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A NEW CLASS OF L-STABLE HYBRID ONE-STEP METHODS FOR THE

NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

MOHAMMAD MEHDIZADEH1 AND MARYAM MOLAYI

Abstract. In this paper, a class of one-step hybrid methods for the numerical solution of ordinary dif-
ferential equations (ODEs) are considered. The accuracy and stability properties of these methods are
investigated. By judicious choice of the coe�cients in these formulae a class of method is derived which is
shown to be L-stable and so is appropriate for the solution of certain ordinary di�erential and sti� di�eren-
tial equations. We apply the new method for numerical integration of some famous sti� chemical problems
such chemical Akzo-Nobel problem, ROBER problem (suggested by Robertson) and some others which are
very popular in numerical studies.

1. Introduction

Consider the system of ordinary di�erential equa-

tions of the form

dy

dx
= f(x; y); y(0) = y0;(1.1)

where x 2 [0; X], y 2 Rm and f 2 Rm+1.

In [6] Dahlquist de�nes A-stability as follows:

De�nition 1.1. A numerical method applied to

test equation y0 = �y (� is complex constant with

Re� < 0) with �xed positive h, is said to be A-

stable if its region of absolute stability contains

the whole of the left-hand half-plane Re�h < 0.

He then established that the trapezoidal rule

yn+1 = yn +
h

2
(fn + fn+1) :

is the most accurate linear multistep method satisfy-

ing his A-stability requirement.

The search for higher order A-stable multistep meth-

ods was carried out in the two main directions:

� use higher derivatives of the solutions ,

� throw in additional stages, o�-step points,

super-future points and like .

This leads into the large �eld general linear methods

[3]-[16].

In this paper, we construct a new class of A-stable

hybrid one-step method which improves the compu-

tational e�ciency and stability aspects. By using one

o�-step point in �rst derivative of the solution y(x)

and appropriate choice of the coe�cients, a class of

method is derived which has higher order of accu-

racy and good stability characteristics. The proposed

method is L-stable and so is appropriate for the so-

lution of certain ordinary di�erential and sti� di�er-

ential equations. Following [5] a formal de�nition for

L-stability is as follows:

De�nition 1.2. A one-step numerical method is

said to be L-stable if it is A-stable and, in addi-

tion, when applied to the scalar test equation

y0 = �y, it yields yn+1 = R(�h)yn, where

jR(�h)j ! 0 as Re�h ! �1. R is the stability

polynomial of the method.

The paper is constructed as follows. In Section 2,

we present the new scheme, we explain how the co-

e�cients of the method has obtained. In Section 3,

we discuss in some details the accuracy and stability

region of the method. Numerical examples are given

in Section 4 and a comparison is made with existing

methods for results to show the e�ciency of the new

method.

2. The new method

For the numerical solution of (1.1), we introduce

a class of hybrid methods with one o�-step points as
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follows:

�yn+� = (� � 1)2yn + �(2� �)yn+1 + �(� � 1)hfn+1;

(2.1)

yn+1 � yn = h(�0fn + �1fn+1 + �2 �fn+�);

(2.2)

where

fn+1 = f(xn+1; yn+1); �fn+� = f(xn+�; �yn+�);

xn+� = xn + �h; 0 < � < 1:

�i; i = 0; 1; 2 and �, are four arbitrary parameters.

Now, as in [5] with the di�erence equation (2.2), we

can associate the di�erence operator L as follows:

L[y(x); h] = y(x+ h)� y(x)� h(�0y
0

(x)+

�1y
0

(x+ h) + �2y
0

(x+ �h));(2.3)

where the function y(x) has continuous derivatives at

least of order 4. Expanding the test function y(x+ih)

and its derivatives y0(x+ ih) and y0(x+�h) as Taylor

series around x, and collecting terms in (2.3) gives:

L[y(x); h] = C0y(x) + C1hy
0

(x) + :::

+ Cqh
qy(q)(x) + ::::(2.4)

De�nition 2.1. [5] The di�erence operator (2.3)

and the associate di�erence equation (2.2) are

said to be of order p if, in (2.4) it holds:

C0 = C1 = ::: = Cp = 0; Cp+1 6= 0 :

Excluding �, there are three undetermined parame-

ters �0; �1; �2. Using Taylor series expansion gives

the following values for the parameters in (2.2):

�0 =
3� � 1

6�
; �1 =

3� � 2

6(� � 1)
; �2 = �

1

6�(� � 1)

The local truncation error is:

E4 = (
�

36
�

1

72
)h4y(4)(�):

If we take � =
1

2
then obviously E4 = 0, and we have

�0 =
1

6
; �1 =

1

6
; �2 = �

2

3
;

and the method is then

yn+1 � yn = h(
1

6
fn +

1

6
fn+1 �

2

3
�fn+�);

which is the implicit one-step method of order 4, and

its local truncation error is

E5 = (
�2

144
+

�

144
�

1

180
)h5y(5)(�) = �

1

2880
h5y(5)(�) :

To get formula (2.1) (evaluation the value of

yn+� at o�-step point, i.e. xn+�) Newton's in-

terpolation formula for nodes xn+1 (double node),

xn; xn�1; � � � ; xn�k+1 (simple nodes) has been used.

