

RATLIFF-RUSH FILTRATION INDUCED BY A GOOD FILTRATIONAssane Abdoulaye¹ and Damase Kamano

ABSTRACT. In this note, we introduce and study the notion of Ratliff-Rush filtration associated with a good filtration which generalize the notion of Ratliff-Rush closure of an ideal introduce by L.J. Ratliff and D.Rush. We establish a semi prime operation in the class of good filtrations which is a refinement of the pruferian closure of filtration, we generalize a theorem of Samuel on power of ideals.

1. INTRODUCTION

Let A be a commutative ring and I be an ideal of A . The Ratliff-Rush ideal associated to I is defined in [8] by:

$$\tilde{I} = \bigcup_{i \geq 0} (I^{i+1} : I^i).$$

This ideal has been studied in [2–4, 9]. Some nice proprieties has been stablished, for instance if I is regular then:

$$I \subset \tilde{I} \subset \bar{I} \subset \sqrt{I},$$

where \bar{I} is the integral closure of I . For all large n ,

$$\tilde{I}^n = I^n.$$

¹corresponding author

2020 Mathematics Subject Classification. 13A15, 13B22, 13C99.

Key words and phrases. good Filtration, reduction, Ratliff-Rush closure, superficial element.

Submitted: 19.12.2025; Accepted: 04.01.2026; Published: 19.01.2026.

The notion of Ratliff-Rush filtration associated to an ideal has been defined in [10], [12] by the sequence:

$$\{\tilde{I}^n = \bigcup_{i \geq 0} (I^{n+i} : I^i)\}_{n \in \mathbb{N}}.$$

In [11], the authors introduce the notion of Ratliff-Rush filtration associated to an I -filtration by the family:

$$\{\tilde{I}_n = \bigcup_{i \geq 0} (I_{n+i} : I^i)\}_{n \in \mathbb{N}}.$$

In this paper we introduce and study the notion of Ratliff-Rush filtration associated to an good filtration.

In section 1, we recall a few preliminaries concerning the definitions and properties of filtrations.

Section 2 is devoted to the study of Ratliff-Rush filtration associated to an good filtration. Let $f = (I_n)_{n \in \mathbb{N}}$ be good filtration of the ring A , the Ratliff-Rush filtration associated to f is the sequence

$$\widehat{f} = \{\widehat{I}_n = \bigcup_{i \geq 0} (I_{n+i} : I_i)\}_{n \in \mathbb{N}}.$$

We show in Lemma 3.3 that there exists an integer N , such that for all n ,

$$\widehat{I}_n = \bigcup_{i=1}^N (I_{n+i} : I_i) = I_{n+N} : I_N.$$

In Lemma 3.2 we prove that for an f -superficial and regular element x and for all $n >> 0$,

$$\widehat{I}_n = I_{n+N} : xA = I_n.$$

In the section 3 we show that if f is regular then:

$$f \leq \widehat{f} \leq P(f),$$

where $P(f)$ is the prüferian closure of f , and the operation

$$f \longmapsto \widehat{f}$$

is a prime operation on the set of good filtrations see Proposition 3.2.

We end with an example 3.1 that calculates \widehat{f} .

2. PRELIMINARY NOTES

We start by giving the basic definitions. The rings considered are commutative and unitary.

Definition 2.1. *A filtration on a ring A is a family $f = (I_n)_{n \in \mathbb{N}}$ of ideals of A such that:*

$$I_0 = A, \quad I_{n+1} \subseteq I_n, \quad I_n I_m \subseteq I_{n+m}, \quad \forall n, m \in \mathbb{N}.$$

The set of filtrations of A is denoted by $\mathbb{F}(A)$.

If I is an ideal of A then the family $f_I = (I^n)_{n \in \mathbb{N}}$ is a filtration of A called the I -adic filtration.

Definition 2.2. *Let M be a module of A , a filtration of M is a family $\Phi = (M_n)_{n \in \mathbb{N}}$ of sub-modules of M such that:*

$$M_0 = M, \quad M_{n+1} \subseteq M_n, \quad \forall n \in \mathbb{N}.$$

Let $f = (I_n)_{n \in \mathbb{N}} \in \mathbb{F}(A)$, a filtration $\Phi = (M_n)_{n \in \mathbb{N}}$ of M is said to be compatible with f if $I_n M_p \subseteq M_{n+p}$ for all $n, p \in \mathbb{N}$.

