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ON MULTIVARIATE SEGMENTAL INTERPOLATION PROBLEM

HAKOP HAKOPIAN! AND GEVORG MUSHYAN

ABSTRACT. In this paper the following problem is introduced, which we call segmental interpolation prob-

lem, or briefly segmental problem: Suppose X = {x(”)
v € I} is a respective set of any segments. The segmental problem

Suppose also that S; = {[ay, ] :

: v € I} is a finite or infinite set of knots in R9.

{X,S}7 is to find a polynomial p in d variables and of total degree less than or equal to n, satisfying the

conditions

ay <p(x¥)) < By, WweL
We bring a necessary and sufficient condition for the solvability of the segmental problem. In case when the
problem is solvable and the set of knots Xt is finite, we bring a method to find a solution of the segmental

problem.

1. INTRODUCTION, THE SEGMENTAL
INTERPOLATION PROBLEM

The univariate polynomial interpolation problem
always has a unique solution provided the number of
interpolation knots fits the dimension of the polyno-
mial space. In contrast with this, in the multivariate
polynomial interpolation the existence and unique-
ness of solution of a Lagrange problem essentially de-
pend on the situation of the interpolation knots. A
given set of knots, naturally arising from some physi-
cal or modeling problem, may not guarantee the solv-
ability of the interpolation problem. Besides, usually
it is difficult to modify the knot set. Consideration of
this challenging question is a subject of permanent in-
terest in the theory of multivariate interpolation. In
this paper a new constructive approach is proposed,
where the frame of the solvability of the polynomial
interpolation is enlarged essentially, by allowing an
error stripe for the data.

Let IT,, := I1¢ be the space of all polynomials in d
variables and of total degree less than or equal to n.
Its dimension is given by

. n+4d
N::dlmHZ:( d )

To present the segmental interpolation problem, or
briefly segmental problem, we need a set of distinct
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2010 Mathematics Subject Classification. 41A05, 41A63.

knots:
X = {x) = (xg”, . ,a:g”)) v el}C R

Suppose also that S; = {[a,, ] : v € I} is a respec-
tive set of any segments. The segmental interpolation
problem {X, S}} is to find a polynomial p € II,, sat-
i1sfying the conditions

(1.1)

It is worth mentioning, that the segmental interpo-

a, <p(x") < B, el

lation problem can be considered equivalently as an
interpolation problem with pregiven errors. Namely,
for any function f defined on A;, and any set of er-
rors & = {e, : v € I}, find a polynomial p € II,,
satisfying the conditions

| p(x") = f(x) < e, eI

Denote the set of all polynomials in II, satisfying
(1.1) by Sol{Xx,S}} . The problem {X, S}7 is called
solvable, if Sol{X,S}} # 0. Also, a segmental prob-
lem {X,S}] is a subproblem of {X,S}7,if J C I.
Evidently, we have

Remark 1.1. Any subproblem of a solvable seg-
mental problem is solvable.

By the cardinality of a finite set X, denoted by #X,
we mean the number of elements of the set.

Key words and phrases. Multivariate interpolation, segmental problem, basic segmental problem, n-poised set, n-

independent set, Helly’s theorem.
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A segmental problem (subproblem) with finite set of
knots is called finite segmental problem (subprob-
lem). A finite knot set of cardinality m is denoted
by

(1.2) X = {x x? . x(m1 cRe

and the respective set of segments by S,, = {[a, 5] :
¢ = 1,...,m}. We denote by {X,S} the corre-
sponding finite segmental problem of cardinality m,
l.e., the problem of finding a polynomial p € II,, sat-
isfying the conditions

(13)  a<px®)<p, i=1,...,m

y ey

Finite segmental problems we consider in a slightly
wider setting. Namely, in this case a; and §; may
assume also the values —oco and +oo, respectively.
Besides, among the inequalities in (1.3) strict ones
are allowed. In this case the finite segmental prob-
lem is said to have mized conditions. Note that in
a simplest case n = 1, i.e., the case of linear polyno-
mials in d variables, the segmental problem {X, S }71n
reduces to a general (finite or infinite) system of two-
sided linear inequalities:

d
ay §770+Z77i331(-u) <Py, vel

=1

Here 7; and :I:EV)

cients, respectively.

Now, to describe briefly how the paper is orga-
nized, we need some definitions beforehand. A set of
knots X C R? is called n-independent, if each its knot
has an n-fundamental polynomial. Let H,(X) be the
Hilbert n-function of a knot set X', which equals the
cardinality of the maximal n-independent subset of
X. (Later we will see that H,(X) < N VX.) We call
the segmental subproblem {X, S}y, b C I, basic, if
Hn(Xp) = #b—1, and the knot set A} is essentially n-
dependent, i.e., no knot of &} has an n-fundamental
polynomial.

First, in Section 2 we consider some basic con-
cepts in multivariate polynomial interpolation, such
as fundamental polynomials, n-independence, and
the Hilbert function of knot sets. In Subsections 3.1
and 3.2 we bring two characterizations for solvability
of basic subproblems. Then, based on this, in Section
4, we get a solvability characterization for general seg-
mental problem, in finite and infinite cases. Namely,
we prove that the segmental problem {X, S}] is solv-
able if and only if all its basic subproblems are solv-
able. Here, besides the n-independence techniques,
we use the Helly theorem on convex sets’ intersec-
tion (see forthcoming Theorem 4.1). In Subsection
4.1 we bring a method for finding a solution of any
finite segmental problem, provided it is solvable. Let

are the unknowns and the coeffi-

us mention that a step of this method is based on a
proof of the Helly theorem (Theorem 4.1). In the fi-
nal Section 5 we present more detailed consideration
of the univariate segmental problem, i.e., of the case
d=1.

