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HYERS-ULAM STABILITY OF FOURTH ORDER EULER’S DIFFERENTIAL
EQUATIONS

A. K. TRIPATHY! AND A. SATAPATHY

ABSTRACT. In this work, we investigate the Hyers-Ulam stability of the fourth order Euler's differential

equations of the form

thy ) L atdy" 4 Bty f oty 46y =0

on any open interval I = (a,b), 0 < a < b < o0 or —oo < a < b < 0, where , 8,7 and § are complex

constants.

1. INTRODUCTION

The study of stability problems for various func-
tional equations originated from a talk given by S.
M. Ulam in 1940. In that talk, Ulam [16] discussed
a number of important unsolved problems. Among
such problems, a problem concerning the stability
of functional equations :
der for a linear mapping near an approzimately
linear mapping to exist” is one of them. In 1941,
Hyers [1] gave an answer to the problem.

Furthermore, the result of Hyers [1] has been gen-
eralized by Rassias [12]. After that many authors
have extended the Ulam’s stability problems to other
functional equations and generalized Hyer’s result in
various directions (see for e.g. [2, 6, 9, 10, 11, 13, 14]).
Thereafter, Ulam’s stability problem for functional
equations was replaced by stability of differential
equations. The differential equation

ey (E) + an-1(®y"TIE) + -
+a1(t)y (£) + ao(t)y(t) + h(t) = 0

has Hyers-Ulam stability, if for given € > 0, I be an
open interval and for any function f satisfying the
differential inequality
an(y™ () + 1@y + o+

+ ai(t)y (£) + ao(t)y(t) + A(t)| <€,
then there exists a solution fy of the above differ-

ential equation such that |f(¢) — fo(t)| < K(€) and
liné K(e) =0, for t € I. If the preceding statement
e—

“Give conditions in or-

is also true when we replace € and K(€) by ¢(¢) and

1corresponding author
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1 (t) respectively, where ¢,¢: I — [0, 00) are func-
tions not depending on f and fy explicitly, then we
say that the corresponding differential equation has
the generalized Hyers-Ulam stability.

S. M. Jung has investigated the Hyers-Ulam stabil-
1ty of linear differential equations of different classes.
Among his works (see for e.g [3, 4, 5, 6, 7, 8]), we are
motivated by the results of [4], where he has stud-
1ed the Hyers-Ulam stability of the following Euler’s
differential equations:

ty (t) + ay(t) + ft"zo = 0

and also applied this result for the investigation of
the Hyers-Ulam stability of the differential equation

2y (t) + aty (t) + By(t) = O,

where o, f and r are complex constants and zq # 0 is
a fixed element. In [15], the authors have established
the Hyers-Ulam stability of the following Euler’s dif-
ferential equations

(1.1)

and

n

2y (t) + aty (t) + By(t) + vt "zo = 0

n "

(1.2) &y (6) + oty () + Bty (t) + 79(t) =0,

where «, 8, and r are complex constants with zg #
0 is a fixed element. In fact, Hyers-Ulam stability
of (1.2) depends on the Hyers-Ulam stability of (1.1)
for every zg # 0. In particular, we have the following
results:

Hyers-Ulam stability, Euler’s differential equation.
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Theorem 1.1. [15] Let X be a Complex Banach
space and let I = (a,b) be an open interval with
etther 0 <a<b<oo or—oco<a<b<0. Assume
that ¢ : I — [0,00) s gwen, and that a,f,7,r
are complex constants, zq is a fized element of X.
Furthermore, suppose a twice continuously differ-
entiable function f .1 — X satisfies

|29 &) + aty' @) + By(t) + vt720| < (2), te 1.
Letl and m be two numbers so thata=1—-1—m
and B = lm. If tr—171, ¢r—m—1 ¢m—i=1 y4=m—1g4)
and t7714(t) are integrable on (a,c), for any c
with a < ¢ < b, then there exists a unique solution
Jfo: I — X of the differential equation (1.1) such
that

b
17(t) - fol®)l < |2 / g (u)du

for allt € I, where

P(t) = 17

b
/ v g (v)dv
¢

Theorem 1.2. [15] Let X be a Complex Banach
space and I = (a,b) be an open interval such that
either 0 <a<b<oo or—co<a<b<0. Assume
that 6 : I — [0, 00) s given along with a, B, and 7y
are complex constants and I, m and n are charac-
teristic roots of (1.2), so that a =3 — (I+m +n),
B=Im+mn+nl—-l-m—-n+1andy = —(Ilmn). Let
gn—iml gnmmol gmel=l yenmlg () M A(E)
t~"In(t) are integrable on (a,c) with a < ¢ < b,
where

and

M) = [t /b w7 Lo(u)du

)

b
n(t) = tm/t v I\ (v)dv| .

