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ON MULTIVARIATE SEGMENTAL INTERPOLATION PROBLEM

HAKOP HAKOPIAN1 AND GEVORG MUSHYAN

Abstract. In this paper the following problem is introduced, which we call segmental interpolation prob-
lem, or brie�y segmental problem: Suppose XI = fx(�) : � 2 Ig is a �nite or in�nite set of knots in Rd:

Suppose also that SI = f[�� ; �� ] : � 2 Ig is a respective set of any segments. The segmental problem
fX ; Sgn

I
is to �nd a polynomial p in d variables and of total degree less than or equal to n; satisfying the

conditions
�� � p(x(�)) � �� ; 8� 2 I:

We bring a necessary and su�cient condition for the solvability of the segmental problem. In case when the
problem is solvable and the set of knots XI is �nite, we bring a method to �nd a solution of the segmental
problem.

1. Introduction, the segmental

interpolation problem

The univariate polynomial interpolation problem

always has a unique solution provided the number of

interpolation knots �ts the dimension of the polyno-

mial space. In contrast with this, in the multivariate

polynomial interpolation the existence and unique-

ness of solution of a Lagrange problem essentially de-

pend on the situation of the interpolation knots. A

given set of knots, naturally arising from some physi-

cal or modeling problem, may not guarantee the solv-

ability of the interpolation problem. Besides, usually

it is di�cult to modify the knot set. Consideration of

this challenging question is a subject of permanent in-

terest in the theory of multivariate interpolation. In

this paper a new constructive approach is proposed,

where the frame of the solvability of the polynomial

interpolation is enlarged essentially, by allowing an

error stripe for the data.

Let �n := �d
n be the space of all polynomials in d

variables and of total degree less than or equal to n.

Its dimension is given by

N := dim�d
n =

�
n+ d

d

�
:

To present the segmental interpolation problem, or

brie�y segmental problem, we need a set of distinct

knots:

XI = fx(�) =
�
x
(�)
1 ; : : : ; x

(�)
d

�
: � 2 Ig � R

d:

Suppose also that SI = f[�� ; �� ] : � 2 Ig is a respec-

tive set of any segments. The segmental interpolation

problem fX ;SgnI is to �nd a polynomial p 2 �n; sat-

isfying the conditions

(1.1) �� � p(x(�)) � �� ; 8� 2 I:

It is worth mentioning, that the segmental interpo-

lation problem can be considered equivalently as an

interpolation problem with pregiven errors. Namely,

for any function f de�ned on XI ; and any set of er-

rors EI = f�� : � 2 Ig; �nd a polynomial p 2 �n;

satisfying the conditions

j p(x(�))� f(x(�)) j� �� ; 8� 2 I:

Denote the set of all polynomials in �n satisfying

(1.1) by Sol fX ; SgnI : The problem fX ; SgnI is called

solvable, if Sol fX ; SgnI 6= ;: Also, a segmental prob-

lem fX ;SgnJ is a subproblem of fX ; SgnI ; if J � I:

Evidently, we have

Remark 1.1. Any subproblem of a solvable seg-

mental problem is solvable.

By the cardinality of a �nite set X ; denoted by #X ;

we mean the number of elements of the set.
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A segmental problem (subproblem) with �nite set of

knots is called �nite segmental problem (subprob-

lem). A �nite knot set of cardinality m is denoted

by

(1.2) Xm = fx(1);x(2); : : : ;x(m)g � R
d

and the respective set of segments by Sm = f[�i; �i] :

i = 1; : : : ;mg: We denote by fX ; Sgnm the corre-

sponding �nite segmental problem of cardinality m;

i.e., the problem of �nding a polynomial p 2 �n sat-

isfying the conditions

(1.3) �i � p(x(i)) � �i; i = 1; : : : ;m:

Finite segmental problems we consider in a slightly

wider setting. Namely, in this case �i and �i may

assume also the values �1 and +1; respectively.

Besides, among the inequalities in (1.3) strict ones

are allowed. In this case the �nite segmental prob-

lem is said to have mixed conditions. Note that in

a simplest case n = 1; i.e., the case of linear polyno-

mials in d variables, the segmental problem fX ; Sg1m
reduces to a general (�nite or in�nite) system of two-

sided linear inequalities:

�� � �0 +

dX
i=1

�ix
(�)
i � �� ; � 2 I:

Here �i and x
(�)
i are the unknowns and the coe�-

cients, respectively.

Now, to describe brie�y how the paper is orga-

nized, we need some de�nitions beforehand. A set of

knots X � R
d is called n-independent, if each its knot

has an n-fundamental polynomial. Let Hn(X ) be the

Hilbert n-function of a knot set X ; which equals the

cardinality of the maximal n-independent subset of

X : (Later we will see that Hn(X ) � N 8X :) We call

the segmental subproblem fX ; Sgnb ; b � I; basic, if

Hn(Xb) = #b�1; and the knot set Xb is essentially n-

dependent, i.e., no knot of Xb has an n-fundamental

polynomial.

First, in Section 2 we consider some basic con-

cepts in multivariate polynomial interpolation, such

as fundamental polynomials, n-independence, and

the Hilbert function of knot sets. In Subsections 3.1

and 3.2 we bring two characterizations for solvability

of basic subproblems. Then, based on this, in Section

4, we get a solvability characterization for general seg-

mental problem, in �nite and in�nite cases. Namely,

we prove that the segmental problem fX ;SgnI is solv-

able if and only if all its basic subproblems are solv-

able. Here, besides the n-independence techniques,

we use the Helly theorem on convex sets' intersec-

tion (see forthcoming Theorem 4.1). In Subsection

4.1 we bring a method for �nding a solution of any

�nite segmental problem, provided it is solvable. Let

us mention that a step of this method is based on a

proof of the Helly theorem (Theorem 4.1). In the �-

nal Section 5 we present more detailed consideration

of the univariate segmental problem, i.e., of the case

d = 1:

2. Multivariate interpolation,

n-independence

Next we consider some basic concepts of multi-

variate polynomial interpolation (see [1]�[6], [8]�[16],

[18]�[23]). Let a �nite set of knots Xm � R
d be given

by (1.2) and (c1; : : : ; cm) 2 R be any data. The prob-

lem of �nding a d-variate polynomial p 2 �n which

satis�es the conditions

(2.1) p(x(i)) = ci; i = 1; : : : ;m;

is called interpolation problem.