2. MULTIVARIATE INTERPOLATION,
n-INDEPENDENCE

Next we consider some basic concepts of multi-
variate polynomial interpolation (see [1]-[6], [8]-[16],
[18]-[23]). Let a finite set of knots X,,, C R¢ be given
by (1.2) and (ey,...,¢m) € R be any data. The prob-
lem of finding a d-variate polynomial p € II,, which
satisfies the conditions

(2.1)

1s called interpolation problem.

p(x(i)):ch i:17'-'am7

Definition 2.1. The set of knots X, s called n-
poised, if for any data (c1,...,cm) there is a unique
polynomaial p € I1,, satisfying the conditions (2.1).

By a Linear Algebra argument, a necessary condition
for n-poisedness is

(2.2) m = #X,, =dimII, = N.

In other words, the number of interpolation knots has
to match the dimension of the polynomial space.

The condition (2.2) is both necessary and sufficient
for the n-poisedness in the univariate case (d = 1),
while in the multivariate case (d > 2), which is much
more involved, this condition is not anymore suffi-
cient, unless n = 0. And even (2.2) is the case,
the multivariate interpolation problem does not al-
ways have a solution or the solution is not necessarily
unique.

There are several approaches to overcome this
problem. In the Kergin and Hakopian interpolations
(see [18], [12], [23], [19]) the pointwise interpolation
conditions are replaced by mean-value ones. In the
least choice and minimal degree interpolations, the
former introduced by C. de Boor and A. Ron (see [2],
[3]), and the latter by T. Sauer (see [21], [9]), the to-
tal degree spaces of polynomials II,, are replaced by
their appropriate subspaces. The present paper will
approach the question of finding proper interpolating
polynomial for any given knot set by allowing certain
(small) errors for the data.

In the theory of polynomial interpolation the con-
cept of fundamental polynomial is crucial. A polyno-
mial p € I1, is called n-fundamental polynomzial of
aknot A=x € X, if

p(A)=1 and

p|Xm\{A} =0,
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where p|X means the restriction of p to X. This poly-
nomial is denoted by p} = p; = p} s = Phx,. -
Sometimes we call n-fundamental also a polynomial
from II,, vanishing at all the knots of X,,, but A, since
such a polynomial is a nonzero constant multiple of
Pa-

Next we consider an important concept of n-
independence and n-dependence of knot sets (see [7],
[13], [14], [15]).

Definition 2.2. A set of knots X C R? is called
Il,,-independent, or briefly n-independent, if each
its knot has an n-fundamental polynomual. Oth-
erutse, if at least one of its knots does not
have an n-fundamental polynomial, X s called
n-dependent. Furthermore, it 1s called essentially
n-dependent, if no tts knot has an n-fundamental
polynomaal.

Since fundamental polynomials are linearly indepen-
dent we obtain that a necessary condition for n-
independence is

#X < dimIl, = N.

Note that this condition is also sufficient for the n-
independence in the univariate case. Suppose a knot
set X, is n-independent. Then by Lagrange formula
we obtain a polynomial

m
—_ Lo X
b= § CiDs,
=1

satisfying the interpolation conditions (2.1). In view
of this formula, we readily get that n-independence
of X, is equivalent to the solvability of the inter-
polation problem (2.1), meaning that for any data
{c1,...,cm} there exists a (not necessarily unique)
polynomial p € II,, satisfying the conditions (2.1).

We call a segmental problem {X,S}. n-
independent if its knot set X, is n-independent.
From what was said above we conclude easily

Lemma 2.1. Any n-independent segmental prob-
lem {X, S}, 1is solvable.

Indeed, one can find a solution of n-independent seg-
mental interpolation problem {X, S}, given by (1.3)
by solving the interpolation problem (2.1), where ¢;
are any intermediate values between «; and §;, ¢ =

1 m.

For knot set X,,, with m = N the n-independence
means n-poisedness. Furthermore, we have the fol-

lowing well-known (see, e.g., [13], Lemma 1)

Lemma 2.2. Any n-independent set of knots X,
with m < N can be enlarged to an n-poised set
Xy .

2.1. Some properties of n-independence.

Lemma 2.3. Suppose that a knot A of a finite knot
set X has n-fundamental polynomial with respect
to X and all the knots of a finite set ) have n-
fundamental polynomazals with respect to the set
X UY. Then the knot A has an n-fundamental
polynomaual with respect to the set X UY, too.

Proof. Suppose pg is an n-fundamental polynomial
of A with respect to X. Next, suppose that J =
{Bi}le and pf = pp, xuys ¢ = L,...,k, are n-
fundamental polynomials. Now one can readily verify
that the polynomial

k
g0 :=po— »_ po(B:)p}
=1

1s an n-fundamental polynomial of A with respect to
xXUy. O

From Lemma 2.3 we get immediately the following
(see Lemma 2.2, [15]):

Corollary 2.1. Suppose that a knot set X s n-
independent and each knot of a set ) has n-
fundamental polynomial with respect to the set
X U)Y. Then the latter knot set is n-independent,
too.

Let us remove from a knot set all the knots that
have n-fundamental polynomials. Next, we prove
that the remaining set is essentially n-dependent, 1.e.,
no its knot has a fundamental polynomial.

Corollary 2.2. Suppose a knot set Z 1s given.
Denote by Y the set of knots of Z that have n-
fundamental polynomaials with respect to Z. Then
the knot set Z\ Y s essentially n-dependent.

