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ASYMPTOTIC PROPERTIES IN THE PROBIT-ZERO-INFLATED BINOMIAL
REGRESSION MODEL

LO Fatimata, BA Demba Bocar1, and DIOP Aba

ABSTRACT. Zero-inflated regression models have had wide application recently
and have provenuseful in modeling data with many zeros. Zero-inflated Bi-
nomial (ZIB) regression model is an extension of the ordinary binomial dis-
tribution that takes into account the excess of zeros. In comparing the probit
model to the logistic model, many authors believe that there is little theoretical
justification in choosing one formulation over the other in most circumstances
involving binary responses. The logit model is considered to be computationally
simpler but it is based on a more restrictive assumption of error independence,
although many other generalizations have dealt with that assumption as well.
By contrast, the probit model assumes that random errors have a multivariate
normal distribution. This assumption makes the probit model attractive be-
cause the normal distribution provides a good approximation to many other
distributions. In this paper, we develop a maximum likelihood estimation pro-
cedure for the parameters of a zero-inflated Binomial regression model with
probit link function for both component of the model. We establish the exis-
tency, consistency and asymptotic normality of the proposed estimator.

1. INTRODUCTION

Zero-inflated regression models mix a degenerate distribution with point mass
of one at zero with a simple regression model based on a standard distribu-
tion. Zero-infation can happen both with discrete data and continuous data
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(see [24], [20] and [17]). Here, we concentrate on the discrete case, specialy
on Zero-inflated Binomial (ZIB) regression model. [20] considered Zero-Inflated
Poisson (ZIP) models and also extended Lambert’s methodology to an upper
bounded count situation, thereby obtaining a ZIB model. He also incorporated
random intercepts into these models and used them to model insect counts in a
horticulture experiment. The ZIB regression model assumes the data are from
two states: a true zero state where the response always equals zero and a non
zero state where the response follows a Binomial distribution. Suppose we have
the response vector y = (y1, ..., yn)

′ where yi is the observed value of a random
variable Yi and n ∈ N∗ is the sample size. In the ZIB regression model we assume

(1.1) Yi ∼

0 with probability pi

B(ni, πi) with probability 1− pi,

where yi is the number of successes out of ni trials and πi is the probability
of success for the subject i. Again, the parameters p = (p1, . . . , pn)

′ and πi =

(π1, . . . , πn)
′ are modeled through logit link generalized linear models as:

log

[
pi

1− pi

]
= θ1 + θ2zi2 + . . .+ θpziq := θ′zi,

log

[
πi

1− πi

]
= β1 + β2xi2 + . . .+ βpxip := β′xi.

(1.2)

Here, β and θ are regression parameters and X and Z are corresponding design
matrices. [13] studied the asymptotics of the model 1.1 by considering the logit
link function for the two components of the model (binomial and zero inflation).
They established the consistency and asymptotic normality of the maximum like-
lihood estimator. [33] applied the ZIB model estimated by a quasi-likelihood
method to a biological control assay. This model was initially built to model
overdispersion generated by individual variability in the probability of success.

For other types of discrete outcomes, such as binary, multinomial or ordinal,
various single value inflated models were developed, including: zero-inflated
Bernoulli model ( [16]), zero-inflated binomial model ( [20] and [33]), zero-
inflated ordered probit model ( [21]), baseline or zero inflated multinomial
logit model ( [2], [14]), and middle category inflated ordered model ( [3]).
Similar extension has been made to incorporate inflation other than zero for
multinomial or ordinal outcomes ( [32]). The use of noncanonical link functions
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is not prohibited by the fact that they are more computationally complex. [10]
argued that, in some applications, the overall fit of the model as measured by
the p-value of the goodness-of-fit statistics can be improved significantly by the
use of a non-canonical link.

We use the probit link function for both binomial and excess of zero compo-
nents for the ZIB regression model 1.1. The aim is to evaluate the misspeci-
fication problem by mistakenly choosing the appropriate link function. We do
not introduce the probit model as a rival to the logistic model, but rather as an
alternative, in particular in the case of excess of zero in the sample. Experience
shows that in most situations the two approaches produce similar results al-
though some differences exist. This similarity is not necessarily sustained when
multivariate responses are used. Further research is needed to investigate the
advantages or disadvantages in using one model over the other in data mining
applications.