De�nition 2.1. The set of knots Xm is called n-

poised, if for any data (c1; : : : ; cm) there is a unique

polynomial p 2 �n satisfying the conditions (2.1).

By a Linear Algebra argument, a necessary condition

for n-poisedness is

(2.2) m = #Xm = dim�n = N:

In other words, the number of interpolation knots has

to match the dimension of the polynomial space.

The condition (2.2) is both necessary and su�cient

for the n-poisedness in the univariate case (d = 1),

while in the multivariate case (d � 2), which is much

more involved, this condition is not anymore su�-

cient, unless n = 0. And even (2.2) is the case,

the multivariate interpolation problem does not al-

ways have a solution or the solution is not necessarily

unique.

There are several approaches to overcome this

problem. In the Kergin and Hakopian interpolations

(see [18], [12], [23], [19]) the pointwise interpolation

conditions are replaced by mean-value ones. In the

least choice and minimal degree interpolations, the

former introduced by C. de Boor and A. Ron (see [2],

[3]), and the latter by T. Sauer (see [21], [9]), the to-

tal degree spaces of polynomials �n are replaced by

their appropriate subspaces. The present paper will

approach the question of �nding proper interpolating

polynomial for any given knot set by allowing certain

(small) errors for the data.

In the theory of polynomial interpolation the con-

cept of fundamental polynomial is crucial. A polyno-

mial p 2 �n is called n-fundamental polynomial of

a knot A = x(i) 2 Xm; if

p(A) = 1 and p
��
XmnfAg

= 0;
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where p
��
X
means the restriction of p to X : This poly-

nomial is denoted by p?A := p?i := p?i;Xm
:= p?A;Xm

:

Sometimes we call n-fundamental also a polynomial

from �n vanishing at all the knots of Xm but A; since

such a polynomial is a nonzero constant multiple of

p?A:

Next we consider an important concept of n-

independence and n-dependence of knot sets (see [7],

[13], [14], [15]).

De�nition 2.2. A set of knots X � R
d is called

�n-independent, or brie�y n-independent, if each

its knot has an n-fundamental polynomial. Oth-

erwise, if at least one of its knots does not

have an n-fundamental polynomial, X is called

n-dependent. Furthermore, it is called essentially

n-dependent, if no its knot has an n-fundamental

polynomial.

Since fundamental polynomials are linearly indepen-

dent we obtain that a necessary condition for n-

independence is

#X � dim�n = N :

Note that this condition is also su�cient for the n-

independence in the univariate case. Suppose a knot

set Xm is n-independent. Then by Lagrange formula

we obtain a polynomial

p =

mX
i=1

cip
?
i;Xm

;

satisfying the interpolation conditions (2.1). In view

of this formula, we readily get that n-independence

of Xm is equivalent to the solvability of the inter-

polation problem (2.1), meaning that for any data

fc1; : : : ; cmg there exists a (not necessarily unique)

polynomial p 2 �n satisfying the conditions (2.1).

We call a segmental problem fX ; Sgnm n-

independent if its knot set Xm is n-independent.

From what was said above we conclude easily

Lemma 2.1. Any n-independent segmental prob-

lem fX ; Sgnm is solvable.

Indeed, one can �nd a solution of n-independent seg-

mental interpolation problem fX ; Sgnm given by (1.3)

by solving the interpolation problem (2.1), where ci
are any intermediate values between �i and �i; i =

1; : : : ;m:

For knot set Xm with m = N the n-independence

means n-poisedness. Furthermore, we have the fol-

lowing well-known (see, e.g., [13], Lemma 1)

Lemma 2.2. Any n-independent set of knots Xm
with m < N can be enlarged to an n-poised set

XN :

2.1. Some properties of n-independence.

Lemma 2.3. Suppose that a knot A of a �nite knot

set X has n-fundamental polynomial with respect

to X and all the knots of a �nite set Y have n-

fundamental polynomials with respect to the set

X [ Y: Then the knot A has an n-fundamental

polynomial with respect to the set X [ Y; too.

Proof. Suppose p0 is an n-fundamental polynomial

of A with respect to X . Next, suppose that Y =

fBig
k

i=1 and p?i := p?Bi;X[Y
; i = 1; : : : ; k; are n-

fundamental polynomials. Now one can readily verify

that the polynomial

q0 := p0 �
kX
i=1

p0(Bi)p
?
i

is an n-fundamental polynomial of A with respect to

X [ Y. �

From Lemma 2.3 we get immediately the following

(see Lemma 2.2, [15]):

Corollary 2.1. Suppose that a knot set X is n-

independent and each knot of a set Y has n-

fundamental polynomial with respect to the set

X [ Y: Then the latter knot set is n-independent,

too.

Let us remove from a knot set all the knots that

have n-fundamental polynomials. Next, we prove

that the remaining set is essentially n-dependent, i.e.,

no its knot has a fundamental polynomial.

Corollary 2.2. Suppose a knot set Z is given.

Denote by Y the set of knots of Z that have n-

fundamental polynomials with respect to Z: Then

the knot set Z n Y is essentially n-dependent.

Proof. Indeed, assume to the contrary that X :=

Z n Y is not essentially n-dependent, i.e., there is a

knot A 2 X which has an n-fundamental polynomial

with respect to X : Then, since the knots of Y have n-

fundamental polynomials with respect to Z = X [Y ;

we get from Lemma 2.3, that A has n-fundamental

polynomial with respect to Z; which is a contradic-

tion. �

Corollary 2.3. Suppose that a set of knots X is

n-independent, A =2 X and the set X [ fAg is n-

dependent. Then we have that

p 2 �n and p
��
X
= 0 =) p(A) = 0:

Proof. Indeed, assume to the contrary that there is a

polynomial p 2 �n that vanishes on X and does not

vanish at A: This means that A has an n-fundamental

polynomial with respect to the set X [ fAg. Then,

by Corollary 2.1, the set X [ fAg is n-independent,

which is a contradiction. �
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2.2. The space Pn;Z and the Hilbert function.