Suppose that f € C3(I,X) and satisfies

[y ® +aty" &) + Bty () + ww(0)|| < 608),

for allt € I. Then there exists a unique solution
fo € C3(I,X) of (1.2) such that

b
tl/ s~ 1n(s)ds| .
t

Theorem 1.3. [15] Let X be a Complex Banach
space and let I = (a,b) be an open wnterval such
that 0 < a < b < o0 or —c0 < a < b < 0. As-
sume that a function ¢ : I — [0,00) is given and
h : I — X 1s a continuous function. Further-
more, suppose a continuously differentiable func-
tion f: I — X satisfies

th’ (t) + ay(t) + h(t)H < $(t), tel.

1£(2) = oIl <

If both t*~1¢(t) and t*~h(t) are integrable on
(a,c), for any c with a < ¢ < b, then there exists
a unique solution fo : I — X of the differential
equation

ty (t) + ay(t) + A(t) = 0

such that

b
1£(8) = fo®)Il < |t~ ‘/t v T (v)dv|,t € 1,

where

a

t
(o3
folt) = (;) z —t*"‘/ u®* th(u)du,
a
or unique x € X and a 1s a complex constant.
q 74

The aim of this work is to investigate the gener-
alized Hyers-Ulam stability of the following Euler’s
differential equations of the form

"

(1.3) 29" (t)+ oty () +Bty (t)+yy(t)+6t"z = 0
and

(1.4)
thy) (8) + at®y” (t) + B2y (¢) + yty(t) + Sy(t) = 0,

where o, f,7,0 and r are complex constants with
zo(# 0) € X. Here, we prove that if a function
f € C3(I, X) satisfies the differential inequality

(1.5)
[#23" )+ oty (6) + Bty (6) + yu() + 8¢ o | < 4(1)

for all ¢t € I, where zp € X be a fixed element and
I'=(a,b)with0O<a<b<ooor—oo<a<b<y,
then there exists a unique solution fo € C3(I, X) of
(1.5) such that

b
(1.6) /t u " 14(u)du

1£(8) = fo(®)I] < [£°]

for all ¢t € I, where

(1.7) 6(t) ||

)

b
/ u e (u)du
¢

b
$(e) = 1" / v L(v)d

and {,m,n are the characteristic roots of (1.3) such
that o« = 3—(l+m+n), B = Im+mntnl—l—-m—n+1
and v = —(Imn). Also, we apply this result to inves-
tigate the Hyers-Ulam stability of (1.4).

Throughout this work, we let I = (a,b) either
0<a<b<or—o<a<b<.
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2. HYERS-ULAM STABILITY

Let I, m and n be the characteristic roots of
(1.3) such that « = 3 - (Il +m +n), B = Im +
mn+nl—1l—-m-—n+1and vy = —(lmn) with
g(r) =7+ (a—3)r? + (B — a + 2)r + . For fixed
zo # 0, the possible solutions of (1.3) in the class of
real valued functions defined on I are given by

(1) when g(r) # 0,

crtt + cpt™ + cat™ — S2E
for l#m #n,
att + (e + caln [t])i™ — 2k,
for l#m=mn,
1 Szot”
oy = ) (0 ealn e + ot — 55,
for l=m#n,
(c1 4+ caln [t]) t™ + cot™ — 5;(‘;"’;,
for l=n#m,
2 Szot”
{ev+ catnt] + ca (in [f)* } ¢ - 222,
for l=m=mn;

(1I) when g(r) =0 # g'(r),
citt + cpt™ + cat™ —
for l#£m #n,
citt + (cz + caln |t))t™ —
for r—1=0,l#m=mn,

SzotIn|t
(c1 + coln |t]) 8 + c3t™ — %;;H

Szot"In|t|
g(r !

Szot"ln|t|
g'(r)

for r—n=0,l=m#n,

SzotTinlt
(c1 + caln [t]) t" + cot™ — %T’)’H,

for r—m=0,l=n#m.