The use of the probit regression model dates back to [4]. Many other authors
have used the probit model in other applications with success; for example, [31]
compared the two models for estimating the strength of gear teeth. [30] used
probit link function for data mining applications. [19] applied probit analysis
in toxicological experiments. The probit model has also found popularity in
economics. [9] provides a survey of the early origins of the model.

The rest of this paper is organized as follows. In Section 2, we describe the
problem of ZIB regression model with probit link function, we propose an esti-
mation method adapted to this setting. In Section 3 we establish the asymptotic
propreties of the proposed estimator under some regularity conditions. A dis-
cussion and some perspectives are given in Section 4.

2. ZIB REGRESSION MODEL WITH PROBIT LINK FUNCTION

2.1. The model set-up and estimation procedure. Let (Y1,X1,W1), . . . ,

(Yn,Xn,Wn) be independent and identically distributed copies of the random
vector (Y,X,W) defined on the probability space (Ω,A,P). For every indi-
vidual i = 1, . . . , n, Yi is the number of successes out of ni trials and πi is
the probability of success for the subject i. Let Xi = (1, Xi2, . . . , Xip)

⊤ and
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Wi = (1, Zi2, . . . ,Wiq)
′ be random vectors of predictors or covariates (both cat-

egorical and continuous predictors are allowed). We shall assume in the follow-
ing that the Xi’s are related to the zero inflation, while the Wi’s are related to
the binomial component. Xi and Wi are allowed to share some components.
The ZIB regression model with probit link function is given by

(2.1) Yi ∼

0 with probability pi

B(ni, πi) with probability 1− pi
,

where the parameters p = (p1, . . . , pn)
′ and πi = (π1, . . . , πn)

′ are modeled
through probit link generalized linear models as:

probit(pi) = F (β1 + β2xi2 + . . .+ βpxiq) := F (β′xi),

probit(πi) = F (µ1 + µ2wi2 + . . .+ µpwip) := F (µ′wi),
(2.2)

where F is the cumulative distribution function of the standard normal distri-
bution.

The model (2.1) can be rewritten as follows

(2.3) P(Y = yi) =

πi + (1− πi)(1− pi)
ni if yi = 0

(1− πi)C
yi
ni
pyii (1− pi)

ni−yi if yi ∈ {1, . . . , n}
.

Let θ := (β′, µ′)′ denote the unknown k-dimensional (k = p + q) parameter
in the conditional distribution of Y given Xi and Wi. Now, the likelihood for θ
from the independent sample (Yi,Xi,Wi) (i = 1, . . . , n) is as follows:

Ln(θ) =
n∏

i=1

P(Yi = ki|Xi = xi,Wi = wi)

=
n∏

i=1

(F (µ′wi) + (1− F (µ′wi))(1− F (β′xi))
ni)ki

× ((1− F (µ′wi))C
Yi
ni
F (β′xi)(1− F (β′xi))

ni−Yi)1−ki ,

(2.4)

where ki = 1{Yi=0}.
We define the maximum likelihood estimator θ̂n := (β̂′

n, µ̂
′
n)

′ of θ as the solu-
tion (if it exists) of the k-dimensional score equation

(2.5) l̇n(θ) =
∂ln(θ)

∂θ
= 0,

where ln(θ) := logLn(θ) is the log-likelihood function. In the following, we shall
be interested in the asymptotic properties of the maximum likelihood estimator
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θ̂n. We will however obtain consistency and asymptotic normality results for the
whole θ̂n. Before proceeding, we need to set some further notations.

2.2. Some further notations. Define first the (p× n) and (q × n) matrices

X =


1 1 . . . 1

X12 X22 . . . Xn2

...
... . . . ...

X1p X2p . . . Xnp

 and W =


1 1 . . . 1

W12 W22 . . . Wn2

...
... . . . ...

W1p W2p . . . Wnp

 ,

and let Z be the (k × 2n) block-matrix defined as

Z =

[
X 0pn
0qn W

]
,

where 0ab denotes the (a × b) matrix whose components are all equal to zero
(for any positive integer values a, b). Let ki(θ) = F (µ′wi)(hi(β))

−ni+1 + (1 −
F (µ′wi)hi(β), ∀i = 1, . . . , n where hi(β) = 1 − F (β′xi). Let also C(θ)

= (Cj(θ))1≤j≤2n be the 2n-dimensional column vector defined as

C(θ) = (A1(θ), . . . , An(θ);B1(θ), . . . , Bn(θ))
′, i = 1, . . . , n,

where

Ai(θ) =
kiwif(µ

′wi)hi(β)
−ni+1F (β′xi)

ni

ki(θ)
− (1− ki)

wif(µ
′wi)

1− F (µ′wi)
,

Bi(θ) =
−kinixif(β

′xi)

F (µ′wi)ki(θ)
+ (1− ki)

xif(β
′xi)[𭟋i − niF (β′xi)]

F (β′xi)hi(β)
,

where f(.) is the density function associate to F (.).
Then, simple algebra shows that the score equation can be rewritten as

l̇n(θ) = ZC(θ) = 0.