Denote the linear space of polynomials of total degree

at most n vanishing on Z by

Pn;Z :=
�
p 2 �n : p

��
Z
= 0
	
:

The following result is well-known (see e.g. [13], Sec-

tion 1)

Proposition 2.1. For any knot set Z we have that

dimPn;Z � N �#Z:

Moreover, equality takes place here if and only if

the set Z is n-independent.

Corollary 2.4. Let X be a maximal n-independent

subset of Z; i.e., X is n-independent and X [fAg

is n-dependent for any A 2 Z n X : Then we have

that

(2.3) Pn;Z = Pn;X :

Proof. Indeed, we have that Pn;Z � Pn;X ; since

X � Z: Now, suppose that p 2 �n; p
��
X

= 0 and

A is any knot of Z: Then X [ fAg is dependent and

therefore, in view of Corollary 2.3, p
��
A
= 0: �

From (2.3) and Proposition 2.1 (part "moreover") we

have that

(2.4) dimPn;Z = N �#X ;

where X is any maximal n-independent subset of

Z: Thus, all the maximal n-independent subsets of

Z have the same cardinality, which is denoted by

Hn(Z) � the Hilbert n-function of Z: Hence, ac-

cording to (2.4), we have

(2.5) dimPn;Z = N �Hn(Z):

Now, let us extend slightly Lemma 2.2:

Lemma 2.4. Let XI be a knot set. Then any n-

independent subset X � XI ; with Hn(X ) < Hn(XI)

can be enlarged to a maximal n-independent sub-

set of XI :

Proof. Indeed, it su�ces to �nd a knot A 2 XI ; such

that the set X [ fAg is n-independent. We have

that Pn;XI
� Pn;X : On the other hand, by (2.5),

these linear spaces do not coincide. Therefore there

is p 2 Pn;X such that p(A) 6= 0 for some A 2 XI : Now,

in view of Corollary 2.1, A is the desired knot. �

At the end of Section 2 let us present

Lemma 2.5. Suppose a knot set Z = X[Y is given

and each knot of Y has n-fundamental polynomial

with respect to the set Z: Then any segmental in-

terpolation problem with the knot set Z is solvable

if and only if the respective subproblem with the

knot set X is solvable.

Proof. Indeed, the direction "only if" is obvious. For

the direction "if" notice that the polynomial

q =
X
A2Y

cAp
?
A;Z

vanishes on X and assumes any values cA at the knots

A 2 Y: Hence, by adding to a solution of the seg-

mental problem with the knot set X an appropriate

polynomial q we will get a solution of the segmental

problem with the knot set Z: �

3. The basic segmental interpolation

problem

Consider a segmental problem fX ;SgnI : Let us set

h0 := Hn(XI): Next, we bring the de�nition of quasi-

basic and basic interpolation subproblem:

De�nition 3.1. Suppose b � I and � := Hn(Xb) =

#b� 1: Then the subproblem fX ;Sgnb is called �-

quasi-basic, or brie�y quasi-basic. If, in addition

the knot set Xb is essentially n-dependent, then

fX ;Sgnb is called �-basic, or brie�y basic.

Obviously we have that � � h0 for any �-basic or

�-quasi-basic subproblem.

By using Corollary 2.2 and Lemma 2.5 one can re-

duce the solvability of any quasi-basic subproblem to

the solvability of a basic subproblem:

Corollary 3.1. Let a quasi-basic subproblem

fX ;Sgn~b ;
~b � I; be given. Let also XJ ; J � ~b be the

set of knots of X~b that have n-fundamental poly-

nomials. Then the quasi-basic segmental problem

fX ;Sgn~b is equivalent to the basic segmental prob-

lem fX ;Sgnb ; where b = ~b nJ; meaning that one of

these problems is solvable if and only if the other

is solvable.

Next, in the following two subsections, we present

two di�erent characterizations for the solvability of

quasi-basic, and hence basic, problems.

3.1. The solvability of quasi-basic problem, I.

Suppose we have a �-quasi-basic problem fX ;Sgnb =

fX ;Sgn�+1 with the set of knots

(3.1) X�+1 = fx(1);x(2); : : : ;x(�+1)g � R
d;

i.e., the problem of �nding a polynomial p 2 �n sat-

isfying the conditions

(3.2) �i � p(x(i)) � �i; i = 1; : : : ; � + 1:

According to De�nition 3.1 the set X�+1 is n-

dependent and there is k0; 1 � k0 � � + 1; such
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that the set X�+1 n fx
(k0)g is n-independent. Sup-

pose, without loss of generality, that k0 = � + 1:

Hence, the following hold:

(3.3) X�+1 is n-dependent, X� is n-independent:

In this subsection we are going to characterize the

solvability of the �-quasi-basic segmental problem

fX ;Sgn�+1 by determining the set of values of solu-

tions of its n-independent subproblem fX ;Sgn� at the

knot x(�+1) :

A :=
n
p(x(�+1)); p 2 Sol fX ;Sgn�

o
:

We will readily determine the maximal and minimal

values in A: On the other hand the set Sol fX ;Sgn�
is convex. Hence, we have that the set of values A

actually is a segment [�; �]: Therefore, a necessary

and su�cient condition for the solvability of the basic

segmental problem fX ;Sgn�+1 becomes the condition

[�; �] \ [��+1; ��+1] 6= ;:

To determine the (endpoints of the) segment [�; �]

we �rst enlarge, in view of Lemma 2.2, the n-

independent set X� with a knot set Y =
�
y(i)
	N
i=�+1

till an n-poised set Z = X� [ Y: Then we use the

Lagrange formula, according to which, we have for

any polynomial p 2 �n

p(x) =

�X
k=1

p(x(k))p?
x(k)

(x) +

NX
k=�+1

p(y(k))p?
y(k)

(x):

Next, by taking into account (3.3), let us use Corol-

lary 2.3, with X = X� and A = x(�+1): Then we get

that all the fundamental polynomials of second sum

above vanish at x(�+1); since all they vanish on X�:

Therefore, for any polynomial p 2 �n we have

(3.4) p(x(�+1)) =

�X
k=1

p(x(k))p?
x(k)

(x(�+1)):

In other words, the value of any polynomial from �n

at the knot x(�+1) is determined by its values at the

remaining knots of X�+1; provided (3.3) holds.

