J COMP SCI	Journal of Computer Science and Applied Mathematics	
	Vol. 3, no.2, (2021), 59–67	
	ISSN: 1857-9582	https://doi.org/10.37418/jcsam.3.2.2

ON THE PROPERTIES OF BIFRACTIONAL BROWNIAN MOTION

BA Demba Bocar

ABSTRACT. In this paper, we study several properties of the bifractional Brownian motion introduced by Houdré and Villa.

1. INTRODUCTION

In mathematics, a self-similar object is exactly or approximately similar to a part of it self.

Self-similarity is a major part of the mathematics.

On the one hand if you assume that you observe a self similar phenomens with no structure.

On the other hand if you want to have a complete classification of self similar fields then we can find in the literature a lot of counter-examples.

The self similarity and the stationarity of the increments are two main propperties for which the fractional Brownian motion exhibited success as a modeling tool in engineering, mathematical finance, hydrology etc...

We will focus our attention to a gaussian process that generalize the fractional Brownian motion, called bifractional Brownian motion. Recall that the fBm is the only Self-similar Gaussian process with stationary increments starting from zero for small increments, in models such as turbulence, fBm seems a good model but inadequate for large increments. For this reason, in [29] the authors

Key words and phrases. Brownian motion, Bifractional motion, Properties.

Submitted: 22.08.2021; Accepted: 07.09.2021; Published: 18.09.2021.

introduced an extension of the fMb keeping some properties (Self-similarity, gaussianity, stationarity for small increments) but enlarged the modeling tool kit.

We will pay a special attention to the case $HK = \frac{1}{2}$ (and $K \neq 1$, if K = 1 then $H = \frac{1}{2}$ and we have a Brownian motion).

In this case we will show that $B^{H,K}$ admits a non-trivial quadratic variation equal to constant time t, this different from the fractional situation.

Let us summarize the results proved below

- Al though 2HK = 1 implies $H > \frac{1}{2}$, the process $B^{H,K}$ seems in this case to have similar properties as the fBm $H < \frac{1}{2}$ it is short-memory.
- Nevertheless, having finite energy, it is also linked to the fBm with parameter bigger than $\frac{1}{2}$.

Russo and Tudor have established some properties on the strong variations, local times and stochastic calculus of real-valued bifractional Brownian motion.

An interesting property that deserves to be recalled in the fact, when $HK = \frac{1}{2}$, the quadratic variation of this process on [0, t] is equal to a constant time t. This is really remarkable since as far as we know this is the only Gaussian Self - similar process with quadratic variation besides brownian motion.

Taking into acount this property, it is natural to ask if the bifractional Brownian motion $B^{H,K}$ with $HK = \frac{1}{2}$ shares other properties with Brownian motion.

2. Preliminaries

Definition 2.1. The bifractional brownian motion $(B_t^{H,K})_{t\geq 0}$ is a centered Gaussian process, starting from zero, with covariance

$$R^{H,K}(t,s) = \frac{1}{2^K} \left[(t^{2H} + s^{2H})^K - |t - s|^{2HK} \right],$$

with $H \in (0, 1)$ and $K \in (0, 1]$.

Note that, if K = 1 then $B^{H,1}$ is a fractional Brownian motion with Hurst parameter $H \in (0, 1)$.

$$\begin{split} &\text{if } \sigma_{\varepsilon}^2(t) := E(B_{t+\varepsilon}^{H,K} - B_t^{H,K})^2)\text{, then } \underset{\varepsilon \to 0}{\lim} \frac{\sigma_{\varepsilon}^2(t)}{\varepsilon^{2HK}} = 2^{1-K}\text{.}\\ &\text{Let } T > 0\text{. For every s, t} \in [0, \text{T}]\text{, we have} \end{split}$$

$$2^{-K}|t-s|^{2HK} \le E(B_t^{H,K} - B_s^{H,K})^2 \le 2^{-K}|t-s|^{2HK}.$$

Inequality shows that the process $B^{H,K}$ is a quasi-helix in the sense of J.P. Kahane for various properties and applications of quasi-helices).

