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CONSISTENCY OF THE DRIFT PARAMETERS ESTIMATES IN THE
FRACTIONAL BROWNIAN DIFFUSION MODEL AND ESTIMATION OF THE
HURST PARAMETER BY MAXIMUM LIKELIHOOD METHOD

BA Demba Bocar! and Thioune Moussa

ABSTRACT. In this paper, we study the problem of estimating the unknow pa-
rameters in a long memory process based on the maximum likelihood method.
We consider again a diffusion model involving fractional Brownian motion. Our
goal is to study the consistency of the drift parameter estimates depending on
the form of the model.

1. INTRODUCTION

The statistical estimation of the Hurst index is one of the fundamental prob-
lems in the literature of long-range dependent and self-similar processes the
phenomenon of long memory has been noted in nature long before the construc-
tion of suitable stochastic models: in fields as diverse as hydrology, economics,
chemistry, mathematics, physics, geosciences, and environmental sciences, it is
not un common for observations made for apart to be non-trivially correlated.
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The mathematical study of long memory processes was initiated by the work
of Mandelbrot on self-similar and other stationary stochastic processes that ex-
hibit long-range dependence. He built the fondations for the study of these pro-
cesses and he was the first one to mathematically define the fractional motion,
the the prototype of self-similar and long-range dependent processes.

The problem of the statistical estimation of the self-similarity and long mem-
ory parameter H is of great importance.

This parameter determines the mathematical properties of the model and con-
sequently describes the behavior of the underlying physical system.

One can find several techniques related to the Hurst index estimation prob-
lem in the literature. There are a lot of graphical methods including the R/S
statistic, the correlogram and partial correlations plot, the variance plot and the
variogram wich are widely used in geosciences and hydrology.

Several contributions have abready reported for parameter estimation prob-
lems concerning continuous times models where the driving processes are frac-
tional Brownian motion(see Kelptsyna and al)

Actually, the problem of maximum likelihood estimation of the drift parame-
ter has also has been extensively studied.

The maximum likelihood technique is chosen in this for two reasons: one
is that this technique has been applied efficiently in a large set, the other is
that it has well-documented favorable properties, such a being asymptotically
consistent un based, efficient and normally distributed about the true parameter
values.

2. PRELIMINARY

Let us consider the observations Yy = {By (k+ 1) — By (k) ,k=0,...,N — 1}
from a fractional Brownian motion By. Denote by >, the covariance matrix of
the sample {By (k+ 1) — By (k) ,k=0,...,N — 1}

> =E ([Bu(k+1) = Bu(k)] [Bu(l+ 1) — By(1)])

:(J(|l—k+1|2H—2|l—k|2H+|l—k—1]2H>
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o war(B{)

where C' = 5 . The likelihood of the vector Yy is given by
1 =
LN(H, C) = ~ exrp ——YN YN
(2m) 2 \/det(X_y) 2 ZN:

the maximum likelihood estimator is obtained by minimizing —In Ly (H,C) .

. . 1 —1
(HN, CN> He(?ff?elg,+m) In det (%) + 5 Yn % tYn
as N — +oo, the estimator (]?[ N 6’1\/) is strongly consistent and asymptotically
Gaussian.(see [9]).

The maximum likelihood method use observations of a fractional Brownian
motion path on an un bounded domain {By(k), k =0, ..., N} asymptotically in
N.

In this case it is classical to use the quadratic variations on [0, 1] of the process
X at scale + defined by

w3 (¢ (5) -2 (7))

A result in [5] ensures that
lim N2ty 21
N—+400

the quadratic variations can therefore be used to identify parameter H

1 1 Vy
Hy = §—|—§ log, V;'
When considering the limiting distribution of the quadratic variation found two
cases
(i) 0 < H < 3. The variable VN (N2#=1Vy — 1) converges in distribution,
as N — +oo to a Gaussian variable.
(i) 2 < H < 1. The variable N*72# (N2#~1V — 1) converges in distribu-

tion as N — +oo to a non-Gaussian variable.

