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ON THE PROPERTIES OF BIFRACTIONAL BROWNIAN MOTION
BA Demba Bocar

ABSTRACT. In this paper, we study several properties of the bifractional Brow-
nian motion introduced by Houdré and Villa.

1. INTRODUCTION

In mathematics, a self-similar object is exactly or approximately similar to a
part of it self.

Self-similarity is a major part of the mathematics.

On the one hand if you assume that you observe a self similar phenomens
with no structure.

On the other hand if you want to have a complete classification of self similar
fields then we can find in the literature a lot of counter-examples.

The self similarity and the stationarity of the increments are two main prop-
perties for which the fractional Brownian motion exhibited success as a model-
ing tool in engineering, mathematical finance, hydrology etc. ..

We will focus our attention to a gaussian process that generalize the fractional
Brownian motion, called bifractional Brownian motion. Recall that the fBm is
the only Self-similar Gaussian process with stationary increments starting from
zero for small increments, in models such as turbulence, fBm seems a good
model but inadequate for large increments. For this reason, in [29] the authors
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introduced an extension of the fMb keeping some properties (Self-similarity,
gaussianity, stationarity for small increments) but enlarged the modeling tool
kit.

We will pay a special attention to the case HK = ; (and K # 1, if K = 1 then
H = % and we have a Brownian motion).

In this case we will show that B”-X admits a non-trivial quadratic variation
equal to constant time t, this different from the fractional situation.

Let us summarize the results proved below

- Al though 2HK = 1 implies H > 1, the process B¥-¥ seems in this case
to have similar properties as the fBm H < % it is short-memory.

- Nevertheless, having finite energy, it is also linked to the fBm with pa-
rameter bigger than 1.

Russo and Tudor have established some properties on the strong variations,
local times and stochastic calculus of real-valued bifractional Brownian motion.

An interesting property that deserves to be recalled in the fact, when HK = 1,
the quadratic variation of this process on [0, ¢] is equal to a constant time t. This
is really remarkable since as far as we know this is the only Gaussian Self -
similar process with quadratic variation besides brownian motion.

Taking into acount this property, it is natural to ask if the bifractional Brown-
ian motion B#-X with HK = 1 shares other properties with Brownian motion.

2. PRELIMINARIES

Definition 2.1. The bifractional brownian motion (Bf - ) is a centered Gauss-
>0

ian process, starting from gzero, with covariance

1
RH’K<t,S) — 2_K [(t2H + SQH)K . |t o S|2HK] ’

with H € (0,1) and K € (0, 1].

Note that, if K = 1 then B! is a fractional Brownian motion with Hurst

parameter H € (0, 1).
' L o2(t) oy
if o2(t) := E(Bgrf _ BtH,K)z), then ll_r%m — 91-K_
Let T" > 0. For every s, t €[0, T], we have

2_K|t . S|2HK S E(BtI{,K . Bf,K)Z S 2—K’t— S|2HK.
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Inequality shows that the process B#¥ is a quasi-helix in the sense of J.P. Ka-
hane for various properties and applications of quasi-helices).
For every H € (0,1) and K € (0, 1),

H,K H,K
pHE _ pH

lim sup | | = +oo,

£20seto—e, to+e] t—to
with probability one for every ¢,.
The process is HK-self-similar.
The process is Holder continuous of order § for any § < HK. This follows
from the Kolmogorov criterium.

3. SOME PROPERTIES OF BIFRACTIONAL BROWNIAN MOTION

Proposition 3.1. Let X a bifractional Brownian motion with index HK then
1. B((X(t) — X(5))?) < 2|t — s|*7K,
2. X is locally Holder continuous for every exponent 0 < r <HK.
3. At every point t the pointwise Holder exponent of X is HK.

Proof.
1. In the beginnin

B(X () = X ()2 = 21K |t — sf21K 4 (121K 4 5|21 _ 1=K (gt |2t
Since (|t|*71E +|s|2HE —21-K(|¢]2H 4| s|>)K) is non-negative by concavity:
BE(X(t) = X(s))* < 2'7%|t — 5"

2. the theorem proves that X is a least HK locally Holder continuous.
3. It remains to prove that index HK is the best Holder exponent. Fix a
point t. Let 02 = E(X(t + 1) — X (1))
There exists a positive constant C such that o,, > Cn~X asn — +o0.
Then one can show that for » >HK,
|z
lim ————— = 0(d).
neroo X (£ + 1) X (t) (4)
The limit is also true in a convergence in probability sense. One can find
a sequence
1 s

—+—=0 suchthat lim

W _¢ as
" nvioo X (£ + D)X (1) s
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This yields that
X+ -X()
lim L

n——+o0o |%|'Y

=400 a.s.

and that the pointwise Holder exponent is lower than every H > H
almost surely.