Definition 2.3. *Let J be an ideal of A , a filtration $f = (I_n)_{n \in \mathbb{N}}$ of A is said to be J – good if $J \subset I_1$ and if there is an integer $r \geq 1$ such that*

$$I_{n+1} = JI_n \quad \forall n \geq r.$$

Definition 2.4. *A filtration $f = (I_n)_{n \in \mathbb{N}}$ of A is said to be noetherian if the Rees ring $R(A, f) = \bigoplus_{n \geq 0} I_n X^n$ is noetherian.*

Remark 2.1. *If A is noetherian, then the filtration $f = (I_n)_{n \in \mathbb{N}}$ of A is noetherian if, only if, there is an integer $k \geq 1$ such that: $I_{n+k} = I_n I_k$ for all $n \geq k$ [1].*

Therefore any good filtration is a noetherian filtration in a noetherian ring.

Definition 2.5. *If $f = (I_n)_{n \in \mathbb{N}}$ of A is noetherian then we call the order of f the smallest integer $k \geq 1$ such that $I_{n+k} = I_n I_k$.*

Definition 2.6. *Let $f = (I_n)_{n \in \mathbb{N}}$ and $g = (J_n)_{n \in \mathbb{N}}$ be two filtrations of A such that $f \leq g$ (i.e $I_n \subseteq J_n$), f is said to be a reduction of g if there are the integers $k \geq 1$ and $n_0 \in \mathbb{N}$ such that*

$$\forall n \geq n_0, \quad J_{n+k} = I_n J_k.$$

Definition 2.7. Let A be a noetherian ring and $f = (I_n)_{n \in \mathbb{N}}$ be a noetherian filtration of A . An element $x \in A$ is said to be f -superficial of degree $k \in \mathbb{N}^*$ if $x \in I_k$ and there is an integer $c \in \mathbb{N}$ such that

$$(I_{n+k} : x) \cap I_c = I_n \quad \forall n \geq c.$$

Remark 2.2. If I_1 contains a regular element, then there exist an f -superficial element which is regular, Corollary 8.5.9 of [6].

Definition 2.8. A filtration $f = (I_n)_{n \in \mathbb{N}}$ on a ring A is said to be regular if I_1 contains a regular element.

Definition 2.9. An element $x \in A$ is said to be integral over the filtration $f = (I_n)_{n \in \mathbb{N}}$ if x satisfies an equation: $x^m + a_1x^{m-1} + \dots + a_jx^{m-j} + \dots + a_m = 0$ where $a_j \in I_j$ for all j . Let $k \in \mathbb{N}$, we put $P_k(f) = \{x \in A, \text{integral on } f^{(k)}\}$, where $f^{(k)} = (I_{nk})_{n \in \mathbb{N}}$. The sequence $P(f) = (P_k(f))_{k \in \mathbb{N}}$ is a filtration of A , called the prüferian closure of f .

3. RATLIFF-RUSH FILTRATION

Lemma 3.1. Let A be a ring and $f = (I_n)_{n \in \mathbb{N}}$ be a good filtration of A . For any integer k , for all $n \geq 1$, we have:

$$I_{n+k} : I_n \subseteq I_{m+k} : I_m, \quad \text{for all } m \gg 0.$$

Proof. Let $x \in I_{n+k} : I_n$, then $xI_n \subset I_{n+k}$. For $m \geq n+r$ we have: $xI_m = xI_{n+m-n} \subseteq xI_n I_{m-n} \subseteq I_{n+k} I_{m-n} \subseteq I_{m+k}$. Then: $I_{n+k} : I_n \subseteq I_{m+k} : I_m$. \square

Proposition 3.1. Let A be a ring and $f = (I_n)_{n \in \mathbb{N}}$ be a good filtration of A . For all integer k we put $\widehat{I}_k = \bigcup_{n \geq 1} (I_{n+k} : I_n)$ and $\widehat{f} = (\widehat{I}_k)_{k \in \mathbb{N}}$, then \widehat{f} is a filtration of A .