For every $H \in (0, 1)$ and $K \in (0, 1)$,

$$\lim_{\varepsilon \to 0} \sup_{t \in [t_0 - \varepsilon, t_0 + \varepsilon]} \left| \frac{B_t^{H,K} - B_{t_0}^{H,K}}{t - t_0} \right| = +\infty,$$

with probability one for every t_0 .

The process is HK-self-similar.

The process is Holder continuous of order δ for any $\delta < HK$. This follows from the Kolmogorov criterium.

3. Some properties of bifractional Brownian motion

Proposition 3.1. Let X a bifractional Brownian motion with index HK then

1.
$$E((X(t) - X(s))^2) \le 2|t - s|^{2HK}$$

- 2. X is locally Holder continuous for every exponent 0 < r < HK.
- 3. At every point t the pointwise Holder exponent of X is HK.

Proof.

1. In the beginnin

$$\begin{split} E(X(t) - X(s))^2 &= 2^{1-K} |t - s|^{2HK} + (|t|^{2HK} + |s|^{2HK} - 2^{1-K} (|t|^{2H} + |s|^{2H})^K) \\ \text{Since } (|t|^{2HK} + |s|^{2HK} - 2^{1-K} (|t|^{2H} + |s|^{2H})^K) \text{ is non-negative by concavity:} \\ E(X(t) - X(s))^2 &\leq 2^{1-K} |t - s|^{2HK} \end{split}$$

- 2. the theorem proves that X is a least HK locally Holder continuous.
- 3. It remains to prove that index HK is the best Holder exponent. Fix a point t. Let $\sigma_n^2 = E(X(t + \frac{1}{n}) X(t))^2$.

There exists a positive constant C such that $\sigma_n > Cn^{-HK}$ as $n \mapsto +\infty$. Then one can show that for r >HK,

$$\lim_{n \to +\infty} \frac{\left|\frac{1}{n}\right|^{\gamma}}{X(t + \frac{1}{n})X(t)} = 0(d).$$

The limit is also true in a convergence in probability sense. One can find a sequence

$$\frac{1}{n} \mapsto 0$$
 such that $\lim_{n \to +\infty} \frac{|\frac{1}{n}|^{\gamma}}{X(t + \frac{1}{n})X(t)} = 0$ a.s.

This yields that

$$\lim_{n \to +\infty} \frac{X(t+\frac{1}{n}) - X(t)}{|\frac{1}{n}|^{\gamma}} = +\infty \quad \text{a.s.}$$

and that the pointwise Holder exponent is lower than every $H^{\prime}>H$ almost surely.

One can conclude that this exponent is bigger than H' < H almost surely.

Proposition 3.2. Let $(B_t^{H,K})_{t \in [0,T]}$ be a bifractional motion with parameters $H \in (0,1)$ and $K \in (0,1)$. Then

$$\begin{bmatrix} B^{H,K} \end{bmatrix}_t^{(K)} = 0 \quad \text{if} \quad \alpha > \frac{1}{HK} \quad \text{and} \quad \begin{bmatrix} B^{H,K} \end{bmatrix}_t^{(K)} = 2^{\frac{1-K}{2HK}} \varphi HK^t \quad \text{if} \quad \alpha = \frac{1}{HK},$$

where $\varphi_{HK} = E|N|^{\frac{1}{HK}}$. N being a standard normal random variable.