One can conclude that this exponent is bigger than H' < H almost
surely.

U
Proposition 3.2. Let (B/"* )ico,r) be a bifractional motion with parameters H ¢
(0;1) and K € (0,1). Then

HEK(K) _ . 1 K (K) LK . B 1
(B =0 i a>—m and [BYF]T = 2K i o=,

where oy = E|N|#x. N being a standard normal random variable.
Proof. We define
1 t
cen = - [ 1B~ BI< s
€Jo

_1 _
It suffices to show than CZ% (t) converges in L2() as £ — 0 to 2'ax pHK". So,

BB — Bk = (E|BAK - BHK )™ o oK,
and therefore 1
lim E(CF® (1)) = 2k pHK'.
To obtain the conclusion it suffices to show that
lim F(C27 (1)? = (27 G HIC)2

We have

= 2 [t HE HK 1
E(OsHK(t))2 - ?/0 /0 E|Bu-i’-s _B{L{’K'Bvﬁia _BE’K|HK7

O (u,v _ O.(u,v)\° 1
E |N1‘HK|#N1+21 KNQ\/1—< ( )) ’HK :

c2HK 0282HK

where C, C; are strictly positive constants and we defined

@s(ua U) - E<B1Ij-‘£5( - Bf,K)(Bﬁf - BE’K)'
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We compute O, (u,v) = (a.(u,v) + b.(u,v)) where

0 (u,v) = QLK[((u F e 4 (v e) K ((ut 2) YK — (v 4 )

4 uZH)K + (UQH + U2H)K]

and
bo(u,v) = |(u+e—0)*™ 4 (u—e—0)*" —2(u—0v)*""
. bo(u,v) be(u,v)
iy~ =0 and e [ < ©
Using Taylor expansion and noticing that ag(u,v) = 0 % = 0 for every u,
v and

dac(u,v) H2K(K —1) 2H 2H\K-1 ofg—1 2H-1
22 9K—3 (u +v ) u v
we obtain for every u, v,

Y

H2K<K_ 1) (qu +U2H)K—1 2H—1 2H-1_2 +U(€2)_

This shows that

i 22 0)

=0 forevery u,v.
e—0 £

g

Remark 3.1. The above proposition distinguishes a special case which seems to be
more interesting than the other cases: the case KH = % Ifk =1, thenH = % and
we deal with a wiener process. If K= 1, we have an example of a Gaussian process,
having non-trivial quadratic variation which equals 2'~'t, so, modulo a constant,
the same as Brownian motion.

Denote by W a standard Wiener processes.

Proposition 3.3. The process B + W, restricted to each compact interval [0, T],
is equivalent in law with a Wiener process if HK > 3.

Proof. If X is a gaussian process with covariance R(¢, s) such that % e L*([0,T)),
the proces Y; = X, + W, is a semi-martingale equivalent in law to a Wiener pro-
cess.

Concerning the process BH-X note that for s < ¢,

2
g—g(s, t) = QLK(QHK(K—l)(tQHJrsQH)K2(st)2H1+2HK(2HK—1)(1§—5)2HK2)
sUt
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since
<t2H + S2H)K*2 < 9K~2 (st)H(KfQ) .

The first part above belongs to L? ([0, 7]) for HK > 3, and the second part for
HK > 3.
For any K € (0,2), let XX = (XX t > 0) be a Gaussian process defined by
XK= [TA—e)r —2" dW,, where (W,,t > 0) is a standard Brownian motion.
This process was introducted in [11] for K € (0, 1) in order to obtain a deco-
mosition of the bifractional Brownian motion with # € (0,1) and K € (0,1). O

Proposition 3.4. Let B:X a bifractional Brownian motion with parameters H €
(0,1) and K € (0,1), B®X be a bifractional Brownian motion with Hurst param-
eter HK € (0,1) and W = (W,,t > 0) a standart Brownian motion.

