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ON THE WIENER INDEX OF FH SUMS OF GRAPHS

Liju Alex and Indulal Gopalapillai1

ABSTRACT. Wiener index is the first among the long list of topological indices
which was used to correlate structural and chemical properties of molecular
graphs. In [5] M. Eliasi, B. Taeri defined four new sums of graphs based on the
subdivision of edges with regard to the cartesian product and computed their
Wiener index. In this paper, we define a new class of sums called FH sums and
compute the Wiener index of the resulting graph in terms of the Wiener indices
of the component graphs so that the results in [5] becomes a particular case
of the Wiener index of FH sums for H = K1, the complete graph on a single
vertex.

1. INTRODUCTION

A simple graph G is connected if every pair of vertices are connected
by a path. The distance d(u, v) between any two vertices in a connected graph
is the length (number of edges) of the shortest path between them. The concept
of distance in graph is of vital importance as it is the basic tool to study the
topological aspects of graphs, one among them is the Wiener index named after
H. Wiener [11]. Wiener index of a graph G denoted by W (G) is defined as the
sum of the distance between all pairs of vertices on a connected graph.

W (G) =
1

2

∑
u,v∈V (G)

d(u, v).

1corresponding author
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The origin of Wiener index itself comes from a study on relationship between
boiling points and structural aspects of paraffin molecules [11]. Later in molec-
ular graph theory, Wiener index found its supreme importance in studying struc-
tural as well as physical composition of various chemical graphs [1]. In [3] H
Hosoya introduced a polynomial associated with the Wiener index called Wiener
polynomial and obtained the Wiener index as the derivative of this polynomial
at unity. Later this polynomial was renamed as Hosoya polynomial. For furthur
results about Wiener index and Hosoya polynomial see [1,10].

Computing the topological indices of various graph operations has been a
subject of recent research. Y. N Leh, I. Gutman computed the Wiener index of
various graph operations such as product, join, composition [13]. D Stevanović
computed the Wiener polynomial of product, join, composition by generalising
the earlier results [10]. Cvetković proposed four new graphs S,R,Q, T based
on subdivision of edges in [2]. In [12] W Yan et al computed the Wiener index
of each subdivision graphs S,R,Q, T in terms of the parent graph as well as
the other subdivision related graphs. In [5] M. Eliasi, B. Taeri defined a new
operation on graphs called F sums based on these four subdivision graphs and
computed the Wiener index of F sum in terms of the Wiener index of the com-
ponent graphs. H Deng et al computed the Zagreb indices of F sums [6] and S.
Akhtar, M Imran computed the forgotten index of F sums [9]. The generalised
version of F sums called generalized Fk sums was introduced by J.B Liu et al and
they computed the Zagreb indices of the sums in terms of its factor graphs [7].
Based on the subdivisions S.R,Q, T of a graph G, four subdivisions with respect
to a graph H (SH , RH , QH , TH) can be proposed by introducing a new graph H

corresponding to each edge of the parent graph and joining the endvertices of
each edge to all vertices to the corresponding copy of H. The graph SH(G) is
the edge corona of G and H and all other subdivisions are analogous versions
of R,Q, T . In this paper we obtain the inter relationship of Wiener index of four
graphs SH , RH , QH and TH . We also define a new sum called FH sums, an anal-
ogous version of F sum in terms of FH ∈ {SH , RH , QH , TH} and compute the
Wiener index of FH sums. Thus, the results established in [5] will be particular
case for (H = K1) of the results in this paper.
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2. FH - SUMS

Let G1, G2 be two graphs with vertex set V1(G), V2(G) and edge set E1(G) and
E2(G) respectively. Let H be any graph. Then the four graphs associated with
H are SH(G1), RH(G1), QH(G1), TH(G1) and are as defined as follows:

(1) SH(G1) is the graph obtained from G1 by replacing each edge ei of G1

with a copy of H and making every vertex in the ith copy of H adja-
cent to the end vertices of ei for each ei ∈ E(G1). That is, SH(G1) is
a graph with vertex set V (SH(G1)) = V (G1)

⋃
Ve(H) where Ve(H) =

∪|E(G1)|
i=1 Vi(H), Vi(H) = V (H) ∀i and the edge set E(SH(G1)) = {(v, h),

(u, h) : e = vu ∈ E(G1), h ∈ Ve(H)} ∪ Ee(H) where

Ee(H) = ∪|E(G1)|
i=1 Ei(H), Ei(H) = E(H), ∀i.

(2) RH(G1) is the graph obtained from G1 by replacing each edge ei of G1

with a copy of H and making every vertex in the ith copy of H adjacent
to the end vertices of ei for each ei ∈ E(G1) also keeping every edge
in G1 as well. That is, RH(G1) is a graph with vertex set V (RH(G1)) =

V (G1)
⋃

Ve(H) and edge set E(RH(G1)) = {(v, h), (u, h) : e = vu ∈
E(G1), h ∈ Ve(H)} ∪ Ee(H) ∪ E(G1), where Ve(H) = ∪|E(G1)|

i=1 Vi(H),
Vi(H) = V (H) ∀i, Ee(H) = ∪|E(G1)|

i=1 Ei(H), Ei(H) = E(H) ∀i.
(3) QH(G1) is the graph obtained from G1 by replacing each edge ei of G1

with a copy of H and making every vertex in the ith copy of H ad-
jacent to the end vertices of ei for each ei ∈ E(G1) along with edges
joining all the vertices in the ith copy of H to all the vertices in the jth
copy of H whenever ei adjacent to ej in G1. That is, QH(G1) is a graph
with vertex set V (QH(G1)) = V (G1)