For more details see [3].

3. Accuracy and stability analysis

We now prove the following lemma regarding the

order of accuracy of (2.2) used in the way described

by stages (2.1) and (2.2).

Theorem 3.1. Let:

(i) formula (2.1) is of order 2,

(ii) formula (2.2) is of order 3 ,

and they are solved using an iteration scheme it-

erated to convergence. Then scheme (2.1)-(2.2)

has order 3.

Proof. The local truncation error for (2.1) of order 2

is

y(xn+�)� �yn+� = C1h
3y(3)(xn) + o(h4);(3.1)

where xn+� = xn+ �h; 0 < � < 1, and C1 is the error

constant when the method is being used to get �yn+�.

Similarly, the truncation error for method (2.2) of

order 4 is

y(xn+1)� yn+1 = C2h
4y(4)(xn) +O(h5);(3.2)

where C2 = �
36 �

1
72 is the error constant of the

method (2.2). Assuming that yn, be exact, then from

(2.1) and (2.2) the di�erence operator associated with

method (2.2) is

y(xn+1)� yn+1 = C2h
4y(4)(xn) + h�2

h
f
�
xn+�; y(xn+�)

�
� f(xn+�; �yn+�)

i
+O(h5):(3.3)

For some �n+� in the interval whose end are �yn+� and

y(xn+�), we can write

f
�
xn+�; y(xn+�)

�
� f(xn+�; �yn+�) =

@f

@y

�
xn+�; �n+�

�
�
y(xn+�)� �yn+�

�
:(3.4)

Now, from (3.1)-(3.4) we have

y(xn+1)� yn+1 = h
@f

@y
(xn+�; �n+�)

�
y(xn+�)� �yn+�

�
+ C2h

4y(4)(xn) +O(h5)

= h
@f

@y
(xn+�; �n+�)

�
C1h

3y(3)(xn) + o(h4)
�

+ C2h
4y(4)(xn) +O(h5)

= h4
�@f
@y

(xn+�; �n+�)C1y
(3)(xn) + C2y

(4)(xn)
�

+O(h5):

It results from the above that order of new method

(2.1)-(2.2) is 3. �

Theorem 3.2. For every 0 < � < 1, the method

(2.2) is A-stable.
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Proof. Applying method (2.1)-(2.2) to test problem

y0 = �y, results

�yn+� = (� � 1)2yn + �(2� �)yn+1 + �(� � 1)�hyn+1;

(3.5)

yn+1 � yn = �h(�0yn + �1yn+1 + �2�yn+�)(3.6)

where �h = h�. Now, we substitute (3.5) into (3.6)

and therefor we obtain

yn+1 � yn = �h(�0yn + �1yn+1 + �2((� � 1)2yn

+ �(2� �)yn+1 + �(� � 1)�hyn+1)):(3.7)

By substituting the value of �0; �1; �2 in (3.7), we

have

yn+1 =
1 + 1

3
�h

1� 2
3
�h+ 1

6
�h2| {z }

R(�h)

yn:(3.8)

Therefor, the corresponding characteristic equation

of �rst order di�erence equation of the methods is

� +R(�h) = 0:

Applying the necessary and su�cient condition for

A-stability (jR(�h)j < 1;8�h 2 (�1; 0)) yields:

jR(�h)j < 1() �h 2 (�1; 0);8 0 < � < 1:

This concludes the A-stability. The region of A-

stability is plotted in Fig.1. �

0 2 4 6
−5

0

5

Figure 1: The region of absolute stability of (2.2).

Theorem 3.3. For every 0 < � < 1, the method

(2.2) is L-stable.