Therefore, the rate of convergence of the estimator H based on quadratic varia-
tions dramatically fails when 2 < H < 1.
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3. SOME RESULTS

3.1. Hypothesis. Let ¢(t,¢) be the following harmonizable fractional integred
type Kernel g(¢, &) = a(t) — +e(t,§) with at) € C* £(t,€) € C*? satisfying for

1,_] - O, 1, 2.

Here C denotes a generic constant that can change from an occurrence to an-
other.

Theorem 3.1. Let X be a process satisfying Hypothesis
1. Strong consistency lim H N = H.

N—+o00

2. Asymptotic normality if in Hypothesis n > 5 + H as N +—— 4o,
VN (?I; — H ) converges in distribution to a centered Gaussian variable.

To prove the theorem, we use the following lemma.

Lemma 3.1. Let us

9= 3 mees (5520) 5 (55)

k' =0

e((k+pu)e ((k/ +p,> u> N du.

So that
a(t) / CL/ (t) . / 2
S(t,ﬁ): 1 S(t,f): ; T with CL(Zf)GC,
[ €72
the following bound |1(S, Sl)p,p’ | < , ¢ 5 holds for N large enough
N (14 (p—p')?)
| 0 C
- < -
lf‘ati &I S(t’g)‘ = || 3+0+

Proof. We use a Taylor expansion of S of order 2 for 0 < k < K:

k"‘ﬁ kj k? 02 k+p
S( ) Zaft _’ NSt onege \ M
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where 0 < k < K. the same holds for S*. We then obtain the following expan-
sion for (S, 5"), /

2
1
py =D N
9. '
j=0 Jj1+j2 J‘h j2

X / Zakak/kjlkljz’e((k +p)u)e((k + p)u)

(3.1) kK
o 072
X e S(_ b

4
s 1
X;N ] Z 1! 72!

Jitje2=j

/

S( , Nu)Ndu

[ ma kR e+
(3.2) .k =0
o e(j)k+p 0" o e(jo)k +p
X g NugmES B
where €(j) = 1 if j=2, 0 otherwise.
Let us first consider the case p = p'. We have to bound |I(S,5"), /| by
CN=7,
We clearly have

, Nu)Ndu.

K K
Z apQy kjl k’j2€((l{7 + p)U)é((/{l + p)u) _ Z apay ]{;jl k/jzeiu((kfk )
k&' =0 I =0

Each integral of (3.1) is bounded by a term involving
1d "jo iu((k— k) e
(3.3) /R’ Z aray k7 ke || |6+6 +1°
K,K'=0

The function "% ,+_ ara, k/k'72¢"((=F) and its derivates up to order 2 vanish

atu = 0 hence 3" o japa, k7 k'2ein((b=K) — ((y2) when |u| — 0. Then

K
e / du
L Ld1 1 g2 piu((k—=k)
/R| E aga k' ke ‘|u|‘5+5,+1 < +00,

K,K'=0
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since § + 0 < 2.Moreover, since  + & > 0 the integral (1.3) is convergent at
infinity and therefore each term of line (3.1) is an O(N—/~°=9 ). It remains to
bound (3.2). Each integral of (3.2) is bounded by

du
’u|6+6l+1'

Ny kk|/| (k + pyu)e((K + p)u)|

K,K'=0
As |u| — o0, e((k + p)u) = 0(1) hence

/ el + pe((F + pu)—2— — o)

|u|5+6 +1

and as |u| — 0, e((k: +p)u) = 0((k + p)u) hence

A el + pude((K s = 00

Since p < N, (3.2) is bounded by O(N‘(S“S/). Lemma 3.1 is proved for p = p'. It
remains to prove Lemma 1 when p # p'. Expression (3.1) leads to the integral

factor
u((p—) ZK i ia giuo—) | O o P 07 P
u((p— 1 o tu((k—
/Re KK/_OCLkCLk/k} k7%e %S(— Nu )at] S( NU)NdU

We integrate by parts twice and this gives

w((p-p) H2 K L '\ i p o2 '
e " 111 g2 piu(k—k ) r "p
/R p—p)? o2 {(;{Z ara Kk 2e ) atjlLSY(N,NU)(?WS (N’Nu) Ndu.