Remark 2.1. Indeed, ¢'(r) = 3r? + 2(a — 3)r +
(B—a+2). If g(r) =0, then either r —1 =0 or
r—m =20 orr—n=20. Therefore, r — 1 =0 and
g'(r) # 0 implies that 3r? +2(a—3)r+(B—a+2) =
(r—m)(r—n)#0. Sor—m#0andr —n # 0.
Simalarly, when r —m = 0 and ¢'(r) # 0 implies
r—1l#0andr—n#0 and whenr —n =0 and
g'(r) #0 tmpliesr — 1 =#0 and r — m # 0. Hence
the first solution for l #m # n could be any one
of the following:

dzot"ln |t
ot b ept™ st — o2l Inli]
(r —m)(r —n)
r—1l=0,r—m#0, r—n#0,
dxot"In |t
att + Cth+C3t"—mo—n||;
(r—0D(r—m)
r—n=0,r—101#0,r—m3#0,
Szot"in |t
Cltl + Cztm + Cgtn - o n | |

(r—0)(r—n)’
r—m=0,r—1#0, r—n#0.

(III) When g(r) = 0 = g'(r), but ¢"(r) #0

(ex + caln H]) & + cat — St linle,
fO’I’ l:m:r’ r—n;éO,

dzot” (In|t])?
crt! + (cz + caln [t])m — 22oLfnlAS

for m=n=r, r—101#£0,

Szot" (Inft])?
(c1 + coln t]) 8" + cptm — 2oL (rlL

for l=n=7r,r—m#0.
(IV) When g(r) = 0= g'(r) = g"(r),

L Szot” (Int))°
gIII (,r) b

where c¢1, ¢ and c3 are arbitrary constants.

y(t) = {cl +ealn |t + cs (In |t|)2}t

Theorem 2.1. Let X be a Complex Banach
space. Assume that a function ¢ : I — [0,00)
is gwen, that a,f,v,6,r are complex constants
and that xg 1s a fized element of X . Fur-
thermore, suppose a thrice continuously differ-
entiable function f I — X satisfies the
differential inequality (1.5). If t7—171,
ghon=l, gmen=l gron=l ymel=ly [L)glen=ly L)
e A L A R O) 1)
and t " 19(t) are integrable on (a,c), for any c
with a < ¢ < b, then there exists a unique solu-
tion fo € C3(I,X) of (1.8) such that (1.6) holds
for any t € I, where I, and n are the roots of
g(r) =0.

tm—l—l

?

Proof. To prove the theorem it is sufficient to con-

sider the following cases:

D) (- -m)r—n)£0, I£m#n

(r—Dr—-m)(r—n)#0,l#m=n;
(r—m)(r—n) £0, L=m £n;

(r—D(r—-m)(r—n)#0,l=n#m;

v) (r—=D{r—m)(r—n)#0,l=m=n,;

vi) (r=0=0,(r—-m)#0#(r—n), l#m#n;
vit) (r—m)=0,(r—-m)#£0#(r—1), l#m#n;
i JAO0#(r—n), l#m#n;
w) (r—0=0,(r—-m)#0#(r—n), l#m=n;
z) (r—=n)=0,(r—m)#0#(r=10),l=m#n;
zi) (r—m)=0,(r—0)#0#(r—n), l=n+#m;
zit) (r=0)=0=(r—m),(r—n)#0, l=m#n;
zitr) (r—m)=0=(r—n),(r-0)#0, l £m=mn;
ziw) (r—=0D=0=(r—n),(r—-m)#0, l=n+#m;

Case-(i) Suppose that X is a Complex Banach
space and a thrice continuously differentiable func-
tion f : I — X is satisfying the differential inequal-
ity (1.3). Let I,m and n be the roots of g(u) =
W+ (a—3)ul+(f—a+2)u+y=0.Defineh: I - X
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such that h(t) = tf (t) — nf(t). Then we have

[ 1 @+ @ —1=m)t K'() +1m h(e) +6 a0

[ f O +at O+t r©)+y FE)+6 ta
< ¢(1).
Hence by Theorem 1.1 and then using (1.7), it follows

that there exists a unique solution hg : I — X of the
differential equation

2y (1) + (1 —1—m)ty (t) + Imy(t) + 6t"zo = 0
such that
(2.1)

b
IA(t) - ho()] < |£] / T bp(u)du| = 6(2),

where ho(t) = kit! + kot™ + kat™ with

|
- dzpga" ™™

k2 = {am(m—l) - (T_m)(l_m)}’

k= — dzg

Consequently, (2.1) becomes
67 ) = ns5) - ho(t) | < 600).