⋃
Ve(H) and edge set E(QH(G1)) =

{(v, h), (u, h) : e = vu ∈ E(G1), h ∈ Ve(H)} ∪ Ee(H) ∪ E(HeV Hs) where
Ve(H) = ∪|E(G1)|

i=1 Vi(H), Vi(H) = V (H) ∀i, E(HeV Hs) = {(he, hs) : he ∈
V (He), hs ∈ V (Hs)},Ee(H) = ∪|E(G1)|

i=1 Ei(H), Ei(H) = E(H) ∀i and
He, Hs are the copies of H corresponding to the edge e, s ∈ E(G1) and
e, s are adjacent in G1.

(4) TH(G1) is the graph obtained from G1 by replacing each edge ei of G1

with a copy of H and making every vertex in the ith copy of H adjacent
to the end vertices of ei for each ei ∈ E(G1) along with edges joining all
the vertices in the ith copy of H to all the vertices in the jth copy of H
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FIGURE 1.

whenever ei adjacent to ej in G1 and keeping every edge of G1 as well .
That is, TH(G1) is a graph with vertex set V (TH(G1)) = V (G1)

⋃
Ve(H)

and edge set E(TH(G1)) = E(G1) ∪ {(v, h), (u, h) : e = vu ∈ E(G1), h ∈
V (H)} ∪ Ee(H) ∪ E(G1) ∪ E(HeV Hs) where Ve(H) = ∪|E(G1)|

i=1 Vi(H),
Vi(H) = V (H) ∀i, E(HeV Hs) = {(he, hs) : he ∈ V (He), hs ∈ V (Hs)},
Ee(H) = ∪|E(G1)|

i=1 Ei(H), Ei(H) = E(H) ∀i and He, Hs are the copies of
H corresponding to the edge e, s ∈ E(G1) and e, s are adjacent in G1.
TH(G1) is called the total graph associated with H.

Corresponding to the four new graphs SH(G1), RH(G1), QH(G1), TH(G1), we
define four new sums called FH sums associated with the graph H. Let FH be
any one of the symbols SH , RH , QH , TH . The FH sum of G1 and G2 is denoted by
G1 +FH

G2, is a graph with vertex set V (G1 +FH
G2) = V (FH(G1)) × V (G2)

and the edge set E(G1 +FH
G2) = {(a, b)(c, d) : a = c ∈ V (G1) and bd ∈

E(G2) or ac ∈ E(FH(G1)) and b = d ∈ V (G2)}. We consider the newly added
vertices as white vertices and already existing vertices as black vertices. Let
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V (H) = {u1, u2, . . . , up} in this discussion. By eij we mean the vertex uj in the
ith copy of H corresponding to the edge ei ∈ E(G1). Figure 1 is an illustration
with G1 = P4, G2 = P3 and H = P2

3. DISTANCE IN FH(G), FH(G) = {SH(G), RH(G), QH(G), TH(G)}

Let G be a connected graph with V (G) = {v1, v2, . . . , vn} and E(G) = {e1, e2,
. . . , em} and let H be any graph with V (H) = {u1, u2, . . . , up}. In each SH(G),

RH(G), QH(G), TH(G), the vertex eij is as defined above. The edge connecting
u, v on a path is denoted by u→ v.

Lemma 3.1. Let G be a connected graph and H be any graph, u, v ∈ V (G). Then

dG(u, v) =
dSH(G)(u, v)

2
= dRH(G)(u, v) = dTH(G)(u, v) =

(
dQH(G)(u, v)

)
− 1.

Proof. Let the vertices u, v in G are connected by a shortest path of P : u =

v0 →e1 v1 →e2 v2 . . .→et−1 vt−1 →et vt = v length t. Now fix a vertex uj ∈ V (H).
Then in,

SH(G): Since each edge in G is replaced by a graph H in SH(G) the edge
vi−1 →ei vi in P can be replaced by the shortest path vi−1 → eij → vi of
length 2. Thus, every edge in P is replaced by a path of length 2 in
SH(G). The new shortest path connecting u, v in SH(G) is

PSH
: u = v0 → e1j → v1 → e2j → v2 . . .→ et−1j → vt−1 → etjvt = v

RH(G),TH(G) : The path P itself is a u− v path in RH(G), TH(G). Now
we show that P is the shortest path, For let P ∗ be the shortest u − v

path in RH(G), if P ∗ consist only the vertices v ∈ V (G), then P ∗ = P .
If not, let ei be a vertex other than v ∈ V (G), then the ui → ei → vi
can be replaced by the edges uivi, thus P ∗ is not the shortest in RH(G).
Similarly, Let P ∗ be the shortest path in TH(G), if P ∗ consist only the
vertices of G1 then P = P ∗, if not there exist a section of P ∗ of the
form ui → ei → ei+1 → . . . → ej → uj of length l + 1 with all the
internal vertices of this section is in Ve(H). Then, this section of P ∗ can
be replaced by smaller section ui → ui+1 → . . . uj−1 → uj of length l.
Thus P ∗ is not the shortest, so P is the shortest path in RH(G), TH(G).
QH(G) : In QH(G) to go from one vertex u ∈ V (G) to another vertex
v ∈ V (G) we have to essentially go through an edge in G. Also the path
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eij → vi → e(i+1)j can be replaced by a shorter path eij → e(i+1)j. Thus a
path P of length l in G

P : v0 →e1 v1 →e2 . . .→el−1 vl−1

corresponds to a path of length l + 1 in QH(G1) of the form

PQH(G) : v0 → e1j → e2j . . . e(l−1)j → e(l−1)j

�

Lemma 3.2. Let G be a connected graph and H be any graph with eij, eik ∈
V (H) ∩ V (FH(G)) where FH = SH or RH or QH or TH (vertices belonging to the
same component of H). Then

dFH
(eij, eik) =

1, if (vj, vk) ∈ E(H)

2, otherwise
.