Let X, be the process given by (1). If we suppose that B*-%X and W are indepen-
dent’s, then processes {Y; = ClXtIQ(H + BtH’K,t > 0} and {CgBtH’K, t > 0} have the

-K

same distribution, where C| = m and Cy = 2'5,

Proof. [11] O
Proposition 3.5. Assume H € (0,1) and K € (1,2) with HK € (0,1). Let BX be
bifractional Brownian motion and W = (W;,t > 0) a standard Brownian motion.

Let X*™ the process defined by X{'* = X[,t > 0. If we suppose that B"¥ and
W are independants, then process B"™ = aBFX + b X" where a = v/21-K and

K(K—1) . . . . .
b= SKT(2 — 1) KIE 2= [?) is a centered Gaussian process with covariance function
1
HK Ky
con(B{ B = S [P+ ) — o — ).

Proof The process defined by B/"* = aBHX + bX/"* is a centered Gaussian
process.
On the other hand, its covariance functions is given by

cou(B"", B") = E(B,"" BJ") = ®E(B"" B]"™) + ¥ E(X"" X[IF)

1
— a2(t2HK +52HK o |t o S‘QHK) i 2_K<<t2H + S2H)K o t2HK o S2HK)

1
— 5((t2H +52H)K o |t o S|2HK).
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Thus the bifractional Brownian motion B*¥ with parameter H € (0,1) and
K € (1,2) such HK € (0,1) is well defined and it has a decomposition as a sum
of fractional Brownian motion and a absolutely continuous process X %,

Assume that 2HK = 1, Russo and Tudor in [12] proved that if K € (0, 1), the
process B is not a semi-martingale.

In the case when 1 < K < 2, B%K is a semi-martingale because we have a
decomposition of this process as a sum of a brownian motion Bz and a finite
variation process X 1K O

Proposition 3.6. For K € (0,1] and H € (0,1), the process B** is not a Markov
process.

Proof. Recall that a Gaussian process with covariance R is Markovian, if, and
only if,

R(s,u)R(t,t) = R(s,t)R(t,u)

for every s <t < u. it is straighforward to check that B#-X does not satisfy this
condition. 0

Proposition 3.7. For all constants 0 < a < b, B{"™ is strongly locally ¢-non
deterministic on I = [a, b] with p(r) = r*X_ That is, there exist positive constants
Cs1 and rg such that for allt € [ and all 0 < r < min({¢,ro}),

Var (B (0)/ B () 5 € Lr <|s =] < o) > Cop(r).

Proof. We consider the centered stationary Gaussian process Yy = {Yy(¢),t € R}
defined through the Lamperti’s transformation

Yo(t) = e HEIB[I Rt vt e R

r(t) = E(Y5(0)Yo(t)) is given by
1
H(t) = S (14 D — Je! — 121E),
Hence r(t) is an even function and by Taylor expansion, we verify that r(¢) =
0(e=#*) as t — oo where 8 = min{H (2 — k), HK}. Thus r(.) € L*(R). On the
other hand, by using Taylor expansion again, we also have r(t) ~ 1 — 2—K|t|2H K
ast — 0 (3).
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By Bochner’s theorem, Y; has the following stochastic integral representation
Yo(t) = [pe™W(dX) t € R, where w is a complex Gaussian measure A whose
Fourier transform is r(.)

f) = T /000 r(t)cos(At)dt.

So that f(t) ~ Cya|\|[~+2HE) as X\ — oo; where Cy, > 0 is an explicit constant
depending only on HK. Hence, by a result of Cuzick, Xiao, Y; = {Y;(t),t € R}
is strongly locally ¢-nondeterministic on any interval J = [T, 7] with ¢(r) =
r?HK in the sense that exist positive constants § and C, 3 such that exist for all
t € [-T,T)and all r € (0, [¢t| A ),

Var (Yo(t)/Yo(s)) : s € Jor <|s—t] <) > Casp(r).

Now we prove the strong local nondeterminism of B."* onI. Note that B"* (t) =
t11KY,(Int) for all t > 0. We choose ry = ad. Then all's, t € [ withr < |s—t| < 7.
We have

For (4), (5) and r <o t € [a, b],
Var (Bé{’K(t)/Bé{’K(s)) selr<|s—t < 7"0>
Var (Bgf’%) /Bé{’K(s))> = Var (75, (Int) /s"5 Yy (Ins))

> 21Ky <Yo(lnt)/Yb(lns) s € I,% < |ins — Int| < 5) > Caa0(r).
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