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ON THE PROPERTIES OF BIFRACTIONAL BROWNIAN MOTION

BA Demba Bocar

ABSTRACT. In this paper, we study several properties of the bifractional Brow-
nian motion introduced by Houdré and Villa.

1. INTRODUCTION

In mathematics, a self-similar object is exactly or approximately similar to a
part of it self.

Self-similarity is a major part of the mathematics.
On the one hand if you assume that you observe a self similar phenomens

with no structure.
On the other hand if you want to have a complete classification of self similar

fields then we can find in the literature a lot of counter-examples.
The self similarity and the stationarity of the increments are two main prop-

perties for which the fractional Brownian motion exhibited success as a model-
ing tool in engineering, mathematical finance, hydrology etc. . .

We will focus our attention to a gaussian process that generalize the fractional
Brownian motion, called bifractional Brownian motion. Recall that the fBm is
the only Self-similar Gaussian process with stationary increments starting from
zero for small increments, in models such as turbulence, fBm seems a good
model but inadequate for large increments. For this reason, in [29] the authors
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introduced an extension of the fMb keeping some properties (Self-similarity,
gaussianity, stationarity for small increments) but enlarged the modeling tool
kit.

We will pay a special attention to the case HK = 1
2

(and K ̸= 1, if K = 1 then
H = 1

2
and we have a Brownian motion).

In this case we will show that BH,K admits a non-trivial quadratic variation
equal to constant time t, this different from the fractional situation.

Let us summarize the results proved below

- Al though 2HK = 1 implies H > 1
2
, the process BH,K seems in this case

to have similar properties as the fBm H < 1
2

it is short-memory.
- Nevertheless, having finite energy, it is also linked to the fBm with pa-

rameter bigger than 1
2
.

Russo and Tudor have established some properties on the strong variations,
local times and stochastic calculus of real-valued bifractional Brownian motion.

An interesting property that deserves to be recalled in the fact, when HK = 1
2
,

the quadratic variation of this process on [0, t] is equal to a constant time t. This
is really remarkable since as far as we know this is the only Gaussian Self -
similar process with quadratic variation besides brownian motion.

Taking into acount this property, it is natural to ask if the bifractional Brown-
ian motion BH,K with HK = 1

2
shares other properties with Brownian motion.

2. PRELIMINARIES

Definition 2.1. The bifractional brownian motion
(
BH,K

t

)
t≥0

is a centered Gauss-

ian process, starting from zero, with covariance

RH,K(t, s) =
1

2K
[
(t2H + s2H)K − |t− s|2HK

]
,

with H ∈ (0, 1) and K ∈ (0, 1].

Note that, if K = 1 then BH,1 is a fractional Brownian motion with Hurst
parameter H ∈ (0, 1).

if σ2
ε(t) := E(BH,K

t+ε −BH,K
t )2), then lim

ε→0

σ2
ε(t)

ε2HK
= 21−K .

Let T > 0. For every s, t ∈[0, T], we have

2−K |t− s|2HK ≤ E(BH,K
t −BH,K

s )2 ≤ 2−K |t− s|2HK .
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Inequality shows that the process BH,K is a quasi-helix in the sense of J.P. Ka-
hane for various properties and applications of quasi-helices).

For every H ∈ (0, 1) and K ∈ (0, 1),

lim
ε→0

sup
t∈[t0−ε,t0+ε]

|
BH,K

t −BH,K
t0

t− t0
| = +∞,

with probability one for every t0.
The process is HK-self-similar.
The process is Holder continuous of order δ for any δ < HK. This follows

from the Kolmogorov criterium.

3. SOME PROPERTIES OF BIFRACTIONAL BROWNIAN MOTION

Proposition 3.1. Let X a bifractional Brownian motion with index HK then

1. E((X(t)−X(s))2) ≤ 2|t− s|2HK .
2. X is locally Holder continuous for every exponent 0 < r <HK.
3. At every point t the pointwise Holder exponent of X is HK.