Proof. Indeed, assume to the contrary that X :=
Z\ Y is not essentially n-dependent, i.e., there is a
knot A € X which has an n-fundamental polynomial
with respect to X. Then, since the knots of YV have n-
fundamental polynomials with respect to Z2 = XU,
we get from Lemma 2.3, that A has n-fundamental
polynomial with respect to Z, which is a contradic-
tion. O

Corollary 2.3. Suppose that a set of knots X 1s
n-independent, A ¢ X and the set X U {A} is n-
dependent. Then we have that

= p(4)=0.

Proof. Indeed, assume to the contrary that there is a
polynomial p € II,, that vanishes on X and does not
vanish at A. This means that A has an n-fundamental
polynomial with respect to the set X U {A}. Then,
by Corollary 2.1, the set X U {A} is n-independent,
which is a contradiction. d

pell, and p|X=O
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2.2. The space P, z and the Hilbert function.
Denote the linear space of polynomials of total degree
at most n vanishing on Z by

Pz :={p €T, :p|, =0},

The following result is well-known (see e.g. [13], Sec-
tion 1)

Proposition 2.1. For any knot set Z we have that
dimP,z > N —#Z2.

Moreover, equality takes place here if and only if
the set Z 1is n-independent.

Corollary 2.4. Let X be a mazimal n-independent
subset of Z, 1.e., X 1s n-independent and X U{A}
1s n-dependent for any A € Z\ X. Then we have
that

(2.3) Prz =Pnx.

Proof. Indeed, we have that P, z C Pp,x, since
X C Z. Now, suppose that p € II,, p|X = 0 and
A is any knot of Z. Then X U {A} is dependent and
therefore, in view of Corollary 2.3, p|A =0. |

From (2.3) and Proposition 2.1 (part "moreover") we
have that

(2.4) dim P,z = N — #&,

where X is any maximal n-independent subset of
Z. Thus, all the maximal n-independent subsets of
Z have the same cardinality, which is denoted by
Hn(Z) — the Hilbert n-function of Z. Hence, ac-
cording to (2.4), we have

(2.5) dimP, z = N — H,(Z).
Now, let us extend slightly Lemma 2.2:

Lemma 2.4. Let X; be a knot set. Then any n-
independent subset X C X;, with H,(X) < Hn(Xr)
can be enlarged to a mazimal n-independent sub-
set of XJ.

Proof. Indeed, it suffices to find a knot A € X, such
that the set X U {A} is n-independent. We have
that Pp,x, C Pp,x. On the other hand, by (2.5),
these linear spaces do not coincide. Therefore there
is p € Py, x such that p(A) # 0 for some A € X;. Now,
in view of Corollary 2.1, A is the desired knot. |

At the end of Section 2 let us present

Lemma 2.5. Suppose a knot set Z = XUY 1s given
and each knot of Y has n-fundamental polynomsial
with respect to the set Z. Then any segmental in-
terpolation problem with the knot set Z 1s solvable
if and only if the respective subproblem with the
knot set X 1s solvable.

Proof. Indeed, the direction "only if" is obvious. For
the direction "if" notice that the polynomial

q= Z CAPZ,Z
Acy
vanishes on X and assumes any values c4 at the knots
A € Y. Hence, by adding to a solution of the seg-
mental problem with the knot set X an appropriate
polynomial ¢ we will get a solution of the segmental
problem with the knot set Z. |

3. THE BASIC SEGMENTAL INTERPOLATION
PROBLEM

Consider a segmental problem {X,S}} . Let us set
ho := Hn(X1). Next, we bring the definition of quasi-
basic and basic interpolation subproblem:

Definition 3.1. Suppose b C I and 0 := H, () =
#b — 1. Then the subproblem {X,S}y is called o-
quasi-basic, or briefly quasi-basic. If, in addition

the knot set X, 1s essentially n-dependent, then
{X,8}} is called o-basic, or briefly basic.

Obviously we have that ¢ < hg for any o-basic or
o-quasi-basic subproblem.

By using Corollary 2.2 and Lemma 2.5 one can re-
duce the solvability of any quasi-basic subproblem to
the solvability of a basic subproblem:

Corollary 3.1. Let a quasi-basic subproblem
{x,8}%, b C I, be given. Let also X;, J C b be the
set of knots of X that have n-fundamental poly-
nomaials. Then the quasi-basic segmental problem
{X,8}; s equivalent to ~the basic segmental prob-
lem {X,8}, , where b = b\ J, meaning that one of
these problems s solvable if and only if the other
1s solvable.

Next, in the following two subsections, we present
two different characterizations for the solvability of
quasi-basic, and hence basic, problems.

3.1. The solvability of quasi-basic problem, I.
Suppose we have a o-quasi-basic problem {X, S}y =
{&, S}, with the set of knots

(31)  Xyyy ={xV x® . x(tD} c RY,

l.e., the problem of finding a polynomial p € II,, sat-
isfying the conditions

(3.2) a <p(x)<g, i=1,...,0+1.

According to Definition 3.1 the set X,.; is n-
dependent and there is kg, 1 < kg < ¢ + 1, such
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that the set X1 \ {x(*)} is n-independent. Sup-
pose, without loss of generality, that kg = o + 1.
Hence, the following hold:

(3.3) X,4+1 is n-dependent, X, is n-independent.

In this subsection we are going to characterize the
solvability of the o-quasi-basic segmental problem
{X,8},,, by determining the set of values of solu-
tions of its n-independent subproblem {X, S}” at the

knot x(e+1) .
A= {p(x(g+1)), pe Sol{X,S}Z}.

We will readily determine the maximal and minimal
values in A. On the other hand the set Sol{X,S},
is convex. Hence, we have that the set of values A
actually is a segment [o, §]. Therefore, a necessary
and sufficient condition for the solvability of the basic
segmental problem {X, S}

o+1
la, Bl N[agi1, Boy1] # 0.