Proof. For each path other than the edge (eij, eik) ∈ E(FH(G)), we can replace
the path by a shorter path eij → vi → eik of length 2. �

Lemma 3.3. Let G be a connected graph and H be any other graph with eij, etk ∈
V (H) ∩ V (FH(G)) where FH = SH or RH or QH or TH (vertices belonging to the
different component of H). Then

dSH(G)(eij, etk)

2
= dRH(G)(eij, etk)− 1 = dQH(G)(eij, etk) = dTH(G)(eij, etk)

Proof. Fix a vertex uj ∈ V (H), Let e, f ∈ E(G) and the shortest path from e to f

of length l in the line graph L(G) be

e = e0 →v1 e1 →v2 e3 . . .→vl el = f .

Then the corresponding shortest path of length l in QH(G), TH(G) is

e0j →v1 e1j →v2 e3j . . .→vl elj.

From this path, we obtain a shortest path of length 2l in SH(G) as

e0j → v1 → e1j → v2 → e3j . . .→ vl → elj.

Similarly, from the above path, we obtain a shortest path of length l+1 in RH(G)

as

e0j → v1 → v2 . . .→ vl → elj.

�
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Lemma 3.4. Let G be a connected graph and H be any other graph with v ∈ V (G),
eij ∈ V (H) ∩ V (FH(G)) where FH = SH or RH or QH or TH . Then

dSH(G)(v, eij) + 1

2
= dRH(G)(v, eij)− 1 = dQH(G)(v, eij) = dTH(G)(v, eij).

Proof. Consider a shortest path of length 2l − 1 in SH(G) as

e0j → v1 → e1j → v2 → e3j . . .→ vl.

From this, we obtain the shortest path of length l in RH(G) as

e0j → v1 → v2 . . .→ vl.

The corresponding shortest path of length l in QH(G) is

e0j →v1 e1j →v2 e3j . . .→ vl.

We choose either one among the above two paths as the shortest path of length
l in TH(G). �

From this lemmas, we obtain the relationship of wiener index among the four
graphs as

Theorem 3.1. Let G be a connected graph and H be any graph with vertex sets
V (G), V (H) and edge set E(G), E(H) respectively. Then

(1) W (SH(G)) = 2W (TH(G))− |V (G)||E(G)||V (H)|,
(2) W (SH(G)) = 2W (QH(G))− |V (G)|(|V (G)| − 1)− |V (G)||E(G)||V (H)|,
(3) W (SH(G)) = 2W (RH(G))−2 (|E(G)| − 1) |V (H)|2−|V (G)||E(G)||V (H)|.

Proof. We divide the sum into three parts as∑
u,v∈V (FH(G))

dFH(G)(u, v) =
∑

u,v∈V (G)

dFH(G)(u, v) +
∑

eij ,ekt∈V (FH(G))∩V (H)

dFH(G)(eij, ekt)

+
∑

u∈V (G)eij∈V (FH(G))∩V (H)

dFH(G)(u, eij)

and by using Lemmas 1-4 we get the desired result. �
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4. POLYNOMIALS ASSOCIATED WITH FH(G)

The Wiener index of four graphs FH(G) = {SH(G), RH(G), QH(G), TH(G)}
are mutually related. A similar observation can be done in the case of Hosoya
(Wiener) polynomials as well. Throughout this section we denote W (G; p) as
the Hosoya (Wiener) polynomial of G in the variable p.

Theorem 4.1. Let G be a connected graph and H be any graph. Define

A = {e ∈ E(TH(G)) : e = (u, v), u or v ∈ V (G)}.

Then

W (SH(G); p) =
W (TH(G); p2)

p
+

(
1− 1

p

)
W (G; p2) +

(
1− 1

p

)
W (TH(G)/A; p2).

Proof. Splitting the sum into three different parts,

W (SH(G); p) =
∑

u,v∈V (G)

pdSH (G)(u,v) +
∑

eij ,ekt∈V (FH(G))∩V (H)

pdSH (G)(eij ,ekt)

+
∑

u∈V (G)eij∈V (FH(G))∩V (H)

pdSH (G)(u,eij)

=
∑

u,v∈V (G)

p2dTH (G)(u,v)−1 +
∑

eij ,ekt∈V (FH(G))∩V (H)

p2dTH (G)(eij ,ekt)−1

+
∑

u∈V (G)eij∈V (FH(G))∩V (H)

p2dTH (G)(u,eij)−1 +
∑

u,v∈V (G)

p2dG(u,v)

(
1− 1

p

)

+
∑

eij ,ekt∈V (SH(G))∩V (H)

p2dTH (G)(eij ,ekt)

(
1− 1

p

)

W (SH(G), p) =
W (TH(G); p2)

p
+

(
1− 1

p

)
W (G; p2) +

(
1− 1

p

)
W (TH(G)/A; p2).