Proof.

1. In the beginnin

E(X(t)−X(s))2 = 21−K |t− s|2HK + (|t|2HK + |s|2HK − 21−K(|t|2H + |s|2H)K)

Since (|t|2HK+|s|2HK−21−K(|t|2H+|s|2H)K) is non-negative by concavity:

E(X(t)−X(s))2 ≤ 21−K |t− s|2HK

2. the theorem proves that X is a least HK locally Holder continuous.
3. It remains to prove that index HK is the best Holder exponent. Fix a

point t. Let σ2
n = E(X(t+ 1

n
)−X(t))2.

There exists a positive constant C such that σn > Cn−HK as n 7→ +∞.
Then one can show that for r >HK,

lim
n→+∞

| 1
n
|γ

X(t+ 1
n
)X(t)

= 0(d).

The limit is also true in a convergence in probability sense. One can find
a sequence

1

n
7−→ 0 such that lim

n→+∞

| 1
n
|γ

X(t+ 1
n
)X(t)

= 0 a.s.
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This yields that

lim
n→+∞

X(t+ 1
n
)−X(t)

| 1
n
|γ

= +∞ a.s.

and that the pointwise Holder exponent is lower than every H
′
> H

almost surely.
One can conclude that this exponent is bigger than H

′
< H almost

surely.

□

Proposition 3.2. Let (BH,K
t )t∈[0,T ] be a bifractional motion with parameters H ∈

(0; 1) and K ∈ (0, 1). Then[
BH,K

](K)

t
= 0 if α >

1

HK
and

[
BH,K

](K)

t
= 2

1−K
2HKφHKt if α =

1

HK
,

where φHK = E|N | 1
HK . N being a standard normal random variable.

Proof. We define

C(α)
ε (t) =

1

ε

∫ t

0

|BH,K
s+ε −BH,K

s |ds.

It suffices to show than C
1

HK
ε (t) converges in L2(Ω) as ε 7→ 0 to 2

1−K
HK φHKt. So,

E|BH,K
s+ε −BH,K

s |
1

HK =
(
E|BH,K

s+ε −BH,K
s |2

) 1
HK ≃ 2

1−K
HK φHKt,

and therefore
lim
ε→0

E(C
1

HK
ε (t)) = 2

1−K
HK φHKt.

To obtain the conclusion it suffices to show that

lim
ε→0

E(C
1

HK
ε (t))2 = (2

1−K
HK φHKt)2t2.

We have

E(C
1

HK
ε (t))2 =

2

ε2

∫ t

0

∫ u

0

E|BH,K
u+ε −BH,K

u ·BH,K
v+ε −BH,K

v |
1

HK ,

E

| N1 |
1

HK |Θε(u, v)

C1ε2HK
N1 + 21−KN2

√
1−

(
Θε(u, v)

C2ε2HK

)2

|
1

HK

 ,

where C1, C2 are strictly positive constants and we defined

Θε(u, v) = E(BH,K
u+ε −BH,K

u )(BH,K
v+ε −BH,K

v ).
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We compute Θε(u, v) = (aε(u, v) + bε(u, v)) where

aε(u, v) =
1

2K
[((u+ ε)2H + (v + ε)2H)K − ((u+ ε)2Hv2H)K − ((v + ε)2H

+ u2H)K + (u2H + v2H)K ]

and
bε(u, v) =

[
(u+ ε− v)2HK + (u− ε− v)2HK − 2 (u− v)2HK

]
lim
ε→0

bε(u, v)

22HK
= 0 and |bε(u, v)

22HK
| ≤ C

Using Taylor expansion and noticing that a0(u, v) = 0 daε(u,v)
dε

= 0 for every u,
v and

daε(u, v)

d2ε2
=

H2K(K − 1)

2K−3

(
u2H + v2H

)K−1
u2H−1v2H−1,

we obtain for every u, v,

aε(u, v) =
H2K(K − 1)

2K−3

(
u2H + v2H

)K−1
u2H−1v2H−1ε2 + σ(ε2).

