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STUDY OF MODELS WITHOUT JUMPS WITH RESPECT TO FRACTIONAL
BROWNIAN MOTION

Thioune Moussa, Ba Demba Bocar1, and Diop Bou

ABSTRACT. In this paper, we study some models without jumps of stochastic
differential equations directed by a fractional Brownian motion.

1. INTRODUCTION

Stochastic differential equations model stochastic evolution as time evolves.
These models have a variety of applications in many disciplines and emerge
naturally in the study of many phenomena. Examples of these applications are
physics, astronomy, mechanics, economics, mathematical finance, geology, ge-
netic analysis, ecology, cognitive psychology, neurology, biology, biomedical sci-
ences, epidemiol-ogy, political analysis and social processes, and many other
fields of science and engineering.

In general, the study of the stochastic differential equations (SDE) heavily
depends on the definition of stochastic integrals. In this work we use Frac-

tional Brownian motion (FBM) with Hurst index
1

2
< H < 1 which is not a

semimartingale. Consequently, the standard Itô calculus is not available for

stochastic integrals with respect to FBM as an integrator if
1

2
< H < 1.
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The Itô stochastic calculus has become a fundamental part of modern proba-
bility theory and found substantial application in other disciplines. For example,
in mathematical finance, Itô′s calculus is a powerful tool for dealing with stock
price behavior. Stochastic differential equations driven by Fractional Brownian
motion are routinely used to model the dynamics of stock market prices. Frac-
tional Brownian motion (FBM) provides a suitable generalization of Brownian
motion. The feature, which most distinguishes FBM from Brownian motion, is

that FBM is no longer a semimartingale for
1

2
< H < 1.

We are concerned with definition of some models of stochastic differential
equations with respect to fractional Brownian motion(FBM) and to prove of the
existence and uniqueness of their solutions.

2. PRELIMINARY

When we consider stochastic differential equations driven by Brownian mo-
tion

(2.1) dX = b(t,Xt)dt+ σ(t,Xt)dB(t),

Itô′s formula is a powerful tool for dealing with their calculus. When we are
concerned with stochastic differential equations driven by fractional Brownian
motion

(2.2) dX = b(t,Xt)dt+ σ(t,Xt)dB
H(t),

we have noticed that a version of Itô′s formula plays the same role in dealing
with equation (2.2). The aim of this section is the following theorem.

Theorem 2.1. Let (Ω,F ,P) be a complet probability space. Let Bh(τ) be a frac-

tional brownian motion on [0, T] such that
1

2
< H < 1 and BH(0) = 0 a.e. (there-

fore EBH(τ) ≡ 0 for any t ∈ [0, T ]). Assume stochastic processes b(τ, ω), σ(τ, ω)

and X(τ, ω) are such that for any [t0, t] ⊆ [0, T ],

(1) b(τ, ω) is Riemann-Stieltjes integrable on [0, T ] for each ω ∈ Ω;
(2)

∫ t

0
σ(τ)dBH(τ) exists in the sense described in Dai and Heyde [3];

(3) Either of the following holds:
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(a) For any 0 ≤ s ≤ t1 ≤ t2, t3 ≤ t4 ≤ T , {σ(τ) : 0 ≤ τ ≤ T} and
{BH(τ) : 0 ≤ τ ≤ T} are such that

E
{
(σ(t1)− σ(s)) (σ(t3)− σ(s))

(BH(t2)−BH(t1)) (BH(t4)−BH(t3))
}

= E {(σ(t1)− b(s)) (σ(t3)− σ(s))}

E {(BH(t2)−BH(t1)) (BH(t4)−BH(t3))} ,

(2.3)

or,

(b) the second derivative
d2b(t)

dt2
exists, and for any 0 ≤ t1 ≤ t2, t3 ≤ t4 ≤

T ,

{σ′
(τ) =

dσ(t)

dt
: s ≤ τ ≤ max{t1, t3}}

and

(BH(t1), BH(t2), BH(t3), BH(t4)) ,

such that for any random variables ξ and η such that ξ and η are
measurable with respect to σ{b′(τ) : s ≤ τ ≤ max{t1, t3}} et E |ξ|4 <
∞, the following holds

E
{(

σ
′
(s)(t1 − s) + ξ

)(
σ

′
(s)(t3 − s) + η

)
(BH(t2)−BH(t1)) (BH(t4)−BH(t3))

}
= E{

(
σ

′
(s)(t1 − s) + ξ

)(
σ

′
(s)(t3 − s) + η)

)
}

× E{(BH(t2)−BH(t1)) (BH(t4)−BH(t3))},

(2.4)

and furthermore,

(2.5) sup E
0≤t≤T

∣∣∣∣dσdt (t, ω)
∣∣∣∣4 < ∞, sup

0≤t≤T
E
∣∣∣∣d2σdt2

(t, ω)

∣∣∣∣4 < ∞;

(4)

(2.6) Xt −Xt0 =

∫ t

t0

b(τ, ω)dτ +

∫ t

t0

σ(τ, ω)dBH(τ),

where the first integral in (2.6) is an ordinary Riemann-Stieljes integral for
each ω ∈ Ω, while the second is an Itô integral defined in Dai et Heyde [3].
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Assume that a two variable function U(t, x) : [0, T ]×R → R has uniformly

continuous partial derivatives
∂U

∂t
,
∂U

∂x
and

∂2U

∂x2
. Assume further that

(2.7) sup
0≤t≤T

E |U(t,Xt)|2 < ∞,

(2.8) sup
0≤t≤T

E
∣∣∣∣∂U∂t (t,Xt)