To determine the (endpoints of the) segment [a, (]
we first enlarge, in view of Lemma 2.2, the n-
independent set X, with a knot set Y = {y 1)}1 oi1
till an n-poised set £ = X, U Y. Then we use the
Lagrange formula, according to which, we have for
any polynomial p € II,,

Zp

Next, by taking into account (3.3), let us use Corol-
lary 2.3, with X = X, and A = x{°t1). Then we get
that all the fundamental polynomials of second sum
above vanish at x(°T1)| since all they vanish on X,.
Therefore, for any polynomial p € II,, we have

Zp )y

In other words, the value of any polynomial from II,,
at the knot x(?*1 is determined by its values at the
remaining knots of X, 1, provided (3.3) holds.

Now, having the signs of the values of the fundamen-
tal polynomials in (3.4), we can easily determine the
interval of values [c, f]. Indeed, we get the minimal
(maximal) value of polynomials p € Sol{X,S}” ,i.e
a, (B,) by replacing the value p(x(®) with oy (B)
in the expression in the right hand side of (3.4), if
Py (x(e+1)) is positive, and with B, (a), otherwise.
Therefore, we get

(3.5)

a= Z’Ykpi(k) (x B = ZVLP;(k)(X(
k=1 k=1
where v, = ok, = B if sgnpi, (x(CTV)) = 1,

and v, = ,Bk,’)’;'c = ay, otherwise. Let us mention,
that a (f) equals to —co (+00), if fykp:(k)(x(ff-i-l))

becomes the condition

N

P (X) + Z P(Y(k))P;(k)(X)~

k=oc+1

(34)  p(x*V) x(@ D).

(¢7+1)) o'+l))

(fy}cp}*((,c)(x(""‘l))) equals to —oo (+o0), for some
k,k=1,...,0
Thus, we obtain finally

Theorem 3.1. Suppose we have a o-quasi-basic
problem {X, S}y = {X,S}, | with the set of knots
Xyy1 satisfying the condition (3.3). Then it is
solvable if and only if

(3.6) [, B] N [atg 41, Por1] # 6,

where the endpoints of the first interval are given
by (3.5).

Remark 3.1. Consider a o-quasi-basic segmental
problem {X,S}., | with mized conditions. Let us
call the quantities a; or B;, 1 =1,...0+1,
ing" if the neighboring inequality sign in (3.2) is
strict. Then Theorem 3.1 still holds with the fol-
lowing possible changes in (3.6): From the inter-
val [a, B] the left endpoint o (the right endpoint 8)
is removed, if in (3.5) a coefficient y; (7v;) assumes
a "missing" value: a; or G;.
[a, B] in (3.6) s replaced with (o, B], [@
or remains unchanged.

"maiss-

Hence, the interval

B), (. B),

At the end of this subsection let us point out how
one can find a solution of the o-quasi-basic prob-
lem {X, S}Z_‘_1 , provided it is solvable. For this end
we first choose a number ¢ € [a, 8] N [0tg+1, Boti]-
Then we present £ as a convex combination of a and
B: £=Xa+(1—X)B, (0< X <1). Now one
can verify readily that the polynomial

o
x) = Z CkPy e (X)
k=1

where ¢, = Xove + (1 — Ag)7vi, is a solution of

{2, S¥ 1

3.2. The solvability of quasi-basic problem, II.
Suppose we have a o-quasi-basic problem {X, S}y =
{X,8}, ., with the set of knots X1 given by (3.1).
Now we are going to present a solution of quasi-basic
segmental problem, where all the o + 1 knots take
part in a same way.

Below we use standard multivariate notation. Set for
i=(%1,...,14) € Z% and x = (z1,...,24) € R :
i =41+ +ig, ' '
Consider the following polynomial space, where |i| =
n+1:

I, := Hi,i = {q(x)
Denote by [i]p the leading i-coefficient of p(x) =
q(x) + cx' € I, e, [ilp :=c.

We first show that if {X, S} 41 1s a quasi-basic prob-
lem then there is a multiindex i, |i| = n+1, such that
the interpolation problem with the knot set X, and

it 14
X =2y Ty

+extig€ell,, ceR}.
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the polynomial space II,, ; is solvable, or equivalently,
the knot set &, 1 is Il, ;-independent.

Proposition 3.1. Suppose we have a set of knots
Xoy1 satisfying the condition (3.3). Then there is
a multiindez 1, |1 = n + 1, such that the inter-
polation problem with the knot set X,11 and the
polynomzal space 11, ; 1s solvable.

Proof. Fix a multiindex i, |i| = n + 1. Since the knot
set X, is n-independent we have that the interpola-
tion problem with the knot set X, and the polyno-
mial space II,, is solvable. In particular there is a
polynomial p; € II,, such that

pi(x) = x' for each x = x® k=1,...,0.

In other words the polynomial ¢; := x' — p;(x) van-
ishes on X,. Now we have an alternative: Either ¢;
vanishes at the knot x(°*1) and hence on Xo41, OF
¢ does not vanish at x(°t1) and hence it is a funda-
mental polynomial of this knot with respect to the
polynomial space II, ;. In the later case, we get in
view of Corollary 2.1, that the knot set X, is in-
dependent regarding the space II,;, and hence the
interpolation problem with the knot set X,,; and
the polynomial space Il ; is solvable. Assume to the
contrary that we have the first alternative for all mul-
tiindexes i, [i| = n + 1. Then we get that the knot set
Xy 1 is a solution of the following polynomial sys-
tem:

(3.7)

But according to a known result (see Theorem 2.6,
Chapter 1, [20]), the set of solutions of type (3.7)
systems are necessarily n-independent, which contra-
dicts the condition (3.3). O

x' —pi(x) =0, Vi, |i| =n+1.