This shows that

lim
ε→0

aε(u, v)

ε
= 0 for every u, v.

□

Remark 3.1. The above proposition distinguishes a special case which seems to be
more interesting than the other cases: the case KH = 1

2
. If k = 1, then H = 1

2
and

we deal with a wiener process. If K̸= 1, we have an example of a Gaussian process,
having non-trivial quadratic variation which equals 21−tt, so, modulo a constant,
the same as Brownian motion.

Denote by W a standard Wiener processes.

Proposition 3.3. The process BH,K+W , restricted to each compact interval [0, T ],
is equivalent in law with a Wiener process if HK > 3

4
.

Proof. If X is a gaussian process with covariance R(t, s) such that ∂2R
∂s∂t

∈ L2 ([0, T ]),
the proces Yt = Xt +Wt is a semi-martingale equivalent in law to a Wiener pro-
cess.

Concerning the process BH,K , note that for s ≤ t,

∂2R

∂s∂t
(s, t) =

1

2K
(2HK(K−1)(t2H+s2H)K−2(st)2H−1+2HK(2HK−1)(t−s)2HK−2)
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since (
t2H + s2H

)K−2 ≤ 2K−2 (st)H(K−2) .

The first part above belongs to L2 ([0, T ]) for HK > 1
2
, and the second part for

HK > 3
4
.

For any K ∈ (0, 2), let XK = (XK
t , t ≥ 0) be a Gaussian process defined by

XK
t =

∫∞
0
(1− e−rt)r

−1+K
2 dWr, where (Wt, t ≥ 0) is a standard Brownian motion.

This process was introducted in [11] for K ∈ (0, 1) in order to obtain a deco-
mosition of the bifractional Brownian motion with H ∈ (0, 1) and K ∈ (0, 1). □

Proposition 3.4. Let BH,K a bifractional Brownian motion with parameters H ∈
(0, 1) and K ∈ (0, 1), BH,K be a bifractional Brownian motion with Hurst param-
eter HK ∈ (0, 1) and W = (Wt, t ≥ 0) a standart Brownian motion.

Let Xt be the process given by (1). If we suppose that BH,K and W are indepen-
dent’s, then processes {Yt = C1X

K
t2H + BH,K

t , t ≥ 0} and {C2B
H,K
t , t ≥ 0} have the

same distribution, where C1 =

√
2−KK

Γ(1−K)
and C2 = 2

1−K
2 .

Proof. [11] □

Proposition 3.5. Assume H ∈ (0, 1) and K ∈ (1, 2) with HK ∈ (0, 1). Let BH,K be
bifractional Brownian motion and W = (Wt, t ≥ 0) a standard Brownian motion.
Let XK,H the process defined by XHK

t = XK
t2H t ≥ 0. If we suppose that BHK and

W are independants, then process BH,K
t = aBHK

t + bXH,K
t where a =

√
21−K and

b =

√
K(K − 1)

2KΓ(2−K)
is a centered Gaussian process with covariance function

cov(BH,K
t , BH,K

s ) =
1

2K
[
(t2H + s2H)K − |t− s|2HK

]
.

Proof. The process defined by BH,K
t = aBHK

t + bXH,K
t is a centered Gaussian

process.
On the other hand, its covariance functions is given by

cov(BH,K
t , BH,K

s ) = E(BH,K
t BH,K

s ) = a2E(BHK
t BHK

s ) + b2E(XH,K
t XH,K

s )

= a2(t2HK + s2HK − |t− s|2HK) +
1

2K
((t2H + s2H)K − t2HK − s2HK)

=
1

2
((t2H + s2H)K − |t− s|2HK).
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Thus the bifractional Brownian motion BH,K with parameter H ∈ (0, 1) and
K ∈ (1, 2) such HK ∈ (0, 1) is well defined and it has a decomposition as a sum
of fractional Brownian motion and a absolutely continuous process XH,K .