Clearly 6 : I — [0,00). By Theorem 1.3, there ex-
ists a unique solution fy : I — X of the differential
equation ty (t) — ny(t) — ho(t) = 0 such that

b
/ v 10(v)dv
t

provided ¢ "714(¢) and ¢ " lhy(t) are integrable
on (a,c), for any ¢ with a < ¢ < b
As tl—n—l tm—n—l tr—n—l tl_"_lln |L| tr—n—lln |L|

’ ’ I al? a
and "1 (ln|§|)2 are integrable, then so also
t " 1hg(t). According to Theorem 1.3, fo(t) is given

by
(t

a

1£(&) = fo(®)I] < [¢7] ,tel

(2.2)

n ¢
fo(t) ) a':—i—t"/ v ho(v)dv,

where Z is a limit point in X. It is easy to verify that

t
k
_n_lh d — 1 tl—n_ I-n
/a v o(v)dv l—n( ")+
ko _ _ ks _ _
gmen _ gmen ALY e AN
el Ul R e A
As a result,
k1 ko
ty = 4 —=—t"
fo(t) Rttt +
= k l—n m—n r—m
+ {$ _ 14 _ kga _ k3CL }tn
a” l—n m-—n r—n
511301(}7‘

A. K. TRIPATHY,

A. SATAPATHY

Case-(11) Proceeding as in Case (¢), we can obtain

t kl
v " Thy(v)dv

(tl*" — al*n) +kyln

l—n
k3

r—nmn

tl
+{ I—m

t 5$0tr
ko ln|—| ¢t — ——————
|
where k1, ko and k3 are same as in Case(z).
Case-(111) Proceeding as before with

a

(trfn _ arfn) .

Consequently,

I l—m r—m

am

_ kga

fo(t)

r—m

ho(t) = {k4 + k5ln

t
- ‘}tl + ket"

and
o Szga” !
k, — o2
c- S
z  bzga
ks = —
> {al r—1 } '
5$0
ks = ——=
¥ (r—1)%
1t is easy to verify that
¢ —n—1 k4 l-n I-n
. v ho('U)d’U = m (t ) +
ks t 1 . a—"
In|—|——— ) ¢+
+l—n[(na l—n) +(l—n)2
ke
tT—n _ r—m
)
Hence, from (2.2)
k4 k5 kll t i
t) = — In|—||¢t
fo(?) [l—n (l—n)2+l—nna}
T k4al*" k5alin kga™ "
- — tn_
+{a" Il—n +(l—n)2 r—n
5$0tr

Case-(iv) We proceed as in Case (¢) and it is easy to
see that

¢ t ks
/ v " ho(v)dy = kiln ‘ +——(t""-a
a al m-—-n
ks
t"'—n _ r—m .
g e
So from (2.2), it happens that
k
folt) = —2ymy
m—n
-y k m—n k r—n t
+{$— 29 Y L kin ‘}t"
a™ m-—-n r—mn a
511301(}7‘

_(r —m)(r—n)2’

t
a

™)
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Case-(v)In this case we have that

ho(t) = {k4 + k5ln

¢
‘}t’+k6t’,
a

where kq, ks and kg are same as in Case (z:2). There-
fore,

¢
t
/ v ho(v)dy = kg ln|—
a a
ks t\N? ke
o9 _ 9 r—-mn _ TN
+2<lna)+r—n(t a’ ")

implies from (2.2) that

fot) = [& B s kadn £ + % (2] #

_ 5(t0tr
(r=1)% "

Case-(vt) In this case, we notice that

ho(t) = krt' + kgt™ + kotIn

where
T3 dzg T
ky, = —
7 {al+(r—m)2+al(r—m)}’
b = z B dzga™ ™
8T lam(m=1) (r-m)3J’
5$0
k =
9 (’I" — m) )
and
/t v ho(v)dy = ke (tl_" al_") +
@ 0 l—n
+ k8 (tmfn amfn)
m—-n
t'f' t t'f'—n a‘r—n
k In|— —
+9[r—nna (r —n)? (r—n)2}