Proof. From (3.8) we observe that jR(�h)j ! 0 as
�h!1, that means the method is L-stable. �

4. Numerical results

In this section we present some numerical results

to compare the performance of our new class of meth-

ods with that of other numerical methods. What we

shall be attempting to do, is to show the superior

performance of new method for a given �xed stepsize

over some special methods for a small selection of ex-

amples. We do not claim that our numerical results

demonstrate the superiority of our approach over any

of existing approaches. However, we do feel that our

results indicate that a properly implemented version

of our algorithm should be useful for the numerical

integration of sti� di�erential systems. We have pro-

grammed these methods in MATLAB. Assume that

the value of � is
2

3
to get new method which can take

the form

�yn+ 2

3

=
1

9
yn +

8

9
yn+1 �

2

9
hfn+1;(4.1)

yn+1 � yn =
1

4
(fn + 3 �fn+ 2

3

):(4.2)

However before we solve presented test problems, we

are going to make some remarks about implementa-

tion of (4.1)-(4.2). Suppose that the following itera-

tion

�y
[m]

n+ 2

3

= �
2

9
hf

[m]
n+1 +

8

9
y
[m]
n+1 +

1

9
yn;(4.3)

y
[m+1]
n+1 = yn +

1

4
(fn + 3 �f

[m]

n+ 2

3

):(4.4)

is being used to solve nonlinear (4.1)-(4.2). More pre-

cisely, suppose y1 = y(0), which is the initial value

in any test problem. By using an explicit method,

we make an initial guess for y
[0]
2 . This value together

with initial condition y1 are substituted into (4.3)

to evaluate �y
[0]

1+ 2

3

. So, we can obtain an improved

approximation y
[1]
2 by substituting �y

[0]

1+ 2

3

into (4.4).

This value is then substituted into (4.3) to get �y
[1]

1+ 2

3

.

Then, the process will go on.

Example 4.1. Consider the initial value problem

y0 = �5xy2 +
5

x
�

1

x2
;

y(1) = 1:

with the exact solution y(x) =
1

x
.

We compare the results of method (4.2) and

Runge-Kutta method of 4 stage (RK4) with h = 0:1

and h = 0:025.
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The results for Example 4.1

xi h RK4 Error with method (2.2)

1.0 0.1 0 0

2.2 -0.001373 2.72E-06

3.4 -0.000321 4.25E-07

4.6 0.000121 1.2E-07

5.8 0.000058 4.66E-08

7.0 0.000033 2.16E-08
...

...

25.0 0.000001 1.24E-10

1.0 0.025 0 0

2.2 -0.0002156 4.8E-08

3.4 -0.0000632 7.5E-09

4.6 0.0000021 2.12E-09

5.8 0.0000062 8.18E-10

7.0 0.0000003 3.78E-10
...

...

25.0 0.0000008 2.18E-12

Example 4.2. Consider the sti� system of initial

value problem

y1
0 = �1002y1 + 1000y22 ;

y2
0 = y1 � y2(1 + y2);

y1(0) = 1; y2(0) = 1:

with the exact solution

y1 = e�2x;

y2 = e�x:

We have solved this problem at X = 50 and com-

pared the results with those of Wu's method [2]. A

stepsize h = 0:05 has been used here. One can also

use the smaller stepsize to get signi�cantly more ac-

curate than this result. For the numerical result see

Table 2.

The results for Example 4.2

X h Y Error with method (2.2) Error in [2]

50 0.05 y1 4.13E-25 2.3E-21

y2 1.29E-22 1.4E-18

Example 4.3. Consider the non-linear system of

di�erential equations:

y01 = �y1 + y22 ;

y02 = �y2;

where � = 10000. The exact solution is:

y1(x) =
�e�2x

(�+2) ;

y2(x) = e�x;

and the results are tabulated in Table 3 for h =

0.0001 at di�erent values of X.

The results for Example 4.3

X yi Error with method (2.2)

y1 1.778769E-20

3

y2 2.078539E-12

y1 2.493147E-19

5

y2 4.664012E-13

y1 5.743522E-20

10

y2 6.345662E-12

Example 4.4. Let us consider the following sti�

problem

y1
0 =� 0:04y1 + 104y2y3;

y2
0 =0:04y1 � 104y2y3 � 3� 107y22 ;

y3
0 =3� 107y22 ;

with initial value y(0) = (1; 0; 0)T .

This is a chemistry problem suggested by Robert-

son. The results of the numerical integration at

X = 0:4; 40 and 400 are presented in Table 4 solv-

ing with (4.2) and �xed stepsize h = 0:001.

The results for Example 4.4

X yi method (2.2)

y1 9.851721251347007E-1

0.4 y2 3.386395543179683E-5

y3 1.479401090987736E-2

y1 7.1582706979837332E-1

40 y2 9.185534805990503E-6

y3 2.841637446676256E-1

y1 4.505186352465841E-1

400 y2 3.22290144176527E-6

y3 5.494781086256178E-1



A NEW CLASS OF L-STABLE HYBRID ONE-STEP METHODS FOR... 43

Example 4.5. Consider the following sti� system

arose from a chemistry problem

y1
0 =� 0:013y2 � 1000y1y2 � 2500y1y3;

y2
0 =� 0:013y2 � 1000y1y2;

y3
0 =� 2500y1y3;

with initial value y(0) = (0; 1; 1)T .

