have

J ≤ p−1/pq−1/qλµ−1Γ(1− µ)

(∫ ∞

0

(f(x))pdx

)1/p (∫ ∞

0

(g(y))qdy

)1/q

.

By recognizing the definition of ω(λ, µ, p), this completes the proof. □

Example 1. For the special case µ = 1/2, using Γ(1/2) =
√
π, we have ω(λ, µ, p) =

p−1/pq−1/q
√

π/λ and Theorem 3.1 gives the following elegant inequality:∫ ∞

0

∫ ∞

0

e−λ(x+y)

√
x+ y

f(x)g(y)dxdy

≤ p−1/pq−1/q

√
π

λ

(∫ ∞

0

(f(x))pdx

)1/p (∫ ∞

0

(g(y))qdy

)1/q

.

To the best of the knowledge of the author, the integral inequality stated in
Theorem 3.1 is new. The constant obtained in this theorem is believed to be
optimal because the proof relies on a minimal sequence of inequalities. However,
we do not provide rigorous verification of this.

3.2. Additional Results. To demonstrate the flexibility and applicability of Theo-
rem 3.1, we present below another integral inequality whose proof is built upon
it.

Theorem 3.2. Let p, q > 1 be the Hölder conjugate exponents, i.e., 1/p+1/q = 1. Let
µ ∈ (0, 1) and λ > 0. Then, for any Lebesgue measurable function f : [0,∞) → [0,∞)

with f ∈ Lp([0,∞)), we have∫ ∞

0

(∫ ∞

0

e−λ(x+y)

(x+ y)µ
f(x)dx

)p

dy ≤ ω(λ, µ, p)p
∫ ∞

0

(f(x))pdx,

where ω(λ, µ, p) is given by Equation (3.1).

Proof. Let us set

K :=

∫ ∞

0

(∫ ∞

0

e−λ(x+y)

(x+ y)µ
f(x)dx

)p

dy.
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We can write

K =

∫ ∞

0

(∫ ∞

0

e−λ(x+y)

(x+ y)µ
f(x)dx

)p−1 ∫ ∞

0

e−λ(x+y)

(x+ y)µ
f(x)dxdy

=

∫ ∞

0

∫ ∞

0

e−λ(x+y)

(x+ y)µ
f(x)g◦(y)dxdy,(3.6)

where

g◦(y) =

(∫ ∞

0

e−λ(x+y)

(x+ y)µ
f(x)dx

)p−1

.

Applying Theorem 3.1 to the functions f and g◦, we get∫ ∞

0

∫ ∞

0

e−λ(x+y)

(x+ y)µ
f(x)g◦(y)dxdy

≤ ω(λ, µ, p)

(∫ ∞

0

(f(x))pdx

)1/p(∫ ∞

0

(g◦(y))
qdy

)1/q

.(3.7)

Let us examine the last integral of this upper bound. Using the identity q = p/(p−
1), we have ∫ ∞

0

(g◦(y))
qdy =

∫ ∞

0

(∫ ∞

0

e−λ(x+y)

(x+ y)µ
f(x)dx

)q(p−1)

dy

=

∫ ∞

0

(∫ ∞

0

e−λ(x+y)

(x+ y)µ
f(x)dx

)p

dy = K.(3.8)

Combining Equations (3.6), (3.7) and (3.8), we obtain

K ≤ ω(λ, µ, p)

(∫ ∞

0

(f(x))pdx

)1/p

K1/q.

Using 1− 1/q = 1/p and raising to the exponent p, we get

K ≤ ω(λ, µ, p)p
∫ ∞

0

(f(x))pdx,

which is the desired inequality, completing the proof. □

Example 2. For the special case µ = 1/2, using Γ(1/2) =
√
π, Theorem 3.2 gives the

elegant inequality∫ ∞

0

(∫ ∞

0

e−λ(x+y)

√
x+ y

f(x)dx

)p

dy ≤ p−1/pq−1/q

√
π

λ

∫ ∞

0

(f(x))pdx.
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Another integral inequality that builds on Theorem 3.1 is provided below. It is
based on an integral approach. We emphasize the originality of both the kernel
function and the constant factor.