Hence from (2.2), it follows that

k7 kg ! ks
t) = — t tm
fo?) [Z—n (l—n)Q} +m—n +
N i B k7 alfn B ks qm—n kg alfn i
an l—n m-—n (I —n)?
511301(}7‘ t
o N O il
(r —m)(r —n) a
Case-(vi1) Here, we have
ho(t) = kett + kot™ + kst™,
and
¢ —n—1 kl l—n I-n
) v ho(v)dv = l—n(t -d™") +
k t
2 (tm_" — am_") + k3ln|—|,
m-—n a

where k1, ko and k3 are same as in Case-(2). Applying
this in (2.2), we obtain

k k
fo(®) = S 2™
l—n m-—n
T klal_" kzam_"
adi _ o
+ an l—-n m-—n ]
_ 5$0tr In E
(r—D(r—m) a

Case-(vi11) For this case, ho(t) becomes

ho(t) = klotl + klltm + klgt’ln

where
i . T4 Szga™ ! T
T ld (m—02 dm-0J"
z dxzg
k .
o = Aot o)
6130
k = - )
12 r =)
Using
¢ —n—1 _ k1o I—-n I-n
v ho(v)dv = 7 (t a ")+
a —n
k
+ 11 (tmfn amfn)
m-—n
k12 3 t tr—n ar~ "
M2 yreng, | ©
+r—n{ 18 ) R (r—n)Q}

in (2.2), we find

folt) = (lk_lon)t’Jr{mkl_anr

6(130

(m—D(m—n)? } "

N { T kioa™™ ki a™ ™" dzg a™ ™" ] i
an Il—n m-—n (m —1)(m —n)?
B dxot” In t
(r—0(r—n) al

Case-(iz) Here ho(t) = krt' + kgt™ + kot"In|%|,
where kv, kg and kg are same as in Case-(vz). Using
the fact

¢
k
/ v " Tho(v)dy = —— " —a" ") +
o l—n
t k t t"’—n r—m
+kg In ‘+ o {t""lnH— + 2 }
al r—n al r—-n r—n
n (2.2), it follows that
k7 kg .
t) = - t
fo(?) (Z—m (l—m)2> *
T k- at-m kg al-m t
— - kgln |—|| t™
[am I—m (l—m)2+ &g
SLLUAN
(r —m)? al’

Case-(z) In this case, ho(t) = {ks + ksin |§|}tl +
ket", where k4, ks and kg are same as in Case-(212).
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Now, it is easy to verify that Case-(ziii) Here ho(t) = kiot! + kq1t™ + kiot”
. where kyg, k11 and ki are same as in Case-(viiz) and
k
v " ho(v)dy = 4 (¢ —ad"m) + t
_ k
/a l—n / v L ho(v)dy = 10 (tl—n _ al—n) +
k t tlfn a’lfn t @ l—n
5 l—n
7 {t ZnH—l +l ]+keln ‘ ‘ k N2
- o tmnoimn @ + kyln ‘—1—12<ln) :
a 2 a

Hence, from (2.2) we obtain
Applying this in (2.2), it follows that

k4 ks ks Ll
t) = - In|=||t 7 I-n
_ —n I—n Il—n a™ l—n a
Z kia n ks a m_ )
a” I-n (I —n)? dzot” ( t > )
(Smotr E 2(7‘ — l) a
(r—1)2 a Case-(ziv) In this case,
C’ase-(a:it) In this case, ho(t) = kiot! + ki1t™ —|— ho(t) = krth + kgt™ + kot"In t ’
ki2t"ln |E|’ where kig,k1; and ki, are same as in a

Case-(viti). Clearly, where k7, kg and kg are same as in Case-(vz) and

t
o t t
/ v " tho(v)dv = kig In a‘ + / v " ho(v)dy = kyln Z‘ +
a a
+£ (tm*n _ amf‘n) + kg kg t 2
m—n +— (tm_n_am_n)+<ln ) :
m-—-n 2 a
k12 g g E tr—n a’— "
+r -n "lel T r=nTr=-n Ultimately, (2.2) becomes
and (2.2) reduces to folt) = ( ks )tm+
m—-n
z E m-l E = m—mn
fo(t) = [?_ 11m:iZ + (172nal)2 + k1o ln|t|] t+ + i_ksai_’_k? In E " —
k11 k12 tm 6(E0t7ﬂ l t an m-n a
+ m—1 (m—1)2 - (r—n)? n |E| : émotr t 2
- ——— (In|= .
2(r —m) ( a )