K'=0

To prove that the previous integral converges, and that all terms coming from
integrated terms in the integration by parts vanish, we only have to prove the
absolute convergence of the terms given by the second derivative with respect
to u of

on iz '
(3.4) ¥(u, 1, jg)at] S(— Nu )875 S( , Nu),
where (u, j1,j2) = Z?Klzoakak/k:jlklj?e"”((’“"“). Clearly, as |u| goes to oo.
81

¥(u, j1,72)| = 0(1) for i = 0, 1, 2. This implies the convergence of (3.4) as

7

50

|u| — oo. to have convergence when |u| — 0 let us remark that |
ou!

Y(u, ji, jo)| =
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0(|u|*"), when |u| — 0. Then

‘ailw(u’jbjz) ai1+j2 (5 u) 8i3+j2 S'(p_
Oui otinouiz "N’ otizouis ~ N’

/

Nu)l

L /
C|u|4—(11+12+23)—(5+6 +1)

N6+ +1+iz+is
For iy + iy + i3 = 2. Hence each term of the first line (cf. 3.1) of the expansion of

, . 1
1(S,S"),, is of order N ()
for the second line (cf.(3.2)) of the expansion of (S, S’)p’p/ . Since p,p < N,we
have proved Lemma 1 for p # p .

A second technical lemma relates the asymptotic behavior of 1(S,S") »p, When

S(t, &) = ‘;H(—i)% to the function

. We use a similar upper bound 0(N ‘5+5/—2)

K ez(x—i-k—k Ju
Fy(:v):/R Zakak up du
kK =0

Lemma 3.2. ifais C? and S(t,&) = |£|L<T?1,

1
N+ (1 +(p— p')2)

Proof. To begin with, we use the Taylor expansion of a at order 2 to get the
expansion (3.1) and (3.2)

18,8) = N7 a (Ap) a(Ap) Fypy (p—7) +0

K ’
_ / ’ a (Ap) a (Ap )
Ly = /R > aaye((k+ Pl +2)0) | GeoE
kk'=0
1
+0 ,
N+ +1 (1 t(p— p’)2>
Using
K K , ,
Z agaye((k + p)U)é((kJI + p/)u) = Z ara, eilk=k)u | pi(p—p )u
k,k'=0 k,k'=0

and lemma follows. O
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Note that
N-K K k+p 2
EVy = Z E ZakX(T))
p=0 k=
_ 2
_NZK / ia Fep N (htr
- g R kg N ) N

where function e stands for e(£) = % — 1.

Using the expansion for g(¢, &), we can express EVy as a sum of terms, each
of them being of the following form (p =0,..., N — K),

K
/7

[(57 S/)p,p, :/]R; Z a/ka’k’/S (k—]—i\;p7Nu> S, (k ]_'\_[p 7N’LL>

k., k' =0

i+

S(t, &) € C*2([0,1] x R*) and ' 0 for i=0 to 2 and j=0

C
Ot DL ( 75)‘ ’€‘§+5+]
to 2 with 0 < § < 1, and the same hold for S'.
Since X is a Gaussian process, the variance V}y is given by

N—-K K ’ /
kE+p kE+p
VW(VN):QZ /RZ akak’g(Taf)g( N ,f)
p,p =0

k,k'=0

/ / 2
() e (557) )

which is a sum of term (S, S), /.-

The estimation of the expectation and variance deduce from the Lemma 3.1
and Lemma 3.2.

Consistency of the drift parameter estimates in the pure fractional Brownian
Diffusion Model.