Now, having the signs of the values of the fundamen-

tal polynomials in (3.4), we can easily determine the

interval of values [�; �]: Indeed, we get the minimal

(maximal) value of polynomials p 2 Sol fX ;Sgn� ; i.e.,

�; (�;) by replacing the value p(x(k)) with �k (�k)

in the expression in the right hand side of (3.4), if

p?
x(k)

(x(�+1)) is positive, and with �k (�k), otherwise.

Therefore, we get

(3.5)

� =

�X
k=1


kp
?
x(k)

(x(�+1)); � =

�X
k=1


0kp
?
x(k)

(x(�+1));

where 
k = �k; 

0
k = �k if sgnp?

x(k)
(x(�+1))) = 1;

and 
k = �k; 

0
k = �k, otherwise. Let us mention,

that � (�) equals to �1 (+1), if 
kp
?
x(k)

(x(�+1))

(
0kp
?
x(k)

(x(�+1))) equals to �1 (+1), for some

k; k = 1; : : : ; �:

Thus, we obtain �nally

Theorem 3.1. Suppose we have a �-quasi-basic

problem fX ;Sgnb = fX ;Sgn�+1 with the set of knots

X�+1 satisfying the condition (3.3). Then it is

solvable if and only if

(3.6) [�; �] \ [��+1; ��+1] 6= ;;

where the endpoints of the �rst interval are given

by (3.5).

Remark 3.1. Consider a �-quasi-basic segmental

problem fX ;Sgn�+1 with mixed conditions. Let us

call the quantities �i or �i; i = 1; : : : �+1; "miss-

ing" if the neighboring inequality sign in (3.2) is

strict. Then Theorem 3.1 still holds with the fol-

lowing possible changes in (3.6): From the inter-

val [�; �] the left endpoint � (the right endpoint �)

is removed, if in (3.5) a coe�cient 
i (

0
i) assumes

a "missing" value: �i or �i: Hence, the interval

[�; �] in (3.6) is replaced with (�; �]; [�; �); (�; �);

or remains unchanged.

At the end of this subsection let us point out how

one can �nd a solution of the �-quasi-basic prob-

lem fX ;Sgn�+1 ; provided it is solvable. For this end

we �rst choose a number � 2 [�; �] \ [��+1; ��+1]:

Then we present � as a convex combination of � and

� : � = �0� + (1 � �0)�; (0 � �0 � 1): Now one

can verify readily that the polynomial

p(x) =

�X
k=1

ckp
?
x(k)

(x);

where ck = �0
k + (1 � �0)

0
k; is a solution of

fX ;Sgn�+1 :

3.2. The solvability of quasi-basic problem, II.

Suppose we have a �-quasi-basic problem fX ;Sgnb =

fX ;Sgn�+1 with the set of knots X�+1 given by (3.1).

Now we are going to present a solution of quasi-basic

segmental problem, where all the � + 1 knots take

part in a same way.

Below we use standard multivariate notation. Set for

i = (i1; : : : ; id) 2 Z
d
+ and x = (x1; : : : ; xd) 2 R

d :

jij = i1 + � � �+ id; xi = xi11 � � �x
id
d :

Consider the following polynomial space, where jij =

n+ 1 :

�n;i := �d
n;i :=

�
q(x) + cxi : q 2 �n; c 2 R

	
:

Denote by [i]p the leading i-coe�cient of p(x) =

q(x) + cxi 2 �n;i, i.e., [i]p := c:

We �rst show that if fX ;Sgn�+1 is a quasi-basic prob-

lem then there is a multiindex i; jij = n+1; such that

the interpolation problem with the knot set X�+1 and



24 H. HAKOPIAN AND G. MUSHYAN

the polynomial space �n;i is solvable, or equivalently,

the knot set X�+1 is �n;i-independent.

Proposition 3.1. Suppose we have a set of knots

X�+1 satisfying the condition (3.3). Then there is

a multiindex i; jij = n + 1; such that the inter-

polation problem with the knot set X�+1 and the

polynomial space �n;i is solvable.

Proof. Fix a multiindex i; jij = n+1: Since the knot

set X� is n-independent we have that the interpola-

tion problem with the knot set X� and the polyno-

mial space �n is solvable. In particular there is a

polynomial pi 2 �n such that

pi(x) = xi for each x = x(k); k = 1; : : : ; �:

In other words the polynomial qi := xi � pi(x) van-

ishes on X�: Now we have an alternative: Either qi
vanishes at the knot x(�+1) and hence on X�+1; or

qi does not vanish at x(�+1) and hence it is a funda-

mental polynomial of this knot with respect to the

polynomial space �n;i: In the later case, we get in

view of Corollary 2.1, that the knot set X�+1 is in-

dependent regarding the space �n;i; and hence the

interpolation problem with the knot set X�+1 and

the polynomial space �n;i is solvable. Assume to the

contrary that we have the �rst alternative for all mul-

tiindexes i; jij = n+1: Then we get that the knot set

X�+1 is a solution of the following polynomial sys-

tem:

(3.7) xi � pi(x) = 0; 8i; jij = n+ 1:

But according to a known result (see Theorem 2.6,

Chapter 1, [20]), the set of solutions of type (3.7)

systems are necessarily n-independent, which contra-

dicts the condition (3.3). �

Next, let us �x a multiindex i; satisfying the condi-

tions of Proposition 3.1, and consider all polynomials

from �n;i; satisfying the conditions (3.2) of the �-

quasi-basic segmental problem. Denote the set of all

such polynomials by Sol fX ;Sgn;i�+1 : This time we are

going to characterize the solvability of the �-quasi-

basic segmental problem fX ;Sgn�+1 by determining

the set of values of the leading coe�cients of polyno-

mials from Sol fX ;Sgn;i�+1 :