�

Theorem 4.2. Let G be a connected graph and H be any graph. Define

A = {e ∈ E(TH(G)) : e = (u, v), u or v ∈ V (G)}.

Then

W (RH(G), p) = W (TH(G); p) + (p− 1)W (TH(G)/A; p).
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Proof. Splitting the sum into three different parts,

W (RH(G), p)

=
∑

u,v∈V (G)

pdRH (G)(u,v) +
∑

eij ,ekt∈V (RH(G))∩V (H)

pdRH (G)(eij ,ekt)

+
∑

u∈V (G)eij∈V (RH(G))∩V (H)

pdRH (G)(u,eij)

=
∑

u,v∈V (G)

pdTH (G)(u,v) +
∑

eij ,ekt∈V (TH(G))∩V (H)

pdTH (G)(eij ,ekt)

+
∑

u∈V (G)eij∈V (TH(G))∩V (H)

pdTH (G)(u,eij) + (p− 1)
∑

eij ,ekt∈V (TH(G))∩V (H)

pdTH (G)(eij ,ekt)

= W (TH(G); p) + (p− 1)W (TH(G)/A; p).

�

Theorem 4.3. Let G be a connected graph and H be any graph. Then

W (QH(G), p) = W (TH(G); p) + (p− 1)W (G; p).

Proof. Splitting the sum into three different parts,

W (QH(G), p) =
∑

u,v∈V (G)

pdQH (G)(u,v) +
∑

eij ,ekt∈V (QH(G))∩V (H)

pdQH (G)(eij ,ekt)

+
∑

u∈V (G)eij∈V (QH(G))∩V (H)

pdQH (G)(u,eij)

=
∑

u,v∈V (G)

pdTH (G)(u,v)+1 +
∑

eij ,ekt∈V (TH(G))∩V (H)

pdTH (G)(eij ,ekt)

+
∑

u∈V (G)eij∈V (TH(G))∩V (H)

pdTH (G)(u,eij)

=
∑

u,v∈V (G)

pdTH (G)(u,v) +
∑

eij ,ekt∈V (TH(G))∩V (H)

pdTH (G)(eij ,ekt)

+
∑

u∈V (G)eij∈V (TH(G))∩V (H)

pdTH (G)(u,eij) + (p− 1)
∑

u,v∈V (G)

pd(G)(u,v)

= W (TH(G); p) + (p− 1)W (G; p).

�
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5. THE WIENER INDEX OF FH SUMS

In this section, we compute the Wiener index of the four FH sums of graphs.
Wiener index of the FH sums can be computed by finding the distance relations
among all kinds of vertices in the sum. So we first obtain the distances between
various kinds vertices in FH = {SH , RH , QH , TH}.

Lemma 5.1.

a. Let G1 G2 be two connected graphs and H be any graph u = (u1, u2) be any
black vertex. Then for all v = (v1, v2) ∈ V (G1 +FH

G2) with FH = SH , RH

we have

d(u, v|G1 +FH
G2) = d(u1, v1|FH(G1)) + d(u2, v2|G2).

b. Let G1 G2 be two connected graphs and H be any graph. If ei, ej ∈ E(G1)

then for all u = (eik, u2), v = (ejt, v2) ∈ V (G1 +FH
G2) with u2 6= v2

FH = SH , RH . Then:

d(u, v|G1 +FH
G2) =

2 + d(u2, v2|G2) if i = j

d(eik, ejt|FH(G1)) + d(u2, v2|G2) if i 6= j
.

c. Let G1 G2 be two connected graphs and H be any graph, If ei, ej ∈ E(G1)

then for all u = (eik, u2), v = (ejt, v2) ∈ V (G1 +FH
G2) with u2 = v2

FH = SH , RH ,(white vertices in the same copy). Then:

d(u, v|G1 +FH
G2) = d(eik, ejt|FH(G1)).

Proof.

a. Let x = d(u, v|G1 +FH
G2), x1 = d(u1, v1|FH(G1)) and x2 = d(u2, v2|G2),

and let

P1 : u1 = t10 → t11 → . . . t1x1−1 → t1x1
= v1,

P2 : u2 = s20 → s21 → . . . s2x2−1 → s2x2
= v2,

be the corresponding shortest paths. Then using these two paths P1, P2

we easily construct a new path from u to v in G1 +FH
G2 as

P3 : (u1, u2) = (t10, s
2
0)→ (t11, s

2
0)→ . . . (t1x1−1, s

2
0)

→ (t1x1
, s20) = (v1, s

2
0)

(v1, s
2
0)→ (v1, s

2
1)→ . . . (v1, s

2
x2
) = (v1, v2).
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Thus, x ≤ x1 + x2. Also corresponding to every path P from u to v in
G1 +FH

G2,

P : (u1, u2) = (t10, s
2
0)→ (t11, s

2
1)→ . . . (t1x−1, s

2
x−1)

→ (t1x, s
2
x) = (v1, v2),

we construct a path from u1 to v1 as u1 = t10 → t11 → . . . t1y1−1 → t1y1 = v1

in FH(G1) and a path of the form u2 = s20 → s21 → . . . s2y2−1 → s2y2 =

v2 from u2 to v2 in G2 by replacing every consecutive similar vertex
(uuuu..u) by a single vertex(u). Thus x1 + x2 ≤ x = y1 + y2, that is

d(u, v|G1 +FH
G2) = d(u1, v1|FH(G1)) + d(u2, v2|G2).

b. Consider the case u = (eik, u2), v = (ejt, v2) with u2 6= v2.