Next, let us fix a multiindex 1, satisfying the condi-
tions of Proposition 3.1, and consider all polynomials
from II,;, satisfying the conditions (3.2) of the o-
quasi-basic segmental problem. Denote the set of all
such polynomials by Sol{X, S}Zj_l . This time we are
going to characterize the solvability of the o-quasi-
basic segmental problem {X,S}) 41 by determining
the set of values of the leading coefficients of polyno-

mials from Sol{X,S}:j_l :

B:= {[i]p: pE Sol{X,S}Z’frl}.

We will readily determine the maximal and minimal
values of the leading coefficients in B. On the other
hand the latter set is convex. Hence, we obtain that
the set B actually is a segment [a,b]. Therefore, a
necessary and sufficient condition for the solvability
of the basic segmental problem {X,S}
the condition

0 € [a,b], or in other words, a < 0,b > 0.

" . b
41 becomes

To determine the segment [a,b] we again are go-
ing to use the Lagrange interpolation formula. For
this end we first enlarge, in view of Lemma 2.2,
the II, ;-independent set X, with a knot set J =
{y(i)}jv:;iQ till a I, ;-poised set Z = X, 1UY. Now,
according to the Lagrange formula, we have for any
polynomial p € II,,

o+1 N+1
p(x) =Y pxNpiw (x) + Y py®)phe (x).
k=1 k=oc+2

Let us verify that the leading i-coefficients of all
the fundamental polynomials of the second sum
above vanish. Indeed, assume to the contrary that
[i]p;(ko) # 0 for some kg. Then let us choose constants
cx such that [ijgr = 0, where gx = p% —ckp;(ko), k=
1,...,0+ 1. Now notice that ¢ € I, are fundamen-
tal polynomials of knots of the set X, ;. Therefore,
the latter set is n-independent, which contradicts the
condition (3.3).

Thus, we have for any polynomial p € I,

o+1

(3:8) ilp = > p(x™) ik -
k=1

Now, having the signs of [i]-leading coefficients of the
fundamental polynomials in above sum, we can easily
determine the interval [a, b]. Indeed, we get the mini-
mal value a (maximal value b) by replacing the value
p(x®)) with oy (Bx) in the expression in the right
hand side of (3.8), if [ip}., is positive and with Sy
(ag), otherwise. Thus, we have

o+1 o+1
(3.9) a= Z Yelilpy o, b= Z 7’;4[1]10,*((@7
k=1 k=1
where vx = oag, 7, = B if sgnfilpf, = 1, and

Y = Pk, 7V, = ok, otherwise. Let us mention, that
a (b) equals to —oo (+00), if YlilpLue (VelilPu)
equals to —oco (+00), for some k, k=1,...,0 + 1.
Hence, we get finally

Theorem 3.2. A o-quasi-basic problem {X, S}y =
{X, 8}, ., with the set of knots Xyq1 C R? is solv-
able 1f and only +f

0€[a,b], .e., a<0andb>0,

where a and b are given by (3.9).

Let us mention that the analog of Remark 3.1
holds in this case for the segmental problem with
mixed conditions. At the end let us point out how
one can find a solution of the o-quasi-basic prob-
lem {X, S}ZJr1 , provided it is solvable. For this end
we first present 0 as a convex combination of a and
b: 0=Xa+(1—2Xg)b, (Ag=0b/(b—a)). Now one
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can verify readily that the polynomial
g
p(x) = Z CkPi (X)),
k=1

where ¢ = Aok + (1 — Ao)7Vi, is a solution of
{X7 S}Z-H :

4. THE SOLVABILITY OF GENERAL SEGMENTAL
INTERPOLATION PROBLEM

In this section we will present two character-
izations for the solvability of segmental problem
{X,8}7 : in terms of its basic subproblems and in
terms of quasi-basic subproblems of certain cardinal-
ity (see forthcoming Theorem 4.2 and Corollary 4.1).
In the proof we will use the Helly theorem (see The-
orem 2.1.6, Chapter 2, [17]):

Theorem 4.1 (Helly). Let U be a real linear space
with dimU = k and {U;, 1 =1,...,m} be a col-
lection of m convex subsets of U, with m >
h + 2. If the intersection of every h + 1 of these
sets 1s nonempty, then the whole collection has
a nonempty intersection: ﬂ;’;ll/{i % 0. More-
over, this remains true for an infinite collection
{U;, © € I}, of, in addition, all U; are closed and
intersection of some finite subcollection 1s com-
pact.

First let us prove

Lemma 4.1. Let X,, be a finite knot set with
Hnx,, = ho and X C X, be a mazimal n-
independent subset: #X = hg. Next, suppose that
X 1s enlarged with a knot set Y till an n-poised
set X UY, where #Y = N — hg. Then the seg-
mental problem {X,S}2, or any its subproblem is
solvable (within II,,) if and only if it s solvable
within Py y.

Proof. The "if" direction follows from the inclusion
Pn,y CIl,. For the direction "only if" suppose, with-
out loss of generality, that the subproblem {X,S}}
of the segmental problem {X,S}%, with k& < m,

is solvable (within II,), i.e., there is a polynomial

NS
po € Sol{X,S}y. As.sume that Y = {ym}izhoﬂ
and p; := P;(z),XUy, 1= hog+1,...,N, are the n-

fundamental polynomials. Consider the polynomial
N .
90 ‘= Po — Z Po(y(l))P?
k=ho+1

(4.1)

We have that g9 € Pny, ie., q0|y = 0. Now no-
tice that the fundamental polynomials in the right
hand side of (4.1) vanish on X. Therefore, in view
of Corollary 2.4, they vanish also on &,,. Thus, we

obtain that q0|2c = p|X . Hence, qg is a solution of
the segmental problem {X,S}%, too. O

Now we present the main result of this section.