Proof. We define

$$C_{\varepsilon}^{(\alpha)}(t) = \frac{1}{\varepsilon} \int_{0}^{t} |B_{s+\varepsilon}^{H,K} - B_{s}^{H,K}| ds.$$

It suffices to show than $C_{\varepsilon}^{\frac{1}{HK}}(t)$ converges in $L^2(\Omega)$ as $\varepsilon \mapsto 0$ to $2^{\frac{1-K}{HK}}\varphi HK^t$. So,

$$E|B_{s+\varepsilon}^{H,K} - B_s^{H,K}|^{\frac{1}{HK}} = \left(E|B_{s+\varepsilon}^{H,K} - B_s^{H,K}|^2\right)^{\frac{1}{HK}} \simeq 2^{\frac{1-K}{HK}}\varphi HK^t,$$

and therefore

$$\lim_{\varepsilon \to 0} E(C_{\varepsilon}^{\frac{1}{HK}}(t)) = 2^{\frac{1-K}{HK}} \varphi H K^{t}.$$

To obtain the conclusion it suffices to show that

$$\lim_{\varepsilon \to 0} E(C_{\varepsilon}^{\frac{1}{HK}}(t))^2 = (2^{\frac{1-K}{HK}}\varphi HK^t)^2 t^2.$$

We have

$$E(C_{\varepsilon}^{\frac{1}{HK}}(t))^{2} = \frac{2}{\varepsilon^{2}} \int_{0}^{t} \int_{0}^{u} E|B_{u+\varepsilon}^{H,K} - B_{u}^{H,K} \cdot B_{v+\varepsilon}^{H,K} - B_{v}^{H,K}|^{\frac{1}{HK}},$$
$$E\left(|N_{1}|^{\frac{1}{HK}}|\frac{\Theta_{\varepsilon}(u,v)}{C_{1}\varepsilon^{2HK}}N_{1} + 2^{1-K}N_{2}\sqrt{1 - \left(\frac{\Theta_{\varepsilon}(u,v)}{C_{2}\varepsilon^{2HK}}\right)^{2}}|^{\frac{1}{HK}}\right),$$

where C_1 , C_2 are strictly positive constants and we defined

$$\Theta_{\varepsilon}(u,v) = E(B_{u+\varepsilon}^{H,K} - B_u^{H,K})(B_{v+\varepsilon}^{H,K} - B_v^{H,K}).$$

We compute $\Theta_{\varepsilon}(u, v) = (a_{\varepsilon}(u, v) + b_{\varepsilon}(u, v))$ where

$$a_{\varepsilon}(u,v) = \frac{1}{2^{K}} [((u+\varepsilon)^{2H} + (v+\varepsilon)^{2H})^{K} - ((u+\varepsilon)^{2H}v^{2H})^{K} - ((v+\varepsilon)^{2H} + u^{2H})^{K} + (u^{2H} + v^{2H})^{K}]$$

and

$$b_{\varepsilon}(u,v) = \left[(u+\varepsilon-v)^{2HK} + (u-\varepsilon-v)^{2HK} - 2(u-v)^{2HK} \right]$$
$$\lim_{\varepsilon \to 0} \frac{b_{\varepsilon}(u,v)}{2^{2HK}} = 0 \quad \text{and} \quad \left| \frac{b_{\varepsilon}(u,v)}{2^{2HK}} \right| \le C$$

Using Taylor expansion and noticing that $a_0(u, v) = 0$ $\frac{da_{\varepsilon}(u, v)}{d\varepsilon} = 0$ for every u, v and

$$\frac{da_{\varepsilon}(u,v)}{d^{2}\varepsilon^{2}} = \frac{H^{2}K(K-1)}{2^{K-3}} \left(u^{2H} + v^{2H}\right)^{K-1} u^{2H-1} v^{2H-1},$$

we obtain for every u, v,

$$a_{\varepsilon}(u,v) = \frac{H^2 K(K-1)}{2^{K-3}} \left(u^{2H} + v^{2H} \right)^{K-1} u^{2H-1} v^{2H-1} \varepsilon^2 + \sigma(\varepsilon^2).$$

This shows that

$$\lim_{\varepsilon \to 0} \frac{a_{\varepsilon}(u, v)}{\varepsilon} = 0 \quad \text{for every} \quad u, v.$$

Remark 3.1. The above proposition distinguishes a special case which seems to be more interesting than the other cases: the case $KH = \frac{1}{2}$. If k = 1, then $H = \frac{1}{2}$ and we deal with a wiener process. If $K \neq 1$, we have an example of a Gaussian process, having non-trivial quadratic variation which equals $2^{1-t}t$, so, modulo a constant, the same as Brownian motion.