Case I i = j: Let ei = uivi and u2 = s20 → s21 → . . . s2y2−1 → s2y2 = v2 be
the shortest path of length y2 from u2 to v2 in G2. Fix ui, then we easily
construct a shortest path from u to v using the edges eikui and ejtui and
the path from u2 to v2 as

P : (eik, u2) = (eik, s
2
0)→ (ui, s

2
0)→ (ui, s

2
1) . . . (ui, s

2
y2
)

→ (ejt, s
2
y2
) = (ejt, v2)

of length 2 + d(u2, v2/G2).

Case II i 6= j: Let d(eik, ejt|FH(G1)) = y1,x = d(u, v|G1+FH
G2), d(u2, v2) =

x1 and let eik = p10 → p11 → . . . p1y1−1 → p1y1 = ejt (where p1y1−1 ∈ V (G1)

since FH = SH , RH) and u2 = s20 → s21 → . . . s2x1−1 → s2x1
= v2 be

the corresponding paths. Now we construct the following two paths in
G1 +FH

G2.

P1 : u = (p10, u2)→ (p11, u2)→ . . . (p1y1−1, u2) = (p1y1−1, s
2
0)

(p1y1−1, s
2
0)→ (p1y1−1, s

2
1)→ . . . (p1y1−1, s

2
x1
)→ (ejt, v2) = v

of lengths x1 + y1, thus x = d(u, v|G1 +FH
G2) ≤ x1 + y1. to prove the

reverse part, we assume that there exist a path P from u to v in G1+FH
G2

and proceeding as in the proof of (a.) we will establish that x1 + y1 ≤ x.
Thus, d(u, v|G1 +FH

G2) = d(eik, ejt|FH(G1)) + d(u2, v2|G2).
c. As in the proof of (a.) consider the shortest path form eik to ejt of length

y1, eik = p10 → p11 → . . . p1y1−1 → p1y1 = ejt which corresponds to a path
(eik, u2) = (p10, u2) → (p11, u2) → . . . (p1y1−1, u2) → (p1y1 , u2) = (ejt, u2) of
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same length from u to v.Conversely, since u2 = v2, d(u2, v2) = 0 every
such path P in G1 +FH

G2 must have same second component thus the
shortest path from u to v must be of the same length as the shortest path
from eik to ejt.

�

Lemma 5.2.
a. Let G1 , G2 be two connected graphs H be any graph and u = (u1, u2)

be any u black vertex. Then for all v = (v1, v2) ∈ V (G1 +FH
G2) with

FH = QH , TH we have

d(u, v|G1 +FH
G2) = d(u1, v1|FH(G1)) + d(u2, v2|G2).

b. Let G1 , G2 be two connected graphs and H be any graph. If ei, ej ∈ E(G1),
then for all u = (eik, u2), v = (ejt, v2) ∈ V (G1 +FH

G2) with u2 6= v2
FH = QH , TH . Then:

d(u, v|G1 +FH
G2) =2 + d(u2, v2|G2) if i = j u2 6= v2

1 + d(eik, ejt|FH(G1)) + d(u2, v2|G2) if i 6= j, u2 6= v2
.

c. Let G1 , G2 be two connected graphs and H be any graph. If ei, ej ∈ E(G1),
then for all u = (eik, u2), v = (ejt, v2) ∈ V (G1 +FH

G2) with u2 = v2
FH = QH , TH , (white vertices in the same copy). Then:

d(u, v|G1 +FH
G2) = d(eik, ejt|FH(G1)).

Proof.

a. Proceed as in the case (a.) of Lemma 5, we easily obtain the result using
similar arguments.

b. Case I, i = j, u2 6= v2: Then proceed as in the Case I of Lemma 5(b) to
get the results.
Case II i 6= j, u2 6= v2: Let d(eik, ejt|FH(G1)) = y1, d(u2, v2) = x1, x =

d(u, v|G1 +FH
G2) and let eik = p10 → p11 → . . . p1y1−1 → p1y1 = ejt and

u2 = s20 → s21 → . . . s2x1−1 → s2x1
= v2 be the corresponding paths.

Let u1
i v

1
i = ei and u1

jv
1
j = ej, also use the fact that the shortest path

connecting eik, ejt in FH = QH , TH must be a path consisting only of
vertices in the copies H (Ve(H)) as every path of eik → v1i → ejt (where
v1i is common vertex of both the edges ) can be replaced by a single
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edges eikejt which is shorter. Fix a vertex u1
j such that u1

j is closer to eik

than v1j ( we can similarly fix u1
i as well). Now we construct the following

path P1 in G1 +FH
G2.

P1 : u = (p10, u2)→ (p11, u2)→ . . . (py1−1, u2)→ (u1
j , u2)

→ (u1
j , s

2
1)→ . . . (u1

j , s
2
x1
)→ (ejt, v2) = v

of lengths 1 + x1 + y1, thus x = d(u, v|G1 +FH
G2) ≤ 1 + x1 + y1. To

prove the reverse inequality, fix a vertex v1i such that distance between
v1i and ejt is the shortest compared to that from u1

i to ejt in FH(G1).
Then (v1i , u2) is a black vertex and let P be the shortest path between
(eik, u2) and (ejt, v2) of length x. Then we obtain a shortest path P ∗ from
(v1i , u2) to (ejt, v2) by deleting the edge connecting (eik, u2) and (v1i , u2)

of length x − 1 in P . By replacing consecutive similar vertices in the
first and second components of P ∗ by a single vertex, we get a path
P1 from v1i to ejt of length say s1 and a path say P2 from u2 to v2 of
length s2 in F (G1) and G2 respectively. Since d(v1i , ejt) = d(eik, ejt) in
F (G1), we have s1 + s2 ≥ x1 + y1 so x = 1 + s1 + s2 ≥ 1 + x1 + y1. Thus
x = d(u, v/G1+FH

G2) = 1+x1+y1 = 1+d(eik, ejt|FH(G1))+d(u2, v2|G2).
c. Proceed as in case (c.) of Lemma 5 to obtain the required result.