First we consider the "pure” fractional diffusion model and establish strong

consistency and asymptotic normality of the maximum likelihood drift parame-
ter estimate.

1
We assume that the fBm B with H € (5, 1) is define on a probability space
(©2, F,P) and denote by (F;):> the filtration generated by B/
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Considerer a diffusion equation containing a stochastic differential driven by
B,

(3.5) dXy =0a(t,X,)dt +b(t,X,)dB!  Xio= X, € R,

with a(t, X;) and b(t, X;) be two stochastic processes.
Differential equation can be rewritten in the integral form

t t
(3.6) Xt:X0+0/ a(s, X,) ds—i—/ b(s,X,) dBF  t € [0,7],
0 0

where X is a random variable. The stochastic integral fot a (s, X;) ds is an ordi-
nary Riemann-Stieltjes integral for each X; while f(f b(s,X,) dB is defined as
that given by Dai and Heyde [8].

Generally speaking, the integral fot a (s, Xs) ds exists under standard condi-
tions on a(s, X;). The integral fot b(s,X,) dB exists only under the conditions
given in Dai and Heyde [8] for defining stochastic integrals with respect to
By(t).

Suppose that the equation has unique pathwise solutiogP IEIt(;W, let " > 0 be

9

dPy(t)
bility measure P,(t) corresponding to our model and the probability measure

Py(t) corresponding to the model with zero drift. Suppose that the following
assumption holds:

fixed. We are in a position to find the likelihood ratio for the proba-

@ b(t,X;) #0, t€]0,7] and % is a s lebesgue integrable on [O,
) <Xt
a (t, Xt)

T]. Denote ¢; = and introduce the new process E{{ = Bf +

t
9/ ps ds;
0

t
(if) e/ Lu(t, 8)[e(s)|ds < o0, ¢ € [0,T]
Lo [()t, s) is the likelihood ratio;

¢ ¢
(iii) «9/ lu(t,s)(s)ds = o?/ S.ds, t e [0,T] with @ = (1 —2a)2, a =
0 0
H-13;

t
(iv) E/32a53d5<oo t € 10,7);
0
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1 ~
(V) Fexp Ly — 5 (L), ¢ = 1 the process B} is an fBm on [0, T] w.r.t the

measure Q defined via the relation

dPp(t) 1 , PN
TRo(D) = exp {Lt—§<L>t}, te€[0,T] with Lt:/o 5% 05 dBs.

In order to find the maximum likelihood estimate of the parameter 6, we use
likelihood ratio which can be write as

dP@(t) {/t ) 1/t 2a 2 }
=ex §%0,dBs — = 5707 ds
TRV 2 Jo

where 0, is defined according to the integral representation iii).

Denote V(t,z) = Zéi’z)) so that W (¢, X;) = p(t) I(t) = /t[H<t73)(p(8) ds.

Theorem 3.2. Let ¥(¢,s) € C'[0,T](C*(R). Then fort > 0
t
I'(t) = C(H) w(0,0) 2 + / L(t, 5) (@;(S,Xs) LW (s, X,) a(s,XS)) ds
0
t s
—a® / s — ) / (qf;(u, X)) + 0V (u, X,) alu, Xu)> duds
0 0
t S
+ (1 —2a) C’S) t_2a/ 520‘_2/ u = (s —u) W, (u, X,) b(u, X,,)dB ds
0 0
t
+ O / WOt —u) W (u, X,) b(u, X,) dBY
0
where C(H) = (1 —2a)B(1 —a,1 —a) CY.
Proof. According to the Ito formula
s = 0(0,0) + / (xp;(u,xu) F U (u, X,) Oalu, Xu)> du
0
+ / W, (u, X,) b(u, X,) dB)!
0
t t
X=X, = [ BatuX)du+ [ bl X,)dBulw).

to to

where the first integral is an ordinary Riemann-Stieltjes integral for each w € 2,
while the second is an Ito integral defined in Dai et Heyde [8].
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Assume that a two variable function ¥(u, X,,) : [0,7] x R — R has uniformly