B :=
n
[i]p : p 2 Sol fX ;Sgn;i�+1

o
:

We will readily determine the maximal and minimal

values of the leading coe�cients in B. On the other

hand the latter set is convex. Hence, we obtain that

the set B actually is a segment [a; b]: Therefore, a

necessary and su�cient condition for the solvability

of the basic segmental problem fX ;Sgn�+1 becomes

the condition

0 2 [a; b]; or in other words, a � 0; b � 0:

To determine the segment [a; b] we again are go-

ing to use the Lagrange interpolation formula. For

this end we �rst enlarge, in view of Lemma 2.2,

the �n;i-independent set X�+1 with a knot set Y =�
y(i)
	N+1

i=�+2
till a �n;i-poised set Z = X�+1[Y: Now,

according to the Lagrange formula, we have for any

polynomial p 2 �n;i

p(x) =

�+1X
k=1

p(x(k))p?
x(k)

(x) +

N+1X
k=�+2

p(y(k))p?
y(k)

(x):

Let us verify that the leading i-coe�cients of all

the fundamental polynomials of the second sum

above vanish. Indeed, assume to the contrary that

[i]p?
y(k0)

6= 0 for some k0: Then let us choose constants

ck such that [i]qk = 0; where qk = p?
x(k)

�ckp
?
y(k0)

; k =

1; : : : ; �+1: Now notice that qk 2 �n are fundamen-

tal polynomials of knots of the set X�+1: Therefore,

the latter set is n-independent, which contradicts the

condition (3.3).

Thus, we have for any polynomial p 2 �n;i

(3.8) [i]p =

�+1X
k=1

p(x(k))[i]p?
x(k)

:

Now, having the signs of [i]-leading coe�cients of the

fundamental polynomials in above sum, we can easily

determine the interval [a; b]: Indeed, we get the mini-

mal value a (maximal value b) by replacing the value

p(x(k)) with �k (�k) in the expression in the right

hand side of (3.8), if [i]p?
x(k)

is positive and with �k
(�k), otherwise. Thus, we have

(3.9) a =

�+1X
k=1


k[i]p
?
x(k)

; b =

�+1X
k=1


0k[i]p
?
x(k)

;

where 
k = �k; 

0
k = �k if sgn[i]p?

x(k)
= 1; and


k = �k; 

0
k = �k, otherwise. Let us mention, that

a (b) equals to �1 (+1), if 
k[i]p
?
x(k)

(
0k[i]p
?
x(k)

)

equals to �1 (+1), for some k; k = 1; : : : ; � + 1:

Hence, we get �nally

Theorem 3.2. A �-quasi-basic problem fX ;Sgnb =

fX ;Sgn�+1 with the set of knots X�+1 � R
d is solv-

able if and only if

0 2 [a; b]; i.e., a � 0 and b � 0;

where a and b are given by (3.9).

Let us mention that the analog of Remark 3.1

holds in this case for the segmental problem with

mixed conditions. At the end let us point out how

one can �nd a solution of the �-quasi-basic prob-

lem fX ;Sgn�+1 ; provided it is solvable. For this end

we �rst present 0 as a convex combination of a and

b : 0 = �0a+ (1� �0)b; (�0 = b=(b� a)): Now one
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can verify readily that the polynomial

p(x) =

�X
k=1

ckp
?
x(k)

(x));

where ck = �0
k + (1 � �0)

0
k; is a solution of

fX ;Sgn�+1 :

4. The solvability of general segmental

interpolation problem

In this section we will present two character-

izations for the solvability of segmental problem

fX ;SgnI : in terms of its basic subproblems and in

terms of quasi-basic subproblems of certain cardinal-

ity (see forthcoming Theorem 4.2 and Corollary 4.1).

In the proof we will use the Helly theorem (see The-

orem 2.1.6, Chapter 2, [17]):

Theorem 4.1 (Helly). Let U be a real linear space

with dimU = h and fUi; i = 1; : : : ;mg be a col-

lection of m convex subsets of U, with m �

h + 2: If the intersection of every h + 1 of these

sets is nonempty, then the whole collection has

a nonempty intersection:
Tm

i=1 Ui 6= ;: More-

over, this remains true for an in�nite collection

fUi; i 2 Ig ; if, in addition, all Ui are closed and

intersection of some �nite subcollection is com-

pact.

First let us prove

Lemma 4.1. Let Xm be a �nite knot set with

Hn;Xm
= h0 and X � Xm be a maximal n-

independent subset: #X = h0: Next, suppose that

X is enlarged with a knot set Y till an n-poised

set X [ Y, where #Y = N � h0: Then the seg-

mental problem fX ;Sgnm or any its subproblem is

solvable (within �n) if and only if it is solvable

within Pn;Y :

Proof. The "if" direction follows from the inclusion

Pn;Y � �n: For the direction "only if" suppose, with-

out loss of generality, that the subproblem fX ;Sgnk
of the segmental problem fX ;Sgnm; with k � m;

is solvable (within �n), i.e., there is a polynomial

p0 2 Sol fX ;Sgnk . Assume that Y =
�
y(i)
	N
i=h0+1

and p?i := p?
y(i);X[Y

; i = h0 + 1; : : : ; N; are the n-

fundamental polynomials. Consider the polynomial

(4.1) q0 := p0 �
NX

k=h0+1

p0(y
(i))p?i :

We have that q0 2 Pn;Y ; i.e., q0
��
Y

= 0: Now no-

tice that the fundamental polynomials in the right

hand side of (4.1) vanish on X : Therefore, in view

of Corollary 2.4, they vanish also on Xm: Thus, we

obtain that q0
��
Xm

= p
��
Xm

: Hence, q0 is a solution of

the segmental problem fX ;Sgnk ; too. �

Now we present the main result of this section.