Case-(z1:) In this case we obtain

Case-(zv) For this case,

T T t dzot” t1\?
ho(t):{j+czlln‘a‘}tl_§ (ln‘aD zs m ¢ Szot" "
ho(t):{l lan}tl— (ln )
a a 2 a
and thus
. and hence
v_"_lho(v)dv = 25 [tl n _ al—n] + + : 9
a (l ™) / v ho(v)dy = —ll ‘ ‘ i (ln D
z I—n t thn at-n Sz a a 24! a
M=) [t In|ol - 1=+ ﬁ] T 3rn) X 520
< n ) - 2in 1]+ 2 — 2] AR

Using this in (2.2 t be obtained
which on applying in (2.2), we get sing this in (2.2), fo() can be obtained as

_ 2
T Ty t T t !
Ts z dzg folt) = l — ‘ + (ln D ] t
1) = - - 1 l 2ql
fo(®) [al(l—n) di—nP (=np" @ a 2a°\ |a
3
z dzg t] dzot” < t )
In|-||t — In|— .
Haas el 6\ |a
+ [5 _ T n z 53051[_”] g Here Z,z,21,23,23,24 and z5 are all limit points in
a® a*(l-n) a*(l-n)> (I-n) X. This completes the proof of the theorem. a
Szot" t\?
- m|]) .
2(r —n) a
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3. MAIN RESULTS

In this section, we investigate the Hyers-Ulam sta-
bility of (1.4) on I. Assume that [, m,n and p are the
characteristic roots (1.4) such that

a = {6-(Il+m+n+p)},

B = {7-3l+m+n+p)+
+({Im+mn+nl+np+Ilp+mp)},

v = {1-({+m+n+p)+
+(Im +mn +nl +mp+ip + np) —
—(lmn + mnp + Inp + lmp)},

§ = Imnp, oy ={3-(+m+n)},

Joft {Im+mn+nl—-l—-m-n+1} and

7 = —(Imn).

Theorem 3.1. Let X be a Complex Banach
space. Assume that a function n : I — [0,00) 1s
given. Furthermore assume that tP—171, ¢m—I-1
tl—n—l’ tm—n—l’ tp—n—l, tm_l_lln |§| , tl—n—lln |%| )
P ln | L], 2 (In | L)), P n(t), et g(t)
, t7N(t) and t™"16(t) are integrable over the
interval (a,c) with a < ¢ < b, where

b

ot = |7 / v P In()du|,
b

W) = 1 / v ™ Lg(w)do|,
b

6(t)y = |tl| /t u "l (u)du| .

Suppose that f € C*(I,X) satisfies the differential

nequality

[y ) + atoy” &) + B2y" () + vtu(t) + sy(e)|
(3.1) <n(t),

for allt € I. Then there exists a unique solution
fo € C*(I,X) of (1.4) such that

1£(£) = fo(@)I| <

b
t"/ v " (v)dv
¢

Proof. Let X be a Complex Banach space and f :
I — X such that (3.1) hold, for ¢ € I. Define
s : I — X such that
(3:2) s(t) = €37 (8) + st " (t) + But ' () + 1 f (2)-
Indeed,
[£s'(2) — ps(t)]| =
£ FE () + at® £ (2) + BE2 £ (2) + tf'(8) + 8 (2)
< n(t).
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From Theorem 1.3, it follows that there exists a
unique solution sq : I — X of the differential equa-
tion ts'(t) — ps(t) = 0 such that
b
/ u P In(u)du
t

[5(2) = so(®)[] < [#¥]

)

where so(t) = (%)p zo and zg € X is a limit point. If
we denote
B(t) = [¢°]

?

b
/ u P in(u)du
¢

then clearly ¢ : I — [0,00) and
(3.3) [Is(2) = so(t)[| < &(2).
Therefore, from (3.2) and (3.3) we get
Htsf”/(t) + a1t2f”(t) + ,Bltf/(t) + ,ylf(t) _ a—PthO”

(34) < ¢(t)
Using Theorem 2.2 in (3.4), it follows that there ex-
ists a unique solution fo : I — X such that

b
176) = Sl < 71| [ w ™ o(u)a
t

b

where
b
o(t) = |tl| / u ey (u)dul,
t
b
vi) = 17| u o),
t
b
s0 = |[ v i
t
Here, fo(t) can be made any of the following cases
(i) folt) = ; ilnt’ 2 gm ey
N {i B eiat" _ea™ " ez " } o
am l—n m-—n p—n
Lo
+ &,
a?(p—1U)(p—m)(p—n)
where
. T Zo T
! a  dp-l(im-10) dm-0)]"’
es = ? %o and
2= am(m—1)  a™(p—m)(l—m)
Lo
€3 =

.. €1 !
2 t) = t
) fl) = ()
= l—n p—n t
+{a:_ela LA ‘}tn—f—
am l—n p— a
o .