Assume that 2HK = 1, Russo and Tudor in [12] proved that if K ∈ (0, 1), the
process BH,K is not a semi-martingale.

In the case when 1 < K < 2, BH,K is a semi-martingale because we have a
decomposition of this process as a sum of a brownian motion B

1
2 and a finite

variation process XH,K □

Proposition 3.6. For K ∈ (0, 1] and H ∈ (0, 1), the process BH,K is not a Markov
process.

Proof. Recall that a Gaussian process with covariance R is Markovian, if, and
only if,

R(s, u)R(t, t) = R(s, t)R(t, u)

for every s ≤ t ≤ u. it is straighforward to check that BH,K does not satisfy this
condition. □

Proposition 3.7. For all constants 0 < a < b, BH,K
0 is strongly locally φ-non

deterministic on I = [a, b] with φ(r) = r2HK . That is, there exist positive constants
C2,1 and r0 such that for all t ∈ I and all 0 < r ≤ min({t, r0}),

V ar
(
BH,K

0 (t)/BH,K
0 (s)) : s ∈ I, r ≤ |s− t| ≤ r0

)
≥ C2,1φ(r).

Proof. We consider the centered stationary Gaussian process Y0 = {Y0(t), t ∈ R}
defined through the Lamperti’s transformation

Y0(t) = e−HKtBH,K
0 et, ∀t ∈ R

r(t) = E(Y0(0)Y0(t)) is given by

r(t) =
1

2K
((e2Ht + 1)K − |et − 1|2HK).

Hence r(t) is an even function and by Taylor expansion, we verify that r(t) =

0(e−βt) as t → ∞ where β = min{H(2 − k), HK}. Thus r(.) ∈ L1(R). On the

other hand, by using Taylor expansion again, we also have r(t) ∼ 1 − 1

2K
|t|2HK

as t → 0 (3).



66 BA Demba Bocar

By Bochner’s theorem, Y0 has the following stochastic integral representation
Y0(t) =

∫
R
eiλtW (dλ) t ∈ R, where w is a complex Gaussian measure ∆ whose

Fourier transform is r(.)

f(λ) =
1

Π

∫ ∞

0

r(t)cos(λt)dt.

So that f(t) ∼ C2,2|λ|−(1+2HK) as λ → ∞; where C2,2 > 0 is an explicit constant
depending only on HK. Hence, by a result of Cuzick, Xiao, Y0 = {Y0(t), t ∈ R}
is strongly locally φ-nondeterministic on any interval J = [−T, T ] with φ(r) =

r2HK in the sense that exist positive constants δ and C2,3 such that exist for all
t ∈ [−T, T ] and all r ∈ (0, |t| ∧ δ),

V ar (Y0(t)/Y0(s)) : s ∈ J, r ≤ |s− t| ≤ δ) ≥ C2,3φ(r).

Now we prove the strong local nondeterminism of BH,K
0 on I. Note that BH,K

0 (t) =

tHKY0(lnt) for all t > 0. We choose r0 = aδ. Then all s, t ∈ I with r ≤ |s−t| ≤ r0.
We have

r

b
≤ |lns− lnt| ≤ δ.

For (4), (5) and r < r0 t ∈ [a, b],

V ar
(
BH,K

0 (t)/BH,K
0 (s)) : s ∈ I, r ≤ |s− t| ≤ r0

)
V ar

(
BH,K

0 (t)/BH,K
0 (s))

)
= V ar

(
tHKY0(lnt)/s

HKY0(lns)
)

≥ a2HKV ar
(
Y0(lnt)/Y0(lns) : s ∈ I,

r

b
≤ |lns− lnt| ≤ δ

)
≥ C2,4φ(r).

□
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