Theorem 4.2. The segmental interpolation prob-

lem fX ;SgnI is solvable if and only if all its basic

subproblems are solvable.

Before we prove Theorem let us verify that it yields

the following:

Corollary 4.1. The problem fX ;SgnI is solvable if

and only if all its quasi-basic subproblems of car-

dinality h0 + 1 are solvable, where h0 = Hn(XI):

Proof. Indeed, if all basic subproblems of fX ;SgnI
are solvable then, by Corollary 3.1, all quasi-basic

subproblems of fX ;SgnI are solvable, too. For the re-

verse implication it su�ces to show that for any ba-

sic subproblem fX ;Sgnb ; with b � I; #b < h0; there

is an equivalent h0-quasi-basic subproblem fX ;Sgn~b ;

with b � ~b � I; #~b = h0 + 1: To show this sup-

pose that the knot set X = Xb n fAg; where A 2 Xb;

is n-independent. Suppose also, in view of Lemma

2.4, that an enlarged set Z := X [ Y is a maximal

n-independent subset of XI ; hence #Z = h0: Let us

show that as a desired set we can take ~b := Xb [Y =

Z [ fAg: Indeed, in view of Corollary 2.3, we have

that the fundamental polynomials of the knots of Y

with respect to the knot set Z are fundamental also

with respect to the knot set Z [ fAg: Therefore, in

view of Corollary 3.1, the basic subproblem fX ;Sgnb
is equivalent to the segmental subproblem with the

knot set Z [ fAg: �

Proof of Theorem 4.2. Let us divide the proof

into two parts, where the cases of �nite and in�nite

knot sets are discussed, respectively.

Part 1. Consider �rst the �nite segmental problem:

fX ;Sgnm:We are going to use Theorem 4.1 (the Helly

theorem) for spaces U := Pn;Y ; with various point

sets Y; to show that Sol fX ;Sgnm 6= ;: We will carry

out the proof in Part 1 in two steps.

Step 1. Let us show that the segmental prob-

lem fX ;Sgnm is solvable by assuming that all its sub-

problems of cardinality h0 + 1 are solvable, where

h0 := Hn(Xm): From latter equality we have that

m � h0: Note that if m = h0 then the segmental

problem is n-independent. In this case of course it is

solvable (Lemma 2.1). Also if m = h0 + 1 then the

segmental problem is solvable by the assumption of

Step 1. Hence, assume that m � h0 + 2:

Suppose that the knot set XJ ; where J =

fj1; : : : ; jh0g � f1; : : : ;mg; is a maximal n-

independent subset of Xm: Suppose also, in view of



26 H. HAKOPIAN AND G. MUSHYAN

Lemma 2.2, that an enlarged set XJ [ Y is n-poised,

where #Y = N � h0:

By Lemma 4.1 the segmental problem fX ;Sgnm and

any its subproblem is solvable (within �n) if and only

if it is solvable within Pn;Y :

According to Proposition 2.1 (part "moreover"), we

have that

(4.2) dimPn;Y = N �#Y = #XJ = h0:

Denote for i = 1; : : : ;m;

Ui :=
n
p 2 Pn;Y : �i � p(x(i)) � �i

o
:

It is easily seen that the sets Ui � Pn;Y here are con-

vex. Then let us verify that the intersection of any

h0 + 1 sets of Ui is nonempty. Indeed,
Th0+1
`=1 Uk` =�

p 2 Pn;Y : �k` � p(x(k`)) � �k` ; ` = 1; : : : ; h0 + 1
	
:

In view of the assumption of Step 1 and Lemma

4.1, all subproblems of cardinality h0 + 1 of fX ;SgnJ
are solvable within Pn;Y : Therefore,

Th0+1
`=1 Uk` 6= ;:

Now, by Theorem 4.1, the whole collection has a

nonempty intersection:
Tm

i=1 Ui 6= ;: Thus, the prob-

lem fX ;Sgnm is solvable within Pn;Y ; and hence it is

solvable.

Step 2. What remains to show in this step is

that all subproblems of cardinality h0+1 of fX ;Sgnm
are solvable. For this we use complete induction on

the cardinality of subproblems. Note that the sub-

problems with one knot are evidently solvable. Sup-

pose that all subproblems of cardinality at most k of

fX ;Sgnm are solvable and let us prove that the sub-

problems of cardinality k + 1 are solvable, too.

Thus, consider any subproblem fX ;SgnJ of cardi-

nality #J = k + 1; where J = fj1; : : : ; jk+1g �

f1; : : : ;mg: Set h1 := Hn(XJ): If h1 = k + 1; then

fX ;SgnJ is an independent subproblem and hence it

is solvable by Lemma 2.1. If h1 = k; then either it

is a basic subproblem and is solvable by assumption

of Theorem, or it is a quasi-basic subproblem. In the

latter case, by Corollary 3.1, fX ;SgnJ is equivalent to

a basic subproblem and hence is solvable, too.

Now, assume that h1 � k� 1: Let us apply Step 1

to the subproblem fX ;SgnJ ; considered as a problem.

In view of the induction hypothesis we have that all

subproblems of cardinality at most k of fX ;SgnJ are

solvable. On the other hand we have that k � h1+1:

Thus, we have that all subproblems of cardinality

h1 + 1 of fX ;SgnJ are solvable. Therefore, according

to Step 1, the segmental problem fX ;SgnJ is solvable.