Theorem 4.2. The segmental interpolation prob-
lem {X,S}} is solvable if and only if all its basic
subproblems are solvable.

Before we prove Theorem let us verify that it yields
the following:

Corollary 4.1. The problem {X,S}] is solvable if
and only if all its quasi-basic subproblems of car-
dinality hg + 1 are solvable, where hg = H,(Xr).

Proof. Indeed, if all basic subproblems of {X,S};
are solvable then, by Corollary 3.1, all quasi-basic
subproblems of {X, S}7 are solvable, too. For the re-
verse implication it suffices to show that for any ba-
sic subproblem {X, S}y , with b C I, #b < ho, there
is an equivalent ho-quasi-basic subproblem {X,S}{,
with b € b C I, #b = ho + 1. To show this sup-
pose that the knot set X = X \ {A}, where A € X,
is n-independent. Suppose also, in view of Lemma
2.4, that an enlarged set Z := X U )Y is a maximal
n-independent subset of A, hence #2Z = hg. Let us
show that as a desired set we can take b := XpUY =
Z U {A}. Indeed, in view of Corollary 2.3, we have
that the fundamental polynomials of the knots of )
with respect to the knot set Z are fundamental also
with respect to the knot set Z U {A}. Therefore, in
view of Corollary 3.1, the basic subproblem {X, S},
1s equivalent to the segmental subproblem with the
knot set Z U {A}. O

Proof of Theorem 4.2. Let us divide the proof
into two parts, where the cases of finite and infinite
knot sets are discussed, respectively.

Part 1. Consider first the finite segmental problem:
{X,S}7 . We are going to use Theorem 4.1 (the Helly
theorem) for spaces U := P, y, with various point
sets ), to show that Sol{X,S}" # 0. We will carry
out the proof in Part 1 in two steps.

Step 1. Let us show that the segmental prob-
lem {X, S}, is solvable by assuming that all its sub-
problems of cardinality hg + 1 are solvable, where
ho := Hn(Xy). From latter equality we have that
m > hg. Note that if m = hgp then the segmental
problem is n-independent. In this case of course it is
solvable (Lemma 2.1). Also if m = hg + 1 then the
segmental problem is solvable by the assumption of
Step 1. Hence, assume that m > hg + 2.

Suppose that the knot set X;, where J =
{71,--yJnet C {1,...,m}, is a maximal n-
independent subset of X,,. Suppose also, in view of
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Lemma 2.2, that an enlarged set Xy U )Y is n-poised,
where #Y = N — hg.

By Lemma 4.1 the segmental problem {X,S}? and
any its subproblem is solvable (within II,,) if and only
if it is solvable within P, y.

According to Proposition 2.1 (part "moreover"), we
have that

(4.2) dim P,y =N — #Y = #&; = ho.
Denote forz =1,...,m,

U= {pePuy:as <p(x?) < Bi}.

It is easily seen that the sets U; C Py y here are con-
vex. Then let us verify that the intersection of any
ho + 1 sets of U; is nonempty. Indeed, ﬂ?:lrl U, =

{p EPny: ag, Sp(x(k‘)) <PBr, £=1,...,ho+ 1}.

In view of the assumption of Step 1 and Lemma
4.1, all subproblems of cardinality ho + 1 of {X,S}]
are solvable within P, y. Therefore, ?2‘1 U, # 0.
Now, by Theorem 4.1, the whole collection has a
nonempty intersection: (-, U; # 0. Thus, the prob-
lem {X,S}" is solvable within P, y, and hence it is
solvable.

Step 2. What remains to show in this step is
that all subproblems of cardinality kg + 1 of {X, S},
are solvable. For this we use complete induction on
the cardinality of subproblems. Note that the sub-
problems with one knot are evidently solvable. Sup-
pose that all subproblems of cardinality at most k of
{X, S} are solvable and let us prove that the sub-
problems of cardinality k& 4+ 1 are solvable, too.
Thus, consider any subproblem {X,S}7 of cardi-
nality #J = k + 1, where J = {J1,...,7k+1} C
{1,...,m}. Set hy := Hp(Xs). If hy = k + 1, then
{X,8%}7 is an independent subproblem and hence it
is solvable by Lemma 2.1. If h; = k, then either it
is a basic subproblem and is solvable by assumption
of Theorem, or it is a quasi-basic subproblem. In the
latter case, by Corollary 3.1, {X, S} is equivalent to
a basic subproblem and hence is solvable, too.

Now, assume that h; < k — 1. Let us apply Step 1
to the subproblem {X, §}%, considered as a problem.
In view of the induction hypothesis we have that all
subproblems of cardinality at most k of {X,S}7} are
solvable. On the other hand we have that & > hy +1.
Thus, we have that all subproblems of cardinality
hi +1 of {X,S}7 are solvable. Therefore, according
to Step 1, the segmental problem {X’, S}'; is solvable.