Proof. Let \widehat{I}_k is an ideal of A for all integer k in application of lemma 3.1, and let $x \in \widehat{I}_{k+1}$, there exist $n \in \mathbb{N}$ such that $xI_n \subseteq I_{n+k+1}$. We have $xI_n \subseteq I_{n+k+1} \subseteq I_{n+k}$ then $x \in \widehat{I}_k$ so $\widehat{I}_{k+1} \subseteq \widehat{I}_k$.

Let $x \in \widehat{I}_p$, and $y \in \widehat{I}_q$, then there exist $n \in \mathbb{N}$ such that $x \in I_{n+p} : I_n$, and $m \in \mathbb{N}$ so $y \in I_{m+q} : I_m$. For n, m large:

$$xyI_{n+m} = xyI_n I_m = xI_n yI_m \subseteq I_{n+p} I_{m+q} \subseteq I_{n+m+p+q}$$

we have $xy \in \widehat{I}_{p+q}$, then $\widehat{I}_p \widehat{I}_q \subseteq \widehat{I}_{p+q}$. \square

Lemma 3.2. *Let A be a noetherian ring, $f = (I_n)_{n \in \mathbb{N}}$ a good filtration, x a regular and f -superficial element of degree k . Then for all large n we have:*

$$I_{n+k} : xA = I_n.$$

Proof. First $I_n \subset I_{n+k} : xA$ since $x \in I_k$. Now, let $y \in I_{n+k} : xA$ with n large then: $yx \in I_{n+k} \cap xA = I_n(I_k \cap xA)$ consequently $yx = \lambda x$ where $\lambda \in I_n$. Since x is regular, so $y \in I_n$, therefore $I_{n+k} : xA \subseteq I_n$. \square

Lemma 3.3. *Let A be a noetherian ring, $f = (I_n)_{n \in \mathbb{N}}$ a good filtration of A , then $\forall n \in \mathbb{N}, \exists N \in \mathbb{N}$:*

$$\widehat{I}_n = \bigcup_{i \geq 0} (I_{n+i} : I_i) = I_{n+N} : I_N = I_{n+i} : I_i, \forall i \geq N.$$

Proof. There exists $r \in \mathbb{N}$, such that for all $i \geq r$, $I_{n+i} : I_i \subset I_{n+i+1} : I_{i+1}$. Then, there exists $N \in \mathbb{N}$: $I_{n+i} : I_i = I_{n+N} : I_N$. For all $i \leq r-1$, $I_{n+i} : I_i \subset I_{n+N} : I_N$. Therefore

$$\widehat{I}_n = I_{n+N} : I_N = I_{n+i} : I_i, \quad \text{for all } i \geq N.$$

\square

Theorem 3.1. *Let A be a noetherian ring, $f = (I_n)_{n \in \mathbb{N}}$ a good filtration of A , with I_1 contain an regular and f -superficial element. Then, for $n \gg 0$, $\widehat{I}_n = \bigcup_{i \geq 0} (I_{n+i} : I_i) = I_n$.*

Proof. For all n , $I_n \subset \bigcup_{i \geq 0} (I_{n+i} : I_i)$. Using lemma 3.2 and lemma 3.3, there exists $x \in A$ and $N \in \mathbb{N}$, such that: $I_{n+N} : xA = I_n$, for all $n \geq N$, $\bigcup_{i \geq 0} (I_{n+i} : I_i) = I_{n+N} : I_N \subset I_{n+N} : xA = I_n$ for all $n \geq N$. \square

Corollary 3.1. *Let A be a noetherian ring, $f = (I_n)_{n \in \mathbb{N}}$ a good filtration of A , with I_1 contain an regular and f -superficial element. Then: \widehat{f} is a good filtration.*

Proof. According to the previous theorem, for all $n \gg 0$, $\widehat{I}_n = I_n$. As f is a good filtration then \widehat{f} is also \square

Proposition 3.2. *Let A be a noetherian ring, I an ideal of A , then the map $f \mapsto \widehat{f}$ is a semi prime operation in the class of I - good filtration containing an regular superficial element, which mean that:*

$$i) f \leq \widehat{f}$$

- ii) $\widehat{\widehat{f}} = \widehat{f}$
- iii) $f \leq g \Rightarrow \widehat{f} \leq \widehat{g}$
- iv) $\widehat{f}\widehat{g} \leq \widehat{fg}$