�

Using this, we find the Wiener index of FH Sums in terms of the Wiener index
of its component graphs.

Theorem 5.1. Let G1 , G2 be two connected graphs and H be any graph and FH =

SH or RH . Then

W (G1 +FH
G2) = |V (G2)|2W (FH(G1)) +

(
|V (G1)|2 + (|E(G1)||V (H)|)2

+2|V (G1)||E(G1)||V (H)|)W (G2)

+
(
|V (G2)|2 − |V (G2)|

)
(|E(G1)||V (H)|) .

Proof. We divide the vertex set of G1 +FH
G2 into two different subsets as

A = {u = (u1, v1) ∈ V (G1 +FH
G2) : u = (u1, v1) ∈ V (G1)× V (G2)},

B = {u = (u1, v1) ∈ V (G1 +FH
G2) : u1 ∈ Ve(H), v1 ∈ V (G2)}.
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We divide the sum of the distances between the vertices of G1 +FH
G2 into dif-

ferent components to calculate the Wiener index:

W (G1 +FH
G2) =

1

2

∑
u,v∈A

d(u, v|G1 +FH
G2) +

1

2

∑
u∈A,v∈B

d(u, v|G1 +FH
G2)

+
1

2

∑
u,v∈B

d(u, v|G1 +FH
G2).

Now we find the three sums separately. To find the first sum, we use the fact that
∀ u = (u1, v1), v = (u2, v2) ∈ A, d(u, v|G1+FH

G2) = d((u1, v1), (u2, v2)|G1+FH
G2)

d((u1, v1), (u2, v2)|G1 +FH
G2) = d(u1, u2|FH(G1)) + d(v1, v2|G2) and Lemma 5.

A1

=
1

2

∑
u,v∈A

d(u, v|G1 +FH
G2) =

1

2

∑
u,v∈A

d((u1, v1), (u2, v2)|G1 +FH
G2)

=
1

2

∑
(u1,v1),(u2,v2)

d(u1, u2|FH(G1)) + d(v1, v2|G2)

=
1

2

 ∑
u1,u2∈V (G1)

∑
v1,v2∈V (G2)

d(u1, u2|FH(G1)) +
∑

u1,u2∈V (G1)

∑
v1,v2∈V (G2)

d(v1, v2|G2)


=

1

2
|V (G2)|2

∑
u1,u2∈V (G1)

d(u1, u2|FH(G1)) + |V (G1)|2W (G2).

Now consider the case where u = (u1, v1) ∈ V (G1) × V (G2), v = (ejt, v2), ejt ∈
Ve(H), v2 ∈ V (G2) ( or vice versa). By Lemma 5 we have d(u, v|G1 +FH

G2) =

d((u1, v1)(ejt, v2)|G1 +FH
G2) = d(u1, ejt|FH(G1)) + d(v1, v2|G2),

1

2

∑
u∈A,v∈B

d(u, v|G1 +FH
G2)

=
1

2

∑
u∈A,v∈B

d((u1, ejt), (v1, v2)|G1 +FH
G2)

=
1

2

∑
(u1,v1),(ejt,v2)

(d(u1, ejt|FH(G1)) + d(v1, v2|G2))
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=
1

2

∑
u1,∈V (G1)

∑
ejt∈Ve(H)

∑
v1,v2∈V (G2)

d(u1, ejt|FH(G1))

+
1

2

∑
u1∈V (G1)

∑
ejt∈Ve(H)

∑
v1,v2∈V (G2)

d(v1, v2|G2)

=
1

2
|V (G2)|2

∑
u1∈V (G1)

∑
ejt∈Ve(H)

d(u1, ejt|FH(G1))

+ |V (G1)||E(G1)||V (H)|W (G2).

By considering the reverse case as well, the total distance is

A2 =
1

2

∑
u∈A,v∈B

d(u, v|G1 +FH
G2)

= |V (G2)|2
∑

u1∈V (G1)

∑
ejt∈Ve(H)

d(u1, ejt|FH(G1))

+ 2|V (G1)||E(G1)||V (H)|W (G2).

Now consider the case where u = (eij, v1), v = (ejt, v2), eij, ejt ∈ Ve(H), v1, v2 ∈
V (G2). We divide the sum into three different parts with respect to i = j, v1 6= v2,
i 6= j, v1 6= v2 and i = j, v1 = v2. Let

S1 =
1

2

∑
u,v∈B

{d(u, v|G1 +FH
G2) : v1 6= v2, i = j},

S2 =
1

2

∑
u,v∈B

{d(u, v|G1 +FH
G2) : v1 6= v2, i 6= j},

S3 =
1

2

∑
u,v∈B

{d(u, v|G1 +FH
G2) : v1 = v2, i = j}.