If H = (Hij)1≤i≤a,1≤j≤b denotes some (a × b) matrix, we will denote by H•j it’s
j-th column (j = 1, . . . , b) that is, H•j = (H1j, . . . , Haj)

′. Then, it will be useful
to rewrite the score vector as

l̇n(θ) =
2n∑
i=1

Z•jCj(θ).
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We shall further note l̈n(θ) the (k×k) matrix of second derivatives of ln(θ), that is
l̈n(θ) =

∂2ln(θ)
∂θ∂θ′

. Let D(θ) = (Dij(θ))1≤i,j≤2n be the (2n× 2n) block matrix defined
as

D(θ) =

[
D1(θ) D3(θ)

D3(θ) D2(θ)

]
,

where D1(θ),D2(θ) and D3(θ) are (n× n) diagonal matrices, with i-th diagonal
elements (i = 1, . . . , n) respectively given by

D1,ii(θ)

=
ki(θ)w

2
i hi(β)

−ni+1F (β′xi)[f
′(µ′wi)ki(θ)− f (2)(βxi)(hi(β)

−ni+1 − hi(β)]

k2i (θ)

−w2
i (1− ki(θ))

[f ′(µwi)(1− F (µ′wi)) + f (2)(µ′wi)]

(1− F (µ′wi))2

D2,ii(θ)

=
−ki(θ)nixi

F (µ′wi
[xif(βxi)ki(θ)− (ni + 1)x2i f

(2)(β′xi)(F (µ′wi)hi(β)
ni − (1− F (µ′wi))]

+ (1− ki(θ))
[x2

iF (β′xi)hi(β)(zif
′(β′xi)− nif

′(β′xi)F (β′xi)

(F (β′xi)hi(β))2
− (1− ki(θ))

· nif
(2)(β′xi)) + xif(β

′xi)(zi − niF (β′xi)(xif(β
′xi)hi(β)− xif(β

′xi)F (β′xi))

(F (β′xi)hi(β))2

D3,ii(θ)

=
−kiwif(µ

′wi)ki(θ)[(−ni + 1)xihi(β)
−niF (β′xi) + xif(β

′xi)hi(β)
−ni+1)

k2i (θ)

− k′i(θ)hi(β)
−ni+1F (β′xi)]

k2i (θ)
.

Then, some algebra shows that l̈n can be expressed as

l̈n(θ) = −ZD(θ)Z′.

Note that the size of C(θ),Z and D(θ) depends on n. However, in order to
simplify notations, n will not be used as a lower index for these vector and
matrices. In the next section, we turn to the asymptotic theory for the proposed
estimator.
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3. ASYMPTOTIC THEORY

We first state some regularity conditions that will be needed to study the
asymptotic theory.

C1. The covariates are bounded that is, there exist compact sets G ⊂ Rp and
H ⊂ Rq such that Xi ∈ G and Wi ∈ H for every i = 1, 2, . . . For every
i = 1, 2, . . ., j = 2, . . . , p, k = 2, . . . , q, var[Xij] > 0 and var[Wik] > 0. For
every i = 1, 2, . . ., the Xij (j = 1, . . . , p) are linearly independent, and
the Wik (k = 1, . . . , q) are linearly independent.

C2. Let (β′
0, µ

′
0)

′ denote the true parameter value. β0 and µ0 lie in the interior
of known compact sets G ⊂ Rp and H ⊂ Rq respectively.

C3. The Hessian matrix l̈n(θ) is negative definite and of full rank, for every
n = 1, 2, . . . Let λn and Λn be respectively the smallest and largest eigen-
values of ZD(θ0)Z′. There exists a finite positive constant c2 such that
Λn/λn < c2 for every n = 1, 2, . . .

C4. Let A denote a k × k matrix such that ∥A∥ = max1≤i≤k |λi|.
C5. The function f is continuous and twice differentiable.