Theorem 3.3. Let p, q > 1 be the Hölder conjugate exponents, i.e., 1/p + 1/q = 1.
Let µ ∈ (0, 1) and θ > 0. Then, for any Lebesgue measurable functions f, g : [0,∞) →
[0,∞) with f ∈ Lp([0,∞)) and g ∈ Lq([0,∞)), we have∫ ∞

0

∫ ∞

0

1− e−θ(x+y)

(x+ y)µ+1
f(x)g(y)dxdy

≤ ξ(θ, µ, p)

(∫ ∞

0

(f(x))pdx

)1/p (∫ ∞

0

(g(y))qdy

)1/q

,

where

ξ(θ, µ, p) = p−1/pq−1/qµ−1θµΓ(1− µ).(3.9)

Proof. It follows from Theorem 3.1 that∫ ∞

0

∫ ∞

0

e−λ(x+y)

(x+ y)µ
f(x)g(y)dxdy

≤ ω(λ, µ, p)

(∫ ∞

0

(f(x))pdx

)1/p (∫ ∞

0

(g(y))qdy

)1/q

,

where ω(λ, µ, p) is given by Equation (3.1). This is valid for µ ∈ (0, 1) and λ > 0.
Considering λ as a variable and integrating with respect to λ ∈ (0, θ), we get∫ θ

0

(∫ ∞

0

∫ ∞

0

e−λ(x+y)

(x+ y)µ
f(x)g(y)dxdy

)
dλ

≤
(∫ θ

0

ω(λ, µ, p)dλ

)(∫ ∞

0

(f(x))pdx

)1/p(∫ ∞

0

(g(y))qdy

)1/q

.(3.10)

Simple power primitives give∫ θ

0

ω(λ, µ, p)dλ = p−1/pq−1/q

(∫ θ

0

λµ−1dλ

)
Γ(1− µ)

= p−1/pq−1/qµ−1θµΓ(1− µ) = ξ(θ, µ, p).(3.11)

Furthermore, applying the Fubini-Tonelli integral theorem, we have
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∫ θ

0

(∫ ∞

0

∫ ∞

0

e−λ(x+y)

(x+ y)µ
f(x)g(y)dxdy

)
dλ

=

∫ ∞

0

∫ ∞

0

(∫ θ

0

e−λ(x+y)dλ

)
1

(x+ y)µ
f(x)g(y)dxdy

=

∫ ∞

0

∫ ∞

0

(
1− e−θ(x+y)

x+ y

)
1

(x+ y)µ
f(x)g(y)dxdy

=

∫ ∞

0

∫ ∞

0

1− e−θ(x+y)

(x+ y)µ+1
f(x)g(y)dxdy.(3.12)

Combining Equations (3.10), (3.11) and (3.12), we obtain∫ ∞

0

∫ ∞

0

1− e−θ(x+y)

(x+ y)µ+1
f(x)g(y)dxdy

≤ ξ(θ, µ, p)

(∫ ∞

0

(f(x))pdx

)1/p (∫ ∞

0

(g(y))qdy

)1/q

,

completing the proof. □

Example 3. For the special case µ = 1/2, using Γ(1/2) =
√
π, we have ξ(θ, µ, p) =

2p−1/pq−1/q
√
θπ and Theorem 3.3 gives the following elegant inequality:∫ ∞

0

∫ ∞

0

1− e−θ(x+y)

(x+ y)3/2
f(x)g(y)dxdy

≤ 2p−1/pq−1/q
√
θπ

(∫ ∞

0

(f(x))pdx

)1/p(∫ ∞

0

(g(y))qdy

)1/q

.

4. CONCLUSION

In conclusion, we have established a new Hardy-Hilbert-type integral inequality
featuring a kernel function that combines exponential decay with a singular power
term. The obtained results highlight the versatility of this approach and its poten-
tial to generate further integral inequalities of similar nature. Future research
may focus on extending these results to multidimensional settings, for instance,
by considering the triple integral∫ ∞

0

∫ ∞

0

∫ ∞

0

f(x)g(y)h(z)

(x+ y + z)µ
e−λ(x+y+z)dxdydz,
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exploring optimality conditions for the constant factor, and applying the inequali-
ties to related problems in analysis and mathematical physics.
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