Then,

A3 =
1

2

∑
u,v∈B

d(u, v|G1 +FH
G2) = S1 + S2 + S3.(5.1)
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Now,

S1 =
1

2

∑
(eik,v1)(ejt,v2)∈B

2 + d(v1, v2|G2)

=
1

2

∑
v1,v2∈V (G2)v1 6=v2

∑
eikejt,∈Ve(H) i=j

2

+
1

2

∑
v1,v2∈V (G2)v1 6=v2

∑
eikejt,∈Ve(H) i=j

d(v1, v2|G2)

=
(
|V (G2)|2 − |V (G2)|

)
|E(G1)||V (H)|+ (|E(G1)||V (H)|)W (G2).

Similarly,

S2 =
1

2

∑
u,v∈B

d(eik, ejt|FH(G1)) + d(v1, v2|G2)

=
1

2

∑
v1,v2∈V (G2)

∑
eikejt∈Ve(H)i 6=j

d(eik, ejt|FH(G1))

+
1

2

∑
v1,v2∈V (G2)

∑
eikejt∈Ve(H)i 6=j

d(v1, v2|G2)

=
1

2

∑
v1,v2∈V (G2)

∑
eikejt∈Ve(H)i 6=j

d(eik, ejt|FH(G1))

+
(
(|E(G1)||V (H)|)2 − |E(G1)||V (H)|

)
W (G2).

Also,

S3 =
1

2

∑
u,v∈B

{d(u, v|G1 +FH
G2) : v1 = v2, i = j}

=
1

2

∑
v1,v2∈V (G2)v1=v2

∑
eikejt∈Ve(H)i=j

d(eik, ejt|FH(G1)),

W (G1 +FH
G2) = A1 + A2 + A3

=
1

2
|V (G2)|2

∑
u1,u2∈V (G1)

d(u1, u2|FH(G1)) + |V (G1)|2W (G2)

+ |V (G2)|2
∑

u1∈V (G1)

∑
ejt∈Ve(H)

d(u1, ejt|FH(G1)) + 2|V (G1)||E(G1)||V (H)|W (G2)
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+
∑

v1,v2∈V (G2)v1 6=v2

∑
eikejt,∈Ve(H) i=j

2 +
∑

v1,v2∈V (G2)v1 6=v2

∑
eikejt,∈Ve(H) i=j

d(v1, v2|G2)

+
1

2
|V (G2)|2

∑
eikejt∈Ve(H)i 6=j

d(eik, ejt|FH(G1))

+
(
(|E(G1)||V (H)|)2 − |E(G1)||V (H)|

)
W (G2)

+
1

2
|V (G2)|2

∑
eik,ejt∈Ve(H)i=j

d(eik, ejt|FH(G1))

= |V (G2)|2W (FH(G1)) +
(
|V (G1)|2 + (|E(G1)||V (H)|)2

+2|V (G1)||E(G1)||V (H)|)W (G2)

+
(
|V (G2)|2 − |V (G2)|

)
(|E(G1)||V (H)|)

�

Theorem 5.2. Let G1, G2 be two connected graphs, H be any graph and FH = QH

or TH . Then

W (G1 +FH
G2)

= |V (G2)|2W (FH(G1)) +
(
|V (G1)|2 + (|E(G1)||V (H)|)2

+2|V (G1)||E(G1)||V (H)|)W (G2) +
1

2

(
(|E(G1)||V (H)|)2

+|E(G1)||V (H)|)
(
|V (G2)|2 − |V (G2)|

)
Proof. Define A,B as in Theorem 1. Then

W (G1 +FH
G2) =

1

2

∑
u,v∈A

d(u, v|G1 +FH
G2) +

1

2

∑
u∈A,v∈B

d(u, v|G1 +FH
G2)

+
1

2

∑
u,v∈B

d(u, v|G1 +FH
G2).

As in Theorem 1 we divide the sum into three different parts and calculate the
sum of the distances. Now, the first two parts are as same as in Theorem 1, so
its enough to find only the third sum. As in the previous cases we break down
the third sum into four different parts∑

u,v∈B

d(u, v|G1 +FH
G2) = C1 + C2 + C3 + C4.
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Let u = (eij, v1), v = (ejt, v2), eij, ejt ∈ Ve(H), v1, v2 ∈ V (G2). Then,

C1 =
1

2

∑
u,v∈B

{d(u, v|G1 +FH
G2) : v1 6= v2, i = j}

C2 =
1

2

∑
u,v∈B

{d(u, v|G1 +FH
G2) : v1 = v2, i 6= j}

C3 =
1

2

∑
u,v∈B

{d(u, v|G1 +FH
G2) : v1 = v2, i = j}

C4 =
1

2

∑
u,v∈B

{d(u, v|G1 +FH
G2) : v1 6= v2, i 6= j}

By Lemma 6, we have,

C1 =
1

2

∑
u,v∈B

{d(u, v|G1 +FH
G2) : v1 6= v2, i = j}

=
1

2

∑
(eik,v1)(ejt,v2)∈B

2 + d(v1, v2|G2)

=
1

2

∑
v1,v2∈V (G2)v1 6=v2

∑
eikejt,∈Ve(H) i=j

2

+
1

2

∑
v1,v2∈V (G2)v1 6=v2

∑
eikejt,∈Ve(H) i=j

d(v1, v2|G2)

=
(
|V (G2)|2 − |V (G2)|

)
|E(G1)||V (H)|+ (|E(G1)||V (H)|)W (G2

Now,

C2 =
1

2

∑
u,v∈B

{d(u, v|G1 +FH
G2) : v1 = v2, i 6= j}

=
1

2

∑
v1,v2∈V (G2)v1=v2

∑
eikejt∈Ve(H)i 6=j

d(eik, ejt|FH(G1)).