In Table 5 we give the results obtained for the in-

tegration of this problem at X = 2:0. A stepsize

h = 0:001 has been used here. Comparison with the

formulas in [1] and [4], the new formula gives more

accurate results.

The results for Example 4.5

X yi Exact solution Error with (2.2)

y1 -0.3616933169289E-5 7.7632E-17

2.0 y2 0.99815029984230 4.1714E-11

y3 01.018493388244 4.1908E-11

Error in [1] Error in [4]

y1 0.82E-10 0.31E-08

2.0 y2 0.61E-05 0.18E-05

y3 0.57E-05 0.57E-05

Example 4.6. As our last test equation, we con-

sider chemical Akzo Nobel problem. This IVP is a

sti� system of 6 non-linear di�erential equations.

It has been taken from [11, 16].

Mathematical description of the problem: The

problem is of the form:

dy

dx
= f(y); y(0) = y0; y 2 R6; 0 � x � 180;

and the function f is de�ned by

f =

0
BBBBBBB@

�2r1 + r2 � r3 � r4
� 1

2r1 � r4 �
1
2r5 + Fin

r1 � r2 + r3
�r2 + r3 � 2r4
r2 � r3 + r5

�r5

1
CCCCCCCA

where the ri and Fin are auxiliary variables, given by

r1 = k1y
4
1y

1

2

2 ; k1 = 18:7;

r2 = k2y3y4; k2 = 0:58;

r3 =
k2

K
y3y5; K = 34:4;

r4 = k3y1y
2
4 ; k3 = 0:09;

r5 = k4y
2
6y

1

2

2 ; k4 = 0:42;

Fin = klA

�
p(O2)

H
� y2

�
;

klA = 3:3; p(O2) = 0:9; H = 737:

Finally the initial vector y0 is given by

y0 = (0:437; 0:00123; 0; 0; 0; 0:367)
T
.

Origin of the problem: The problem originates

from Akzo Nobel Central Research in Arnhem, The

Netherlands. It describes a chemical process, in

which 2 species, MBT and CHA, are mixed, while

oxygen is continuously added. The resulting species

of importance is CBS. The reaction equations, as

given by Akzo Nobel, are the last equation describes

an equilibrium

Ks1 =
[MBT � CHA]

[MBT ] � [CHA]
;

while the others describe reactions, whose velocities

are given by

r1 = k1[MBT ]4 � [O2]
1

2 ;

r2 = k2[MBTS] � [CHA];

r3 =
k2

K
[MBT ] � [CBS];

r4 = k3[MBT ] � [CHA]2;

r5 = k4[MBT � CHA]2[O2]
1

2 ;

respectively. Here the square brackets '[ ]' denote

concentrations. The in�ow of oxygen per volume unit

is denoted by Fin, and satis�es

Fin = klA

�
p(O2)

H
� [O2]

�
;

where klA is the mass transfer coe�cient, H is the

Henry constant and P (O2) is the partial oxygen

pressure. P (O2) is assumed to be independent of

[O2]. The parameters k1; k2; k3; k4;K; klA;H and

P (O2) are given constants. The process is started

by mixing 0.437 mol/L [MBT ] with 0.367 mol/L

[MBT:CHA] The concentration of oxygen at the be-

ginning is 0.00123 mol/L. Initially, no other species

are present. The simulation is performed on the time

interval [0 180min]. Identifying the concentrations

[MBT ]; [O2]; [MBTS]; [CHA]; [CBS]; [MBT:CHA]

with y1; � � � ; y6, respectively, one easily arrives at the
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mathematical formulation of the preceding subsec-

tion. Solution of this problem at t = 180 using new

method is reported in Table 6.

The results for Example 4.6

t yi method (2.2)

y1 1.161625832012301E-1

y2 1.119412194091551E-3

y3 1.621250677283227E-1

180 y4 3.395915545576541E-3

y5 1.646185137343564E-1

y6 1.989543899632128E-1

5. Conclusions

We have derived a class of methods that, as it has

been shown in section 2, has extensive region of sta-

bility and in particular is L-stable up to order 4. This

property, let us to apply the new method for numer-

ical solution of sti� systems of ODEs with high ac-

curacy. We do not claim that our numerical results

demonstrate the superiority of our approach over any

of the more conventional approaches. However, we do

feel that our results indicate that a properly imple-

mented version of our algorithm should be useful for

the numerical integration of sti� di�erential systems.
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