Now we establish rigorously the existence, consistency and asymptotic normal-
ity of the maximum likelihood estimator θ̂n in model (2.1). We prove the fol-
lowing results:

Theorem 3.1 (Existence and consistency). Under the conditions C1-C5, The max-
imum likelihood estimator θ̂n exists almost surely as n → ∞ and converges almost
surely to θ0, if and only if λn tends to infinity as n → ∞.

Proof. The following lemma essentially provides an intermediate technical result
(see [13] for its proof). □

Lemma 3.1. Let ϕn(θ) : Rk −→ Rk be defined as

ϕn(θ) = θ + (ZD(θ0)Z′)−1l̇n(θ).

Then there exists an open ball B(θ0, r) = {θ ∈ Rk; ∥θ− θ0∥ < r} (with r > 0) such
that ϕn satisfies the Lipschitz condition on B(θ0, r) that is,

∥ϕn(θ)− ϕn(θ̃∥ ≤ c∥θ − θ̃∥ for all θ, θ̃ ∈ B(θ0, r), 0 < c < 1.
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Proof. Let γn be defined as γn(θ) = θ − ϕn(θ) = −(ZD(θ)Z′)l̇n(θ). Then γn(θ0)

converges almost surely to 0 as n → ∞. Note that

γn(θ0) =

(
1

n
l̈n(θ0)

)−1

×
(
1

n
l̇n(θ0)

)
.

The condition C3 implies that, ( 1
n
l̈n(θ0))

−1 converges to a matrix
∑

. Then,

1

n
l̇n(θ0) =

1

n
ZC(θ0) =



1
n

∑n
i=1Xi1Ai(θ0)

...
1
n

∑n
i=1XipAi(θ0)

1
n

∑n
i=1Wi1Bi(θ0)

...
1
n

∑n
i=1WiqBi(θ0)


converges almost surely to 0 as n → ∞. Indeed: for all i = 1, . . . , n and j =

1, . . . , p we have

E [XijAi(θ0)] = E [E(XijAi(θ0)|Xi,Wi)] = E [XijE(Ai(θ0)|Xi,Wi)] ,

where

E(Ai(θ0)|Xi,Wi)

= E[ki ×
wif(µ

′wi)hi(β)
−niF (β′xi)

ki(θ)
− (1− ki)

wif(µ
′wi)

1− F (µ′wi)
|Xi,Wi]

=
wif(wiµ)hi(β)

−niF (xiβ)

ki(θ)
E[ki|Xi,Wi]− E[(1− ki)|Xi,Wi]

wif(wiµ)

1− F (wiµ)
|Xi,Wi].

We have

E(Ji|Xi,Wi) = P(Yi = 0|Xi,Wi)

= pi + (1− πi)
mi(1− pi)

= F (β′xi) + (1− F (µ′wi)
−ni(1− F (β′xi)

= F (β′xi) + (1− F (µ′wi)
−nihi(β),

with

E[(1− Ji)Zi|Xi,Wi] = ni(1− pi)πi = niF (µ′wi)hi(β).
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Then, we obtain E(Ai(θ0)|Xi,Wi) = 0. Similarly, we show that E(Bi(θ0)|Xi,Wi) =

0. Moreover, we have

Var(WiqBi(θ0))

= E(Var(WiqBi(θ0))|Xi,Wi)] + Var[E(WiqBi(θ0))|Xi,Wi]

= E2
iq[Var(Bi(θ0)|Xi,Wi)]

= E2
iq(

nixif(β
′xi)

F (µ′wi)ki(θ)
+

xif
′(β′xi)zi − niF (β′xi))

F (β′xi)hi(β)
)]2Var(ki|Xi,Wi)]

≤ E2
ik(

nixif(β
′xi)

F (µ′wi)ki(θ)
+

xif
′(β′xi)zi − niF (β′xi))

F (β′xi)hi(β)
)2 = c.

The conditions C1, C2 and C3 implie that c < ∞, then
n∑

i=1

Var(Ai(θ0)

i2
≤ c

n∑
i=1

1

i2
≤ ∞.