Similarly,

C3 =
1

2

∑
u,v∈B

{d(u, v|G1 +FH
G2) : v1 = v2, i = j}

=
1

2

∑
v1,v2∈V (G2)v1=v2

∑
eikejt∈Ve(H)i=j

d(eik, ejt|FH(G1)).
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Similarly, by Lemma 6,

C4 =
1

2

∑
u,v∈B

{d(u, v|G1 +FH
G2) : v1 6= v2, i 6= j}

=
1

2

∑
u,v∈B

(1 + d(eik, ejt|FH(G1)) + d(v1, v2|G2))

=
1

2

∑
v1,v2∈V (G2)v1 6=v2

∑
eikejt∈Ve(H)i 6=j

1

+
1

2

∑
v1,v2∈V (G2)v1 6=v2

∑
eikejt∈Ve(H)i 6=j

d(eik, ejt|FH(G1))

+
1

2

∑
v1,v2∈V (G2)v1 6=v2

∑
eikejt∈Ve(H)i 6=j

d(v1, v2|G2)

=
(
(|E(G1)||V (H)|)2 − |E(G1)||V (H)|

) (
|V (G2)|2 − |V (G2)|

)
+

1

2

∑
v1,v2∈V (G2)

∑
eikejt∈Ve(H)i 6=j

d(eik, ejt|FH(G1))

+
(
(|E(G1)||V (H)|)2 − |E(G1)||V (H)|

)
W (G2).

Thus we obtain,

W (G1 +FH
G2)

=
1

2
|V (G2)|2

∑
u1,u2∈V (G1)

d(u1, u2|FH(G1)) + |V (G1)|2W (G2)

+ |V (G2)|2
∑

u1∈V (G1)

∑
ejt∈Ve(H)

d(u1, ejt|FH(G1)) + 2|V (G1)||E(G1)||V (H)|W (G2)

+
(
|V (G2)|2 − |V (G2)|

)
|E(G1)||V (H)|+ (|E(G1)||V (H)|)W (G2)

+
1

2

∑
v1,v2∈V (G2)v1=v2

∑
eikejt∈Ve(H)i 6=j

d(eik, ejt|FH(G1))

+
1

2

∑
v1,v2∈V (G2)v1=v2

∑
eikejt∈Ve(H)i=j

d(eik, ejt|FH(G1))

+
1

2

(
(|E(G1)||V (H)|)2 − |E(G1)||V (H)|

) (
|V (G2)|2 − |V (G2)|

)
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+
1

2

∑
v1,v2∈V (G2)

∑
eikejt∈Ve(H)i 6=j

d(eik, ejt|FH(G1))

+
(
(|E(G1)||V (H)|)2 − |E(G1)||V (H)|

)
W (G2)

= |V (G2)|2W (FH(G1)) +
(
|V (G1)|2 + (|E(G1)||V (H)|)2

+2|V (G1)||E(G1)||V (H)|)W (G2)

+
1

2

(
(|E(G1)||V (H)|)2 + |E(G1)||V (H)|

) (
|V (G2)|2 − |V (G2)|

)
�

Illustration 1. If H = K1, we obtain the results in [5].

Illustration 2. If G1, G2, H are paths Pn, Pm, Pr with n,m > 3 respectively, then
the Wiener index is:

a. W (Pn +SPr
Pm) =

m

6
(2n3r2m + n2r2m2 − 6n2r2m + 4n3rm + 2n2rm2 −

2nr2m2−6n2rm+10nr2m−2nrm2+2n3m+n2r2+r2m2−4nrm+2n2r−
2nr2 + n2m− 6mr2 − 8nr + 6mr + 6mn+ n2 + r2 − 6m+ 6r);

b. W (Pn +RPr
Pm) =

m

6
(n3r2m + n2r2m2 + 2n3rm + 2n2rm2 − 2nr2m2 −

nr2m+n3m−2nrm2+n2m2−n2r2+r2m2−8nrm−2n2r+2nr2+5nm−
4nr + 6rm− n2 − r2 − 6m+ 6r);

c. W (Pn +QPr
Pm) =

m

6
(n3r2m + n2r2m2 + 2n3rm + 2n2rm2 − 2nr2m2 +

2nr2m− 2nrm2 + n3m+ n2m2 − 4n2r2 + r2m2 − 11nrm− 2n2r + 8nr2 −
3r2m+ 3n2m+ 2nm− nr + 9rm− n2 − 4r2 − 6m+ 3r);

d. W (Pn +TPr
Pm) =

m

6
(n3r2m + n2r2m2 + 2n3rm + 2n2rm2 − 2nr2m2 +

2nr2m− 2nrm2 + n3m+ n2m2 − 4n2r2 + r2m2 − 11nrm− 2n2r + 8nr2 −
3r2m+ 5nm− nr + 9rm− n2 − 4r2 − 6m+ 3r).

6. CONCLUSIONS

In this paper we have defined FH sums of graphs and obtained the relationship
among distances of these four graphs and their Hosoya polynomial. We also
computed the Wiener index of FH sums of two connected graphs. These sums
can be defined in terms of various other products such as strong product and
lexicographic product. Other topological indices can also be computed for the
FH sums.
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