56 A. K. TRIPATHY, A. SATAPATHY

€4 €5 €x t 1 €10 I €11 m
t) = — In|—|;t t) = t t
i) fl) = {75 - e e we = () (G2 )
= I—n l—n p—n ¢
z esa esa ega €12 €12
e - " + In|-|- —2_} 4
+{an l—-n +(l—n)2 p—n} {p—n a (p—n)Q}
Zo - l—n
+ w, & _ewd”
a?(p —n)(p —1)? +{a" l—n
where _ eua™® To n
m—-n  a*(m—1)(m—n)? ’
es = 2T , where
at  dp-1)
_ Ta T . T
es = T and ‘o= g alfm—1)  al(m—1)?"’
a dp-1 a: 20
z e11 = - and
e = ar(m—1)  am(m— 1)
a?(p —1) Zo
T o)

(iv) folt) = (mejn)tm+ ()falt) = <e7 e )tl

n i ey a™m ™ ez aP™ ™ ten |t U 7 er a-n eo aPT
a™ m-—n p— +{a" —n (p_n)2+egln
To tp t
af(p—m)(p—mn)? ap(p_;o)(p_n)  In a‘ .
(v) fo(t) - €4 €5 €x I
(2)folt) = _ Lo ]t
& egaf ™ / t]  es l tN\?] l-n (-n)2 I-n |a
- Y . n " n + ey in E + E n a t z e al—n e al—n
a ' +{a"_ I—n +(l n)Q}tn
Zo — _
- - tp .
+a1”(p—l)3 _ T pin 2
aP(p —1)? a
. er I €g m
vi) folt) = S8 gmy | . .
( ) 0( ) l—n — (z'la)fo(t) — {m 11n . (m _12n)2}tm n
I—n m—n n
+ {m _erd™™  ega _ egd? i } 4 ey a™ ™ epa™ M
- o men (p=n) +{n _ (m — n)? +eppln
€9 3 eg » a m-n m-n
* p—’nng_(p—n)2 = To Y t
*p-0p-n) " " la|’
where
.. Ty z T
t
R R E En R
a ad{l-m)2  a(l-m) B
z Zs5 z To "
z To + { - + - } t
- d a® an(l-n) a*(l-n)2 an(l-n)s
* {am(m—l)+am(m—l)2} o (b=n) ~ an( )t (1 —n)
_ Zo Zo _ Zo nlt Zo I
T e-m) +{ﬂ@—m3 o o] 2wy (7
g el e i fa(t) = €10 \ u
(’U’M) fO(t) = 1— ntl + mtm + (33222)f0( ) = I—n +
_ l-n m-n 7 e al_n ¢
i _ €1a _ €sa n z 107 l t tn
+{a” I—n m_n}t + +{an I—n + e11 na‘} +
Zo tP In E . _|_$7Ot17 in E ? ]
a?(p—l)(p—m) a 2aP(p — 1) a
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(ziv)fo(t) = (mejn)tm+

s m—n t
+{$—esa +erln ‘}t"+
am m—-n a
T t 2
0
B Y i PO ol
T2 —m) (” D !
and
T T t
(zv)fo(t) = {l‘i‘al H+

T 1\ 2 T 2
= (in|- =2 in|= #
e (mfal) i (= le]) e

where z,Z, g, Z1, 22, 23,24 and zs are limit points
in X. These are the unique solutions of all possible
cases. In fact, all these are the possible solutions of
(1.4). Hence the theorem is proved. O

Example 3.1. Let X = R be a Banach space and
I =(a,), a > 0. Consider the Euler’s equation