Part 2. Consider now the case of segmental prob-
lem with infinite knot set: {X,S}}. Set h, :=
H,(Xr). Suppose that the knot set X7, where J =
{1, ---

of X;. Suppose also, in view of Lemma 2.2, that an

,Jhst C I, is a maximal n-independent subset

enlarged set Z := X; U Y is an n-poised set, where
#Y = N — hy. We are going to use Theorem 4.1
(the Helly theorem) with U := P, y. By using the
Lagrange formula we get readily
ha

(4.3) P E Py & p(x)= Z Czp,*(oz) (x),

£=1
where ¢, = p(x9)) € R and Pl
forvel:

U, = {p € Pry oy < p(x)) < ﬁy} :

Let us show that the segmental problem {X,S}7} is
solvable: [, ., U, # 0.

According to Part 1, we have that any finite sub-
problem of {X,S}7} is solvable. Hence, any finite
intersection of sets {U, : v € I} is not empty. As was
mentioned above the sets U, C Py, y are convex. Let
us verify that they are also closed. Indeed, assume,
in view of (4.3), that o, < ps(x(*)) < B,, where

— K
= Pt z- Denote

ho
ps(x) = Z cgs)p:(jz)(x) and cﬁs) = ¢y
=1

Then we get readily that
ha
a, < p(x™)) < B, where p(x) = Y cipliy (%).
=1

Now, denote by U° := ﬂ?il U;, =

{p € Pny : aj, Sp(x(”)) < Bjy L= 1,...,h2}.

In view of (4.3) the set U° C P,y is bounded. On
the other hand it is closed as an intersection of closed
sets. Hence, U° is a compact set. Thus, according to

Theorem 4.1 (the Helly theorem, part "moreover")
we have that (), ., U, # 0.

Remark 4.1. Theorem 4.2 remains valid, in the
case of finite segmental problems, if some of a,
and B, assume extended values: 400 and —oo, re-
spectively, or some of the inequalities in (1.1) are
strict (the case of mized conditions). In the latter
case the solvability of basic subproblems must be
verified according to Remark 3.1.

Indeed, the weakness of the inequalities and the
finiteness of the mentioned values in (1.1) were used
only in the case of infinite knot sets to show that the
sets U, are closed and the set U° is compact.

4.1. A method of solving finite segmental prob-
lems. Consider a segmental problem {X, S}, , with
a set of knots X, given by (1.2). Assume that
{X,8} is solvable, i.e., the hypotheses of Theorem
4.2 hold, and let us bring a method for finding a so-
lution. The method is inductive, with respect to the
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cardinality of the knot set. Let us mention that a
step of the method is based on a proof of Theorem
4.1, (see the proof of Theorem 2.1.6, Chapter 2, [17]).
To start, note that for a subproblem with one knot
we can easily choose a solution - just an intermediate
constant. Suppose that we have solutions of all sub-
problems of {X, S}, with set of knots of cardinality
k and let us find a solution of any given subproblem
of cardinality k + 1. Assume, without loss of general-
ity, that the given subproblem of cardinality k + 1 is
{X7 S}ZJrl :

Set hg = Hp(Xg+1). Of course we have that
ho < k+ 1 and hg < h, where h := H,(Xm). Sup-
pose that the knot set X7, where J = {j1,...,Jn,} C
{1,...,k+ 1}, is a maximal n-independent subset of
Xy11. Suppose also, in view of Lemma 2.2, that an
enlarged set X;U), is n-poised, where #)y = N—hg.
We are going to find a polynomial p € Py, y, satisfy-
ing the conditions

(4.4) a; <p(x)< B, i=1,.. k+1

If hg = k+1, then {&,S}7, , is an independent sub-
problem and to find a solution it suffices to solve an
interpolation problem with any intermediate values
(Lemma 2.1). If hg = k, then {X,S}7,, is a quasi-
basic (or basic) subproblem. We know that quasi-
basic problems are solvable if the basic problems are
such (Corollary 3.1). Also, at the ends of Subsec-
tions 3.1 and 3.2, we have descriptions of how to find
a solution of any solvable quasi-basic problem.
Hence, assume that hg < k — 1. Note that, in view of
(4.2), we have that

(45) dim Pn,yo = ho.

By using Lemma 4.1, we may assume that we have
solutions of subproblems of {&,S}7, ; of cardinality
k within Py y,.

Then, let us denote by M := {1,...,k + 1}. Set,
M, = M\{i}, + = 1,...,hg + 2. (Recall that
ho < k — 1, and hence hg + 2 < k + 1.) We have
that each subproblem {X,S}7,. is of cardinality k.
Assume that the following polynomial is a solution
of it within Py y, :

(4.6) gi € Pny,, Wherez=1,...,ho + 2.
Next, let us verify that one can find multipliers
Wi,...,Wry+2 € R, not all zero, such that
ho+2 ho+2
(4.7)

Zwipizo, Zwi:O.
=1 =1

Indeed, first relation of (4.7), in view of (4.5) and
(4.6), can be reduced to kg scalar linear homogeneous
equations. Thus, (4.7) is equivalent to a system of
ho + 1 homogeneous equations in kg + 2 unknowns,
and hence has a nontrivial solution.

Denote by E the set of subscripts of positive mul-
tipliers w; in (4.7), and by F_ the set of subscripts
of negative or zero multipliers. Then we have from

(4.7):
q9-= Z Wips = — Z WiPs.-
= i€B_
Now, one can verify readily that the polynomial

Q= (1/w)g, where w = 3 ,cp wi == ,cp wi, s
a desired solution of {X,S}7,,. Indeed, Q is a con-
vex combination of {p; : 1 € E;} and p; satisfies all
relations of (4.4) except possibly the ith one. Hence,
Q satisfies all relations of (4.4) except possibly the
iths with ¢« € E,. At the same time @ is a convex
combination of {p; : ¢+ € E_} and hence Q satisfies
all relations of (4.4) except possibly the iths with
t € E_. On the other hand we have E_ N E, = 0,
therefore @ satisfies all the relations of (4.4).