Denote by W a standard Wiener processes.

Proposition 3.3. The process $B^{H,K} + W$, restricted to each compact interval [0, T], is equivalent in law with a Wiener process if $HK > \frac{3}{4}$.

Proof. If X is a gaussian process with covariance R(t, s) such that $\frac{\partial^2 R}{\partial_s \partial_t} \in L^2([0, T])$, the proces $Y_t = X_t + W_t$ is a semi-martingale equivalent in law to a Wiener process.

Concerning the process $B^{H,K}$, note that for $s \leq t$,

$$\frac{\partial^2 R}{\partial_s \partial_t}(s,t) = \frac{1}{2^K} (2HK(K-1)(t^{2H} + s^{2H})^{K-2}(st)^{2H-1} + 2HK(2HK-1)(t-s)^{2HK-2})$$

since

$$(t^{2H} + s^{2H})^{K-2} \le 2^{K-2} (st)^{H(K-2)}$$

The first part above belongs to $L^2([0,T])$ for $HK > \frac{1}{2}$, and the second part for $HK > \frac{3}{4}$.

For any $K \in (0,2)$, let $X^K = (X_t^K, t \ge 0)$ be a Gaussian process defined by $X_t^K = \int_0^\infty (1 - e^{-rt}) r^{\frac{-1+K}{2}} dW_r$, where $(W_t, t \ge 0)$ is a standard Brownian motion.

This process was introducted in [11] for $K \in (0, 1)$ in order to obtain a decomosition of the bifractional Brownian motion with $H \in (0, 1)$ and $K \in (0, 1)$.

Proposition 3.4. Let $B^{H,K}$ a bifractional Brownian motion with parameters $H \in (0,1)$ and $K \in (0,1)$, $B^{H,K}$ be a bifractional Brownian motion with Hurst parameter $HK \in (0,1)$ and $W = (W_t, t \ge 0)$ a standart Brownian motion.

Let X_t be the process given by (1). If we suppose that $B^{H,K}$ and W are independent's, then processes $\{Y_t = C_1 X_{t^{2H}}^K + B_t^{H,K}, t \ge 0\}$ and $\{C_2 B_t^{H,K}, t \ge 0\}$ have the same distribution, where $C_1 = \sqrt{\frac{2^{-K}K}{\Gamma(1-K)}}$ and $C_2 = 2^{\frac{1-K}{2}}$.

Proof. [11]

Proposition 3.5. Assume $H \in (0, 1)$ and $K \in (1, 2)$ with $HK \in (0, 1)$. Let $B^{H,K}$ be bifractional Brownian motion and $W = (W_t, t \ge 0)$ a standard Brownian motion. Let $X^{K,H}$ the process defined by $X_t^{HK} = X_{t^{2H}}^K t \ge 0$. If we suppose that B^{HK} and W are independants, then process $B_t^{H,K} = aB_t^{HK} + bX_t^{H,K}$ where $a = \sqrt{2^{1-K}}$ and $b = \sqrt{\frac{K(K-1)}{2^K\Gamma(2-K)}}$ is a centered Gaussian process with covariance function

$$cov(B_t^{H,K}, B_s^{H,K}) = \frac{1}{2^K} \left[(t^{2H} + s^{2H})^K - |t - s|^{2HK} \right]$$

Proof. The process defined by $B_t^{H,K} = aB_t^{HK} + bX_t^{H,K}$ is a centered Gaussian process.