Kolmogorov’s strong law of large numbers ensures that, as n → ∞,

1

n

n∑
i=1

{XijAi(θ0)− E(XijAi(θ0))} =
1

n

n∑
i=1

Ai(θ0)Xij → 0

Finaly, as n → ∞ 1
n
l̇n(θ0) and γn(θ0) converge almost surely to 0. By using

similar arguments we proove that, 1
n

∑n
i=1WiqBi(θ0) converges almost surely to

0 as n → ∞.
Let ϵ > 0, the almost surely convergence of γn(θ0) implies then for almost

every ω ∈ Ω, there exists an integer value n(ϵ, ω) such that fo any n ≥ n(ϵ, ω),
∥γn(θ0)∥ ≤ ϵ or equivalently, 0 ∈ B(γn(θ0), ϵ). In particulary, let ϵ = (1 − c)s

with 0 < c < 1 such as in Lemma 3.1. Since γn satisfies the Lipschitz condition,
the Lemma 3.1 ensures that there exists an element of B(θ0, s) (let denote this
element by θ̂n) such that γn(θ̂n) = 0, that is

(ZD(θ0)Z′)−1 × l̇n(θ̂n) = 0.

The condition C3 implies that l̇n(θ̂n) = 0 and that θ̂n is the unique maximizer
of ln. To summarize, we have shown that for almost every ω ∈ Ω and for every
s > 0, there exists an integer value n(s, ω) such that if n ≥ n(s, ω) then the
maximum likelihood estimator θ̂n exists, and ∥θ̂n−θ0∥ ≤ s (that is, θ̂n converges
almost surely to θ0).

This concludes the proof. □
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We now turn to the convergence in distribution of the proposed estimator,
which is stated by the following theorem:

Theorem 3.2 (Asymptotic normality). Assume that the conditions C1-C5 hold
and that θ̂n converges almost surely to θ0. Let

∑̂
n = ZD(θ̂n)Z′ and Ik denote

the identity matrix of order k. Then Σ̂
1
2
n (θ̂n − θ0) converges in distribution to the

Gaussian vector N (0, Ik).

Proof. A Taylor expansion of the score function is as

0 = l̇n(θ̂n) = l̇n(θ0) + l̈n(θ̃n)(θ̂n − θ0)

where θ̃n lies between θ̂n and θ0, and thus l̇n(θ0) = −l̈n(θ̃n)(θ̂n − θ0). Let Σ̃n =

−l̈n(θ̃n) = ZD(θ̃n)Z′ and Σn,0 = ZD(θ0)Z′. Now

(3.1) Σ̂
1
2
n (θ̂n − θ0) =

[
Σ̂

1
2
n Σ̃

1
2
n

] [
Σ̃

1
2
nΣ

1
2
n,0

]
Σ

1
2
n,0

[
Σ̃n(θ̂n − θ0)

]
.

The two terms in brackets in (3.1) converge almost surely to Ik. To see this, we
show for example that ∥Σ̃− 1

2
n Σ

1
2
n,0− Ik∥ −→ 0 almost surely as n → ∞. First, note

that

∥Σ̃− 1
2

n Σ
1
2
n,0 − Ik∥ = ∥Σ̃− 1

2
n

(
Σ

1
2
n,0 − Σ̃

1
2
n

)
∥

≤ ∥Σ̃
1
2
n∥∥Σ

1
2
n,0 − Σ̃

1
2
n∥

≤ Λ
1
2
n∥Σ̃

1
2
n∥∥Λ

− 1
2

n

(
Σ

1
2
n,0 − Σ̃

1
2
n

)
∥

(3.2)

and

Λ−1
n ∥Σn,0 − Σ̃n∥ = Λ−1

n ∥Z(D(θ0)−D(θ̃n))Z′∥.

Note also that θ̂n converges almost surely to θ0 (that is, for every w ∈ Ω̃, where
Ω̃ ⊂ Ω and P(Ω̃) = 1). Let w ∈ Ω̃. By the same arguments as in the proof of
Lemma 3.1, for every ϵ > 0, there exists a positive n(ϵ, w) ∈ N such that if n ≥
n(ϵ, w), then Λ−1

n ∥Z(D(θ0)−D(θ̃n))Z′∥ < ϵ. Hence Λ−1
n ∥Z(D(θ0)−D(θ̃n))Z′∥ con-

verges almost surely to 0. By continuity of the map x → x
1
2 , ∥Λ− 1

2
n

(
Σ

1
2
n,0 − Σ̃

1
2
n

)
∥

converges also almost surely to 0. Moreover, for n sufficiently large, there exists

a positive constant A < ∞, such that almost surely, ∥Σ̃− 1
2

n ∥ ≤ A Λ
1
2
n

λ
1/2
n

< Ac
1
2
2 . It

follows from (3.2) and the condition C3 that ∥(Σ
1
2
n,0Σ̃

− 1
2

n )− Ik∥ converges almost
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surely to 0. It remains for us to show that Σ
− 1