. : N v oV 0*v
continuous partial derivatives —, — and ——. Assume further that
ot Ox Ox?
sup E|¥(u, X,)|* < oo,
0<u<T

sup E |—(u, Xy)| < oo,
ogugp:r 8t( )

v 2
sup E |—(u, Xy,)| < oo,
OSuET 8$( )

2 2

o~
sup E |—(¢, X + O, (1 < 00,
s B |55 (0. X0+ O, (1)

sup E|a(t)]* < oo,

0<u<T

sup E [b(t)]* < oo,

0<u<lT

E |b(t) — b(s)| < const |t —s|”, 3 >0,

where Oy, (1) means a term such that E|Oy,(1)|* < co. Let U, = ¥(u, X,,). If,
forall0 <u <T,

| v X0 G X B (o)

exists in the sense described in Dai and Heyde [8], then the following holds

L (oW ov
Vs — Yo = /0 {%(u, Xu) + Qa(u,Xu)%(u,Xu)} du

ov

+ /t blut, Xa) - (u, Xo)dBan (),

or, equivalently,

Ao, = {g—‘iw X+ 0a(u, X) 5 (u Xu>} du -+ b{u, X,) 2 (1, X,)dBu(u).
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t
Substituting the above into the integral /(¢) = / lu(t, s)ps ds we obtain
0

t s
I(t):c(H,l)\I/(O,O)tl_2°‘—|—/ lH(t,s)/ U, (u, X,) duds
0 0
t s
+0 lH(t,s)/ U (u, X,) a(u, X,)duds
0 0
t s

—I—/ ZH(t,s)/ W (u, X,) b(u, X,,)dBH ds,
0

0
C(H,1) = Cg’) B(1 — a,1 — «) and now our aim is to differentiate I(t),
sa/ U (u, X)) a(u, X, )du = / u”V (u, Xy a(u, X,)du
0 0

3.7) ] "
- a/ u_l_“/ U (u, X,) a(v, X,)dvdu.
0 0

According to representation given above, there exist a.s the fractional deriva-
tives of order «, i.e the derivatives of fractional integrals:

t s t
K lH(t,s)/ \I/;(U,Xu)duds:/ L (t, s)W,(s, X,)ds
dt Jo 0 0
t s
—aC’S)/ slo‘(t—s)a/ W, (u, X, )duds
0 0
d t

— ZH(t,s)/ U (u, X,) a(u, X,,)duds
¢
:/ L (t, )W, (s, X,) a(s, X,)ds
0
¢ t
—aCS)/ slo‘(t—s)a/ U (u, Xy) a(u, X,,)duds
0 0

Further, it follows that

t S
[ imtes) [ b X )aBl ds
0

0
t s ,
= C’S)tl_%‘/ s2a_2/ u (s — u) "V (u, X,) b(u, X, )dBY ds,
0 0

the proof follows immediately from the previous relations.
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Now, we can write

(3.8) Zizgg = exp {% /OT sI (a)dB, — 2(%2204) /OT SQQ(I/<8))2d8} .

It follows from the above that the maximum likelihood estimate is achieved

under the condition
r o [T ,
/ s*I (s)dB® — 7/ s*(I (s))*ds =0
0 0

(07

whence

d/otsafl(s)dés
Almugnwg

t:

Using Theorem 3.2, we obtain

i & [y oI (s)dB,

3. 0, =20 .
G2 O a1 (s) s

g

t

Theorem 3.3. Let i)— v) hold for any T > 0, and morever vi)/ s2(I'(s))%ds =
X 0

oo a.s then the maximum likelihood estimate 6 is strongly consistent as T' — oo

. X, . .
Proof. From representation (9) and the fact that kel N a.s, if X, is a square

(X),
integrable martingale and (X)__ — oo a.s. In other words,
[y s°I'(s)dB,
Jy 521 (s)ds

— 0, t = oo with Py — probability 1.
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