Remark 4.2. Note that the above described
method of solving at the same time presents an-
other proof of Theorem 4.2 in the case of finite
segmental problems.

5. THE UNIVARIATE SEGMENTAL PROBLEM

Denote the space of univariate polynomials of total
degree at most n by

Ty 1= {p:ao+a1$+~-~+an$n}, dimﬂn:n—f—l.

Let X; = {z, : v € I} C R be any set of points.
Let S; = {[av,B,] : v € I} be a respective set of
any segments. The univariate segmental interpola-
tion problem {X,S}} is to find out whether there is
a polynomial p € m,, satisfying the conditions

a, < p(z,) < B, WweEL

In the case when [ is finite we use the notation
Xm = {z1,22,...,2,} C R for the set of knots and
Sm = {[ai, 8] : 1 =1,...,m} for the set of seg-
ments. The corresponding finite segmental problem
is denoted by {X, S} . Denote the set of all its so-
lutions, as in the multivariate case, by Sol{X,S}, .
In the univariate case any set of knots of cardinality
at most n + 1 is n-independent and any set of car-
dinality n + 2 is essentially n-dependent. Therefore,
Definition 3.1 in the univariate case simply reduces
to:

Definition 5.1. We call a subproblem {X,S}},
bC I, of {X,S}} basic if #b=n +2.

Now, we get from Theorem 4.2:

Theorem 5.1. The univariate segmental interpo-
lation problem {X,S}7 is solvable if and only if all
its subproblems of cardinality n + 2, are solvable.
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In the last two subsections we bring the two charac-
terizations of solvability of basic segmental problem
in the univariate case, in more details. In particular,
we find explicitly the values of signs of fundamental
polynomials taking part in relations (3.5) and (3.9).

5.1. The solvability of univariate basic prob-
lem, I. Here we start with a subproblem of the basic
segmental problem {X, S}, 4o Where the last knot is
absent, i.e., {X,8} ;.

Let us determine the set of values of solutions of
the above subproblem at any fixed point = € R, 1.e.,

we determine the set

Agp = {p(w), pE Sol{X,S}ZH}.
We know that this set of values forms an inter-
val [a(z), B(z)]. Therefore, a necessary and sufficient
condition for the solvability of the univariate basic

segmental problem {X, S}, ,

[a(Zni2), B(Zni2)] N [Ani2, Pry2] # 0.

To find a(z) and f(z) we use the Lagrange interpo-
lation formula, according to which, we have for any
polynomial p € 7,

becomes the condition

n+1
(5.1) p() = > p(ax)pi(2),
k=1
where
n+1 . -
S _ — &g
pi(z) = 4 H r —z;
1=1, 1#k

Next, since we are going to determine the sign of
pi(z), assume, without loss of generality, that the se-
quence {xi}?jll is increasing. Consider the intervals
Z,, v=0,...,n+ 1, where

(—o0,z1) if v =0,
Z, =< (20, z041) ifvr=1,...,n,
(Tpy1,+o00) fv=n+1.

Now, assume that ¢ € Z,, and let us determine
the interval A, = [a(z),B(z)] = [ow(z), B.(z)],
where 0 < v < mn + 1 is fixed. Indeed, we get the
possible minimal (maximal) value a,(z) (B,(z)) of
p € Sol{X,S}.. | by replacing the value p(z;) in
the right hand side of (5.1) with ay (Bk), if pi(z) is
positive, and with g (a), otherwise.

Now, notice that the fundamental polynomials p}(z)
and pj} , ,(z) both are positive on Z,. While the poly-
nomials p}(z), k =v,v —1,..., as well as the poly-
nomials pi(z), ¥ = v+ 1,v + 2,..., alternate their
signs on Z,,. Thus, we get

CYV(ZE) = Z’ykpZ(CE), ﬁu(w) = Z’Y}ICPZ(QU), S IVv
k=1 k=1

where v, = ag,y, = B for k =v,v —2,v —4,...,
and k = v+ 1Lv+3,v+5...; Y% = B, = O
otherwise.

5.2. The solvability of univariate basic prob-
lem, II. In the univariate case the approach pre-
sented in Section 3.2 becomes much more simple.
Namely, we start with the set of polynomials of de-
gree not exceeding n + 1 satisfying the conditions of
basic segmental problem {X, S}, .
from this set of polynomials a polynomial whose lead-
ing coefficient, i.e., the coefficient of the monomial
z™ !, vanishes.

Notice that the leading coefficient of any polyno-
mial p € w1 coincides with the divided difference
[z1,...,Zni2]p (for any n + 2 knots). To start let us
consider

B:= {[xl, e Tnaolp, P E Sol{X,S}Zi;} .

We know that the set B forms an interval [a, b]. Thus,
a necessary and sufficient condition for the solvability
of the univariate basic segmental problem {X, S},
becomes the condition

0 € [a,b], or in other words, a < 0,b > 0.

Then we choose

To determine the minimal and maximal values: a
and b, we use the Lagrange formula for the divided
difference:

n+2

[1131, R mn+2]p = Z )‘kp(xk)7
k=1

where
n+2

[1

i=1, i£k
Assume, without loss of generality, that the sequence
of knots {z;}7*? is increasing. Then we have that

1
Tr — T

Ap =

sgn), = (-1)" 7%, k=1,...,n+2.

Therefore, we obtain that

n+2 n+2
a = Z’Yk)‘k S [1:07 .. -7$n+1]P S Z’Yllq)‘k = b)
k=1 k=1

where v, = o, Y, = Bk, fk=n+2,n,n—-2,...,
and v, = Bk, v, = 0, otherwise.
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