Part 2. Consider now the case of segmental prob-

lem with in�nite knot set: fX ;SgnI : Set h2 :=

Hn(XI): Suppose that the knot set XJ ; where J =

fj1; : : : ; jh2g � I; is a maximal n-independent subset

of XI : Suppose also, in view of Lemma 2.2, that an

enlarged set Z := XJ [ Y is an n-poised set, where

#Y = N � h2: We are going to use Theorem 4.1

(the Helly theorem) with U := Pn;Y : By using the

Lagrange formula we get readily

(4.3) p 2 Pn;Y , p(x) =

h2X
`=1

c`p
?
x
(j`)

(x);

where c` = p(x(j`)) 2 R and p?
x
(j`)

= p?
x
(j`);Z

: Denote

for � 2 I :

U� :=
n
p 2 Pn;Y : �� � p(x(�)) � ��

o
:

Let us show that the segmental problem fX ;SgnI is

solvable:
T
�2I U� 6= ;:

According to Part 1, we have that any �nite sub-

problem of fX ;SgnI is solvable. Hence, any �nite

intersection of sets fU� : � 2 Ig is not empty. As was

mentioned above the sets U� � Pn;Y are convex. Let

us verify that they are also closed. Indeed, assume,

in view of (4.3), that �� � ps(x
(�)) � �� ; where

ps(x) =

h2X
`=1

c
(s)
` p?

x
(j`)

(x) and c
(s)
` ! c`:

Then we get readily that

�� � p(x(�)) � �� ; where p(x) =

h2X
`=1

c`p
?
x
(j`)

(x):

Now, denote by U� :=
Th2
`=1 Uj` =

n
p 2 Pn;Y : �j` � p(x(j`)) � �j` ; ` = 1; : : : ; h2

o
:

In view of (4.3) the set U� � Pn;Y is bounded. On

the other hand it is closed as an intersection of closed

sets. Hence, U� is a compact set. Thus, according to

Theorem 4.1 (the Helly theorem, part "moreover")

we have that
T
�2I U� 6= ;:

Remark 4.1. Theorem 4.2 remains valid, in the

case of �nite segmental problems, if some of ��
and �� assume extended values: +1 and �1; re-

spectively, or some of the inequalities in (1.1) are

strict (the case of mixed conditions). In the latter

case the solvability of basic subproblems must be

veri�ed according to Remark 3.1.

Indeed, the weakness of the inequalities and the

�niteness of the mentioned values in (1.1) were used

only in the case of in�nite knot sets to show that the

sets U� are closed and the set U� is compact.

4.1. Amethod of solving �nite segmental prob-

lems. Consider a segmental problem fX ;Sgnm ; with

a set of knots Xm given by (1.2). Assume that

fX ;Sgnm is solvable, i.e., the hypotheses of Theorem

4.2 hold, and let us bring a method for �nding a so-

lution. The method is inductive, with respect to the



ON SEGMENTAL INTERPOLATION. . . 27

cardinality of the knot set. Let us mention that a

step of the method is based on a proof of Theorem

4.1, (see the proof of Theorem 2.1.6, Chapter 2, [17]).

To start, note that for a subproblem with one knot

we can easily choose a solution - just an intermediate

constant. Suppose that we have solutions of all sub-

problems of fX ;Sgnm with set of knots of cardinality

k and let us �nd a solution of any given subproblem

of cardinality k+1: Assume, without loss of general-

ity, that the given subproblem of cardinality k+ 1 is

fX ;Sgnk+1:

Set h0 := Hn(Xk+1): Of course we have that

h0 � k + 1 and h0 � h; where h := Hn(Xm): Sup-

pose that the knot set XJ ; where J = fj1; : : : ; jh0g �

f1; : : : ; k+ 1g; is a maximal n-independent subset of

Xk+1: Suppose also, in view of Lemma 2.2, that an

enlarged set XJ[Y0 is n-poised, where#Y0 = N�h0:

We are going to �nd a polynomial p 2 Pn;Y0 satisfy-

ing the conditions

(4.4) �i � p(x(i)) � �i; i = 1; : : : ; k + 1:

If h0 = k+1; then fX ;Sgnk+1 is an independent sub-

problem and to �nd a solution it su�ces to solve an

interpolation problem with any intermediate values

(Lemma 2.1). If h0 = k; then fX ;Sgnk+1 is a quasi-

basic (or basic) subproblem. We know that quasi-

basic problems are solvable if the basic problems are

such (Corollary 3.1). Also, at the ends of Subsec-

tions 3.1 and 3.2, we have descriptions of how to �nd

a solution of any solvable quasi-basic problem.

Hence, assume that h0 � k� 1: Note that, in view of

(4.2), we have that

(4.5) dimPn;Y0 = h0:

By using Lemma 4.1, we may assume that we have

solutions of subproblems of fX ;Sgnk+1 of cardinality

k within Pn;Y0 .

Then, let us denote by M := f1; : : : ; k + 1g: Set,

Mi := M n fig; i = 1; : : : ; h0 + 2: (Recall that

h0 � k � 1; and hence h0 + 2 � k + 1:) We have

that each subproblem fX ;SgnMi
is of cardinality k:

Assume that the following polynomial is a solution

of it within Pn;Y0 :

(4.6) qi 2 Pn;Y0 ; where i = 1; : : : ; h0 + 2:

Next, let us verify that one can �nd multipliers

!1; : : : ; !h0+2 2 R; not all zero, such that

(4.7)

h0+2X
i=1

!ipi = 0;

h0+2X
i=1

!i = 0:

Indeed, �rst relation of (4.7), in view of (4.5) and

(4.6), can be reduced to h0 scalar linear homogeneous

equations. Thus, (4.7) is equivalent to a system of

h0 + 1 homogeneous equations in h0 + 2 unknowns,

and hence has a nontrivial solution.

Denote by E+ the set of subscripts of positive mul-

tipliers !i in (4.7), and by E� the set of subscripts

of negative or zero multipliers. Then we have from

(4.7):

q :=
X
i2E+

!ipi = �
X
i2E

�

!ipi:

Now, one can verify readily that the polynomial

Q := (1=!)q; where ! =
P

i2E+
!i = �

P
i2E

�

!i; is

a desired solution of fX ;Sgnk+1: Indeed, Q is a con-

vex combination of fpi : i 2 E+g and pi satis�es all

relations of (4.4) except possibly the ith one. Hence,

Q satis�es all relations of (4.4) except possibly the

iths with i 2 E+: At the same time Q is a convex

combination of fpi : i 2 E�g and hence Q satis�es

all relations of (4.4) except possibly the iths with

i 2 E�: On the other hand we have E� \ E+ = ;;

therefore Q satis�es all the relations of (4.4).