On the other hand, its covariance functions is given by

$$\begin{split} & cov(B_t^{H,K}, B_s^{H,K}) = E(B_t^{H,K} B_s^{H,K}) = a^2 E(B_t^{HK} B_s^{HK}) + b^2 E(X_t^{H,K} X_s^{H,K}) \\ &= a^2 (t^{2HK} + s^{2HK} - |t - s|^{2HK}) + \frac{1}{2^K} ((t^{2H} + s^{2H})^K - t^{2HK} - s^{2HK}) \\ &= \frac{1}{2} ((t^{2H} + s^{2H})^K - |t - s|^{2HK}). \end{split}$$

64

Thus the bifractional Brownian motion $B^{H,K}$ with parameter $H \in (0,1)$ and $K \in (1,2)$ such $HK \in (0,1)$ is well defined and it has a decomposition as a sum of fractional Brownian motion and a absolutely continuous process $X^{H,K}$.

Assume that 2HK = 1, Russo and Tudor in [12] proved that if $K \in (0, 1)$, the process $B^{H,K}$ is not a semi-martingale.

In the case when 1 < K < 2, $B^{H,K}$ is a semi-martingale because we have a decomposition of this process as a sum of a brownian motion $B^{\frac{1}{2}}$ and a finite variation process $X^{H,K}$

Proposition 3.6. For $K \in (0, 1]$ and $H \in (0, 1)$, the process $B^{H,K}$ is not a Markov process.

Proof. Recall that a Gaussian process with covariance R is Markovian, if, and only if,

$$R(s, u)R(t, t) = R(s, t)R(t, u)$$

for every $s \le t \le u$. it is straightforward to check that $B^{H,K}$ does not satisfy this condition.

Proposition 3.7. For all constants 0 < a < b, $B_0^{H,K}$ is strongly locally φ -non deterministic on I = [a, b] with $\varphi(r) = r^{2HK}$. That is, there exist positive constants $C_{2,1}$ and r_0 such that for all $t \in I$ and all $0 < r \le \min(\{t, r_0\})$,

$$Var\left(B_0^{H,K}(t)/B_0^{H,K}(s)\right): s \in I, r \le |s-t| \le r_0\right) \ge C_{2,1}\varphi(r).$$

Proof. We consider the centered stationary Gaussian process $Y_0 = \{Y_0(t), t \in R\}$ defined through the Lamperti's transformation

$$Y_0(t) = e^{-HKt} B_0^{H,K} e^t, \qquad \forall t \in \mathbb{R}$$

 $r(t) = E(Y_0(0)Y_0(t))$ is given by

$$r(t) = \frac{1}{2^K}((e^{2Ht} + 1)^K - |e^t - 1|^{2HK}).$$

Hence r(t) is an even function and by Taylor expansion, we verify that $r(t) = 0(e^{-\beta t})$ as $t \to \infty$ where $\beta = \min\{H(2-k), HK\}$. Thus $r(.) \in L^1(R)$. On the other hand, by using Taylor expansion again, we also have $r(t) \sim 1 - \frac{1}{2^K} |t|^{2HK}$ as $t \to 0$ (3).

By Bochner's theorem, Y_0 has the following stochastic integral representation $Y_0(t) = \int_R e^{i\lambda t} W(d\lambda) \ t \in R$, where w is a complex Gaussian measure Δ whose Fourier transform is r(.)

$$f(\lambda) = \frac{1}{\Pi} \int_0^\infty r(t) \cos(\lambda t) dt.$$

So that $f(t) \sim C_{2,2}|\lambda|^{-(1+2HK)}$ as $\lambda \to \infty$; where $C_{2,2} > 0$ is an explicit constant depending only on HK. Hence, by a result of Cuzick, Xiao, $Y_0 = \{Y_0(t), t \in R\}$ is strongly locally φ -nondeterministic on any interval J = [-T, T] with $\varphi(r) = r^{2HK}$ in the sense that exist positive constants δ and $C_{2,3}$ such that exist for all $t \in [-T, T]$ and all $r \in (0, |t| \land \delta)$,

$$Var(Y_0(t)/Y_0(s)): s \in J, r \le |s-t| \le \delta) \ge C_{2,3}\varphi(r).$$

Now we prove the strong local nondeterminism of $B_0^{H,K}$ on I. Note that $B_0^{H,K}(t) = t^{HK}Y_0(lnt)$ for all t > 0. We choose $r_0 = a\delta$. Then all s, $t \in I$ with $r \le |s-t| \le r_0$. We have