(3.5)
t4y(iv)(t) + 2t2y”(t) — 4tyl (t) +4y(t) =0

If we compare (3.5) with (1.4), then o = 0,8 =
2,¢y=-4andé=4,andl=1,m=1,n=2,p=2
are the characteristic roots of (3.5). Let f : I — X
satisfy the differential inequality

[#700@) + 272" (1) - 485 (8) + 47 (1) | < e

for any e > 0 and for anyt € I. Then, by Theorem
3.1, there exists a unique solution fo: I — X such
that

b
155 - fo(®)ll < || / ™ 6(u)dul,
t
where I = (a,b) and
t 2
(b) 4.

b €
t):|t2|/u36du =5
¢

When b — oo, $(t) = 5. Also

b
v = 1| [ w Sau| =

and
b
o(t) = |t| / u? Sdu| =<
; 2 2

as b — co. Hence,

b
150 - fo(®ll < || [ Sau

When b — o,

N o

1£(8) =

where
220 — T — To To — To t
folt) = — |+ | — ) In|-|]|t
a a a
KHH‘TZ _2%) +(2)im |t ] £,
a a
and ©,%,xq,25 are the unique elements of X.

ACKNOWLEDGMENT

The authors are thankful to the referee for sug-
gesting the publication of this article.

REFERENCES

[1] D.H.HYERS: On the stability of the linear functional
equations, Proc. Natl. Acad. Sci., U.S.A., 27(1941), 222-
224.

2] K.W.JuN, Y.H.LEE: A generalization of the Hyers-
Ulam-Rasstas stability of the Jenson’s equation, J. Math.
Anal. Appl., 238 (1999), 305-315.

[3] S.M.JUNG: Hyers-Ulam stability of linear differential
equations of first order, Appl. Math. Lett., 17 (2004),
1135-1140.

[4] S.M.JUNG: Hyers-Ulam stability of linear differential
equations of first order (III), Appl. Math. Lett., 311
(2005), 139-146.

[6] S.M.JUNG: Hyers-Ulam stability of linear differential
equations of first order (II), Appl. Math. Lett., 19 (2006),

854-858.

[6] S.M.Jung, TH.M.RASSIAS: Ulam’s problem for
approzimate homomorphisms wn  connection  with
Bernoulls’s differential equation, Appl. Math. Comp.,

187 (2007), 223-227.

[7] S.-M.Jung, TH.M.RASSIAS: Generalized Hyers-Ulam
stability of Riccati differential equation, Math. Inequ.
Appl., 11 (2008), 777-782.

[8] S.M.JuNG, J.BRZDEK: Hyers-Ulam stability of the de-
lay differential equation y'(t) = Ay(t—7), Abs. Appl.
Anal., 2010 (2010), 1-10.

[9] T. Miura, S.E.TaAkAHASI, H.CHODA: On the Hyers-

Ulam stability of real continuous function valued differ-

entiable map, Tokyo J. Math., 24 (2001), 467—476.

T .MIURA: On the Hyers-Ulam stability of a differen-

tiable map, Sci. Math. Japan, 55 (2002), 17-24.

C.G.PARK: On the stability of the linear mapping in Ba-

nach modules, J. Math. Anal. Appl., 275 (2002), 711-720.

TH.M.RASSIAS: On the stability of linear mapping in

Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-

300.

TH.M.RASSIAS: On the stability of functional equations

and a problem of Ulam, Acta Appl. Math., 62 (2000),

23-30.

H.REzAEI, S.M.JunGg, TH.M.RASsIAS: Laplace trans-

formation and Hyers-Ulam stability of linear differential

equations, J. Math. Anal. Appl., 403 (2013), 244-251.

A .K.TRIPATHY, A.SATAPATHY: Hyers-Ulam stability of

third order Euler’s differential equations, Journal of Non-

linear Dynamics, Volume 2014, ID-487257, 1-6.

S.M.ULAM: Problems in Modern Mathematics, Chapter

VI, Wiley, New York, 1964.

10]
(11]

(12]

(13]

(14]

18]

[16]



58

A. K. TRIPATHY, A. SATAPATHY

DEPARTMENT OF MATHEMATICS

SAMBALPUR UNIVERSITY

SAMBALPUR-768019, INDIA

E-mail address: arun_tripathy70Qrediffmail.com

DEPARTMENT OF MATHEMATICS

SAMBALPUR UNIVERSITY

SAMBALPUR-768019, INDIA

E-mail address: abhiseksatapathy@yahoo.co.in