Remark 4.2. Note that the above described

method of solving at the same time presents an-

other proof of Theorem 4.2 in the case of �nite

segmental problems.

5. The univariate segmental problem

Denote the space of univariate polynomials of total

degree at most n by

�n := fp = a0 + a1x+ � � �+ anx
ng ; dim�n = n+1:

Let XI = fx� : � 2 Ig � R be any set of points.

Let SI = f[�� ; �� ] : � 2 Ig be a respective set of

any segments. The univariate segmental interpola-

tion problem fX ;SgnI is to �nd out whether there is

a polynomial p 2 �n; satisfying the conditions

�� � p(x�) � �� ; 8� 2 I:

In the case when I is �nite we use the notation

Xm = fx1; x2; : : : ; xmg � R for the set of knots and

Sm = f[�i; �i] : i = 1; : : : ;mg for the set of seg-

ments. The corresponding �nite segmental problem

is denoted by fX ;Sgnm : Denote the set of all its so-

lutions, as in the multivariate case, by Sol fX ;Sgnm :

In the univariate case any set of knots of cardinality

at most n + 1 is n-independent and any set of car-

dinality n+ 2 is essentially n-dependent. Therefore,

De�nition 3.1 in the univariate case simply reduces

to:

De�nition 5.1. We call a subproblem fX ;Sgnb ;

b � I; of fX ;SgnI basic if #b = n+ 2:

Now, we get from Theorem 4.2:

Theorem 5.1. The univariate segmental interpo-

lation problem fX ;SgnI is solvable if and only if all

its subproblems of cardinality n+ 2; are solvable.
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In the last two subsections we bring the two charac-

terizations of solvability of basic segmental problem

in the univariate case, in more details. In particular,

we �nd explicitly the values of signs of fundamental

polynomials taking part in relations (3.5) and (3.9).

5.1. The solvability of univariate basic prob-

lem, I. Here we start with a subproblem of the basic

segmental problem fX ;Sgnn+2 where the last knot is

absent, i.e., fX ;Sgnn+1 :

Let us determine the set of values of solutions of

the above subproblem at any �xed point x 2 R; i.e.,

we determine the set

Ax :=
�
p(x); p 2 Sol fX ;Sgnn+1

	
:

We know that this set of values forms an inter-

val [�(x); �(x)]: Therefore, a necessary and su�cient

condition for the solvability of the univariate basic

segmental problem fX ;Sgnn+2 becomes the condition

[�(xn+2); �(xn+2)] \ [�n+2; �n+2] 6= ;:

To �nd �(x) and �(x) we use the Lagrange interpo-

lation formula, according to which, we have for any

polynomial p 2 �n

(5.1) p(x) =

n+1X
k=1

p(xk)p
?
k(x);

where

p?k(x) =

n+1Y
i=1; i 6=k

x� xi
xk � xi

:

Next, since we are going to determine the sign of

p?k(x); assume, without loss of generality, that the se-

quence fxig
n+1
i=1 is increasing. Consider the intervals

I� ; � = 0; : : : ; n+ 1; where

I� =

8>><
>>:
(�1; x1) if � = 0;

(x� ; x�+1) if � = 1; : : : ; n;

(xn+1;+1) if � = n+ 1:

Now, assume that x 2 I� ; and let us determine

the interval Ax = [�(x); �(x)] =: [��(x); ��(x)];

where 0 � � � n + 1 is �xed. Indeed, we get the

possible minimal (maximal) value ��(x) (��(x)) of

p 2 Sol fX ;Sgnn+1 by replacing the value p(xk) in

the right hand side of (5.1) with �k (�k), if p
?
k(x) is

positive, and with �k (�k), otherwise.

Now, notice that the fundamental polynomials p?�(x)

and p?�+1(x) both are positive on I� : While the poly-

nomials p?k(x); k = �; � � 1; : : : ; as well as the poly-

nomials p?k(x); k = � + 1; � + 2; : : : ; alternate their

signs on I� : Thus, we get

��(x) =

nX
k=1


kp
?
k(x); ��(x) =

nX
k=1


0kp
?
k(x); x 2 I� ;

where 
k = �k; 

0
k = �k for k = �; � � 2; � � 4; : : : ;

and k = � + 1; � + 3; � + 5; : : : ; 
k = �k; 

0
k = �k

otherwise.

5.2. The solvability of univariate basic prob-

lem, II. In the univariate case the approach pre-

sented in Section 3.2 becomes much more simple.

Namely, we start with the set of polynomials of de-

gree not exceeding n+ 1 satisfying the conditions of

basic segmental problem fX ;Sgnn+2. Then we choose

from this set of polynomials a polynomial whose lead-

ing coe�cient, i.e., the coe�cient of the monomial

xn+1; vanishes.

Notice that the leading coe�cient of any polyno-

mial p 2 �n+1 coincides with the divided di�erence

[x1; : : : ; xn+2]p (for any n+ 2 knots). To start let us

consider

B :=
n
[x1; : : : ; xn+2]p; p 2 Sol fX ;Sgn+1n+2

o
:

We know that the set B forms an interval [a; b]: Thus,

a necessary and su�cient condition for the solvability

of the univariate basic segmental problem fX ;Sgnn+2
becomes the condition

0 2 [a; b]; or in other words; a � 0; b � 0:

To determine the minimal and maximal values: a

and b; we use the Lagrange formula for the divided

di�erence:

[x1; : : : ; xn+2]p =

n+2X
k=1

�kp(xk);

where

�k =

n+2Y
i=1; i6=k

1

xk � xi
:

Assume, without loss of generality, that the sequence

of knots fxig
n+2
i=1 is increasing. Then we have that

sgn�k = (�1)n�k; k = 1; : : : ; n+ 2:

Therefore, we obtain that

a =

n+2X
k=1


k�k � [x0; : : : ; xn+1]p �
n+2X
k=1


0k�k = b;

where 
k = �k; 

0
k = �k; if k = n + 2; n; n � 2; : : : ;

and 
k = �k; 

0
k = �k; otherwise.
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