2
n,0 (Σ̃n(θ̂n − θ0)) converges in dis-

tribution to N (0, Ik). Note that Σ
− 1

2
n,0 (Σ̃n(θ̂n − θ0)) = Σ

− 1
2

n,0

∑2n
j=1 Z•jCj(θ0). This

convergence holds if we can check the following conditions:

i) max1≤j≤2n Z′
•j(ZZ′)−1Z•j → 0 if n → ∞. Condition i) follows by noting

that

0 ≤ max
1≤j≤2n

Z′
•j(ZZ′)−1Z•j ≤ max

1≤j≤2n
∥Z•j∥2∥(ZZ′)−1∥ = max

1≤j≤2n

∥Z•j∥2

λ̃n

.

and that ∥Z•j∥2 is bounded above, by C1 and C2. Moreover, 1
λ̃n

→ 0 as
n → ∞.

ii) sup1≤j≤2n E
[
C2

j (θ0)1{|Cj(θ0)|>c}
]
→ 0 as n → ∞. Condition ii) follows

by noting that the components Cj(θ0) of C are bounded under C1, C2
and C3. Finally, for every i = 1, . . . , 2n, E(C2

j (θ0)) = V ar(Cj(θ0)) since
E(Cj(θ0)) = 0. If u ∈ {n + 1, . . . , 2n}, Cj(θ0) = Bh(θ0) with u = j − n

then

Var(Cj(θ0))

= Var(Bh(θ0))

= E(Var(Bh(θ0))|Xu,Wu)) + Var(E(Bh(θ0)|Xu,Wu))

= E(Var(Bh(θ0))|Xu,Wu).

Finally,

V ar(Bh(θ0)|Xh,Wh)

=

(
−kinixif(β

′xi)

F (µ′wi)ki(θ)
+ (1− ki)

xif(β
′xi)[zi − niF (β′xi)]

F (β′xi)hi

(β)

)2

× V ar(Ju|Xu,Wu)

=

(
−kinixif(β

′xi)

F (µ′wi)ki(θ)
+ (1− ki)

xif(β
′xi)[zi − niF (β′xi)]

F (β′xi)hi(β)

)2

× P(Yu = 0|Xu,Wu)(1− P(Yu = 0|Xu,Wu))

=

(
−kinixif(β

′xi)

F (µ′wi)ki(θ)
+ (1− ki)

xif(β
′xi)[zi − niF (β′xi)]

F (β′xi)hi(β)

)2

× (pu + (1− πu)
mu(1− pj))(1− pu)× (1− (1− πu)

mu) .

Therefore Var(Bu(θ0)|Xu,Wu) > 0 and for all j ∈ {1, . . . , n} under con-
ditions C1, C2 and C3, Var(Cj(θ0)) > 0.
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iii) inf1≤j≤2n E(C2
j (θ0)) > 0. Condition iii) follows by using similar argu-

ments, that is Var(Cj(θ0)) > 0 for all j = 1, . . . , 2n.

To summarize, we have proved that Σ
− 1

2
n,0 (Σ̃n(θ̂n−θ0)) converges in distribution

to N (0, Ik). This result, combined with Slutsky’s theorem and equation (3.1),

implies that Σ̂
1
2
n (θ̂n − θ0) converges in distribution to N (0, Ik).

This concludes the proof. □

4. DISCUSSION AND PERSPECTIVES

In this paper, we have proposed a procedure of maximum likelihood estima-
tion in the Zero-inflated Binomial regression model by using probit link func-
tion for both coponents of the model (1.1). We establish the asymptotic proper-
ties (existence, consistency and asymptotic normality of the proposed maximum
likelihood estimator).

Several open problems still deserve attention. First, some simulations to study
the proposed of the estimator in finite sample and application on real data.
It is sometimes of interest to make inference about the probability of event
P(Y = yi|W) across the whole range of the predictors W. The calculation
of simultaneous confidence bands for the probabilities {p(x),x ∈ X} thus con-
stitutes another issue of (both methodological and practical) interest. Another
issue of interest deals with the inference in the ZIB regression model with probit
link function, in a high-dimensional setting. We have established the theoretical
properties of our estimator in a low-dimensional setting that is, when a small
number of potential predictors are involved (this problem arises, for example,
in genetic studies where high-dimensional data are generated using microarray
technologies).
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