Proof.

i) Let $n \in \mathbb{N}$, and $i \in \mathbb{N}$. Then $I_n \subseteq I_{n+i} : I_i$, so $I_n \subseteq \widehat{I}_n$ and $f \leq \widehat{f}$.

ii) Let $n \in \mathbb{N}$. Using lemma 3.2 and theorem 3.1, there exists N such that $\widehat{I}_n = I_{N+n} : I_N$, $\widehat{\widehat{I}}_n = (\widehat{J_{N+n}} : \widehat{J_N})$ where $J_n = \widehat{I}_n$. For N big enough, we have: $\widehat{J_{n+N}} = J_{n+N}$ and $\widehat{J_N} = J_N$, so $\widehat{\widehat{I}}_n = (J_{n+N} : J_N) = J_n = \widehat{I}_n$.

iii) Let $f = (I_n)$ and $g = (J_n)$ are I -good, such that for all n $I_n \subset J_n$. According to theorem 3.1, there exist $N \geq 1$ such that: $\widehat{I}_n = I_{N+n} : I_N$ and $\widehat{J}_n = J_{N+n} : J_N$.

Let $x \in \widehat{I}_n$. Then $xI_N \subset I_{N+n}$. Since g is I -good there exist an integer n_0 such that $J_{n+n_0} = I^n J_{n_0}$ for all n . For $N \gg 0$, we have $xJ_N = xI^{N-n_0} J_{n_0} \subset xI_{N+n_0} J_{n_0} \subset I_{n+N+n_0} J_{n_0} J_{n+N+n_0} J_{n_0} \subset J_{n+N}$. Then $\widehat{I}_n \subset \widehat{J}_n$, therefore $\widehat{f} \leq \widehat{g}$.

iv) There exist $N \geq 1$ such that: $\widehat{I}_n = I_{N+n} : I_N$ and $\widehat{J}_n = J_{N+n} : J_N$. Let

$$x \in \widehat{I}_n = I_{n+N} : I_N$$

and

$$y \in \widehat{J}_n = J_{n+N} : J_N.$$

Then

$$xyI_N J_N = xI_N yJ_N \subseteq I_{n+N} J_{n+N},$$

and so

$$xy \in I_{n+N} J_{n+N} : I_N J_N = \widehat{I}_n \widehat{J}_n$$

and

$$\widehat{I}_n \widehat{J}_n \subseteq \widehat{I}_n \widehat{J}_n.$$

Therefore

$$\widehat{f}\widehat{g} \leq \widehat{fg}.$$

□

Proposition 3.3. *Let A be a noetherian ring, $f = (I_n)_{n \in \mathbb{N}}$ a good filtration of A , with I_1 contain an regular and f -superficial element then $f \leq \widehat{f} \leq P(f)$ where $P(f)$ is the prufelian closer of f .*

Proof. According to theorem 3.1, there exists an integer N such that: $\widehat{I_{n+N}} = I_{n+N} = I_n I_n = I_n \widehat{I_N}$ which proves that f is a reduction of \widehat{f} . Then $\widehat{f} \leq P(f)$ (see [[5], (4.6)]). \square

Example 3.1. Let k be a field, $A = k[X, Y]$,

$$I = (X^2, Y^2), \quad J = (X^2, Y^2, XY),$$

and I and J are two ideals of the ring A . We have

$$I \subset J$$

and

$$IJ = (X^4, X^3Y, X^2Y^2, XY^3, Y^4) = J^2.$$

So, I is a reduction of J . We put

$$I_0 = A, I_1 = I,$$

and for all $n \geq 2$,

$$I_n = IJ^{n-1}.$$

We have

$$I_{n+1} \subset I_n$$

and for all $n \in \mathbb{N}$ and $p \geq 2$,

$$I_n I_p = IJ^{n-1} IJ^{p-1} = I^2 J^{n+p-2} \subset IJ^{n+p-1} \subset I_{n+p}.$$

For all $n \geq 2$,

$$II_n = I_{n+1}.$$

So $f = (I_n)_{n \in \mathbb{N}}$ is a good filtration on the ring A .