$$\frac{r}{b} \le |lns - lnt| \le \delta.$$

For (4), (5) and $r < r_0 t \in [a, b]$,

$$Var\left(B_0^{H,K}(t)/B_0^{H,K}(s)\right): s \in I, r \leq |s-t| \leq r_0\right)$$
$$Var\left(B_0^{H,K}(t)/B_0^{H,K}(s)\right) = Var\left(t^{HK}Y_0(lnt)/s^{HK}Y_0(lns)\right)$$
$$\geq a^{2HK}Var\left(Y_0(lnt)/Y_0(lns): s \in I, \frac{r}{b} \leq |lns - lnt| \leq \delta\right) \geq C_{2,4}\varphi(r).$$

REFERENCES

- [1] E. ALOS, O. MAZET, D. NUALART: Stochastic Calculus with respect to Gaussian processes, Ann. Proba **29** (2001), 766-801.
- [2] ALOS, J.A. LEON, D. NUALART, STRATONOVICH: Calculus for fractional motion with Hurst parameter Taiwanere J. Math. 4 (2001), 609-632
- [3] A. AYACHE, D. WU, Y. XIAO: Asymptotic properties and Hansdorf dimensions of fractional Brownian Sheets, J. Fourrier Anal. Appl. 11 (2005), 407-439.
- [4] BA DEMBA BOCAR: On the fractional Brownien motion: Hausdorf dimension and Fourier expansion, International Journal of Advances in Applied Mathematical and Mechanics, 5(2) (2017), 53-59.

- [5] BA DEMBA BOCAR: Fractional operators and Applications to fractional martingal, International Journal of Advances in Applied Mathematical and Mechanics, **5**(3) (2018), 44-52.
- [6] BAUDOIN, D. NUALART: *Equivalence of Volterra processes*, Stochastic Processes and their Applications, **107**(2) (2003), 327-350.
- [7] C.M. BINGHAM, J. GOLDIE, L. TENGELS: *Regular variation Cambridge University Prers*, Cambridge, 1987.
- [8] A. BENASSI, P. BERTRAN, J. ISTAS: Identification of the hurst exponent of a step Multifractional Brownian motion, Statistical Inference for stochastic Process, 13 (2000), 101 -111.
- [9] C. HOUDRE AND J. VILLA: An example of infinite dimensional quasi-Helix, Contemporary Mathematics, (American Mathematical Society) **336** (2003), 195-201.
- [10] C.A. TUDOR, Y. XIAO: Sample path Properties of bifractional Brownian Motion, Bernoulli, 2007.
- [11] L. DECREUSEFOND, A.S. USTUNEL: Stochastic analysis of the fractional Brownian motion, Potentiel Anal. 10 (1999), 177-214.
- [12] P. LEI, D. NUALART: A decomposition of the bifractional Brownian motion, Math. Reports, 61 (2009), 67-74.
- [13] M. MAEJIMA, C.A. TUDOR: limits of the bifractional Brownian motion Stochastic Processes and some applications, Stochastics and Probability Letters, 79 (2009), 619-624.
- [14] F. RUSSO, C. TUDOR: On the bifractional brownian motion, Stochastics Processes and their Applications, **116** (2006), 830-856.
- [15] F. RUSSO, C. TUDOR: On the bifractional Brownian motion, Stoch. Process Appl., 116 (2006), 830-856.
- [16] S. SONG: Quelques conditions suffisantes pour qu'une semi-martingale soit une quasimartingale, Stochastic 16 (1986), 97-109.
- [17] X. BARDINA, K. ES SEBAIY: An extension of Bifractional Brownian motion, Communication on stochastic Analysis, 5 (2011), 333-340.

DEPARTMENT OF MATHEMATICS UNIVERSITY IBA DER THIAM OF THIES THIES, SENEGAL. Email address: dbba@univ-thies.sn