Let's show that, for all $n \in \mathbb{N}$, $k \in \mathbb{N}$, $k \geq 2$,

$$J^{n+k} : J^k = J^n.$$

Put $L = (X, Y)$. Then $L^2 = J$. Let $z \in J^{n+k} : J^k$ be an homogeneous element. Then

$$zL^{2k} \subset J^{n+k} = L^{2n+2k},$$

thus $d(z) = 2n + 2k - 2k = 2n$. So $z \in L^{2n} = J^n$. Therefore,

$$J^{n+k} : J^k \subset J^n,$$

and the equality holds since the inverse inclusion is trivial.

We have

$$\cup_{k \geq 2} (I_{n+k} : I_k) = \cup_{k \geq 2} (J^{n+k} : J^k) = J^n.$$

So, for all n we have

$$\cup_{k \geq 2} (I_{n+k} : I_k) = \cup_{k \geq 2} (J^{n+k} : J^k) = J^n.$$

Then

$$\begin{aligned} \widehat{I}_n &= \cup_{k \geq 1} (I_{n+k} : I_k) \\ &= (I_{n+1} : I_1) \cup J^n \\ &= (I_{n+1} : I_1) \\ &= (J^{n+1} : I_1) \\ &= J^n. \end{aligned}$$

So,

$$\widehat{f} = (J^n)_{n \in \mathbb{N}}$$

is the J -adic filtration.

CONFLICT OF INTEREST

Authors declare that there is no conflict of interest related to this paper.

REFERENCES

- [1] W. BISHOP, J.W. PETRO, J. RATLIFF, D.E. RUSH: *Note on noetherian filtration* , Comm. Algebra, **17**(2), (1989), 471–485.
- [2] M. D'ANNA, A. GUERRIERI, W. HEINZER: *Invariant of ideals having principal reductions*, comm. Algebra, Comm. Algebra, **29** (2001), 889–906.
- [3] W. HEINZER, B. JOHNSTON, D. LANTZ, K. SHAH: *The Ratliff-Rush ideals in a Noetherian ring: A survey*, Methods in module theory, 1992, 149–159.
- [4] W. HEINZER, D. LANTZ, AND K. SHAH,: *The Ratliff-Rush ideals in a Noetherian ring*, Comm. Algebra, **20** (1992), 591–622.
- [5] H. DICHI, D. SANGARE, M. SOUMARE: *Filtrations, integral dependence, reduction, f-Good filtrations*, Comm. Algebra, **20**(8) (1992), 2393–2418.
- [6] I. SWANSON, C. HUNEKE: *Integral Closure of Ideals, Rings, and Modules*, London Mathematical Society Lecture Note Series 336, Cambridge University Press, Cambridge, 2006.

- [7] L.J. RATLIFF, JR.: *Δ -closures of ideals and rings*, Trans. Amer. Math. Soc., **313** (1989), 221–247.
- [8] L.J. RATLIFF, JR., D.E. RUSH: *Two notes on reductions of ideals*, Indiana Univ. Math. J. **27** (1978), 929–934.
- [9] L.J. RATLIFF, JR., D. RUSH: *Δ -reductions of modules*, Comm. Algebra, **21** (1993), 2667–2685.
- [10] M. ROSSI, I. SWANSON: *Notes on the behavior of the Ratliff-Rush filtration*, Contemporary Math., (2003), 1–16.
- [11] K. SALONI, A. YADAV: *Ratliff-Rush filtration, Hilbert coefficients and the reduction number of integrally closed ideals*, Journal of Algebra, **638**(15) (2024), 214–237.
- [12] T.J. PUTHENPURAKAL: *Ratliff-Rush filtration, regularity and depth of higher associated graded rings: Part II*, J. Pure Appl. Algebra, **221** (2017), 611–631.

UNIVERSITY NANGUI ABROGOUA,
ABIDJAN,
IVORY COAST
Email address: abdoulassan2002@yahoo.fr

ECOLE NORMALE SUPERIEURE, ABIDJAN, IVORY COAST,
ABIDJAN,
IVORY COAST
Email address: kamanodamase@yahoo.fr