∣∣∣∣2 < ∞,

(2.9) sup
0≤t≤T

E
∣∣∣∣∂U∂x (t,Xt)

∣∣∣∣2 < ∞,

(2.10) sup
0≤t≤T

E
∣∣∣∣∂2U

∂x2
(t,Xt +OL2(1))

∣∣∣∣2 < ∞,

(2.11) sup
0≤t≤T

E |b(t)|2 < ∞,

(2.12) sup
0≤t≤T

E |σ(t)|2 < ∞,

(2.13) E |σ(t)− σ(s)| < const |t− s|β , β ≥ 0,

where OL2(1) means a term such that E |OL2(1)|
2 < ∞. Let Ut = U(t,Xt).

If, for any 0 ≤ t ≤ T,∫ t

0

σ(τ, ω)
∂U

∂x
(τ,Xτ )dBH(τ)

exists in the sense described in Dai and Heyde [3], then the following holds

Yt − Yt0 =

∫ t

0

{
∂U

∂x
(τ,Xτ ) + b(τ, ω)

∂U

∂x
(τ,Xτ )

}
dτ

+

∫ t

t0

σ(τ, ω)
∂U

∂x
(τ,Xτ )dBH(τ)

(2.14)

or equivalently,

(2.15) dYt =

{
∂U

∂x
(t,Xt) + b(t, ω)

∂U

∂x
(t,Xt)

}
dt+ σ(t, ω)

∂U

∂x
(t,Xt)dBH(t).



STUDY OF MODELS WITHOUT JUMPS WITH RESPECT TO FRACTIONAL BROWNIAN MOTION 19

Remark 2.1.

(1) Since E (BH (t+∆)−BH (t))2 = |∆|2H , where 2H > 1, there is no term

1

2
b2(τ, ω)

∂2U

∂x2
(τ,Xt) dτ

in (2.14), in contrast to that of the usual Itô formula with respect to Brow-
nian motion.

(2) The requirements on (τ), b(τ), X(τ) and U(τ,Xτ ), such as conditions 1, 2
and 4 of the theorem and the moments conditions (7) to (12) are stan-
dards.

(3) Conditions 3.a and 3.b are importants for Itô′s formula to be true in the
case of fractional Brownian motion. Many stochastic processes can be cho-
sen as b(τ). For example,

b(τ) = A1τ + A2

where A1 and A2 are two random variables with EA2
1 < ∞ and A1 is

independent of {BH(τ)}.

Proof. Assume stochastic processes b(τ) and σ(τ) satisfy the conditions of Theo-
rem 2.1. Then for any t, s ∈ [0, T ] such that |t− s| → 0, we have∫ t

s

b(τ)dτ +

∫ t

s

σ(τ)dBH(τ) = b(s)(t− s)

+ σ(s)(BH(t)−BH(s)) + 0L2(|t− s|),
(2.16)

where 0L2(|t− s|) means a term such that(
E|0L2(|t− s|)|2

) 1
2 = 0 (|t− s|) .

Here, a(t, ω) is a Riemann-Stieltjes integral, like |t−s| → 0, by Lemma 16 of Dai
and Heyde [3], we have∫ t

s

a(τ)dτ = a(s)(t− s) + 0L2(|t− s|).

Thus, to complete the proof of lemma , it suffices to show that

(2.17)
∫ t

s

b(τ)dBH(τ) = b(s)(BH(t)−BH(s)) + 0L2(|t− s|).

Without loss of generality, we assume s < t. Let be a partition sequence of [s, t]
in the form

β(n) : s = t
(n)
0 < t

(n)
1 < · · · < t

(n)
q(n) = t;
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then

E
∣∣∣∣∫ t

s

b(τ)dBH(τ)− b(s) (BH(t)−BH(s))

∣∣∣∣2

(2.18) = lim
n→∞

E

∣∣∣∣∣
n∑

j=1

(
b(t

(n)
j−1)− b(s)

)(
BH(t

(n)
j )−BH(t

(n)
j−1)

)∣∣∣∣∣
2

.

Now Consider the term of the right hand side (2.18) without taking the limit
yet. We have

E

∣∣∣∣∣
n∑

j=1

(
b(t

(n)
j−1)− b(s)

)(
BH(t

(n)
j )−BH(t

(n)
j−1)

)∣∣∣∣∣
2

n∑
j,k=1

E
((

b(t
(n)
j−1)− b(s)

)(
BH(t

(n)
k−1)− b(s)

))
×
(
BH(t

(n)
j )−BH(t

(n)
j−1)

)(
BH(t

(n)
k )−BH(t

(n)
k−1)

)
(2.19) ≡ An +Bn.

If condition 1 of theorem 2.1 holds, then

An =
n∑

j=1

E
(
b(t

(n)
j−1)− b(s)

)2

E
(
BH(t

(n)
j )−BH(t

(n)
j−1)

)2

(2.20) ≤ const|t− s|β+2H = 0(|t− s|).

To treat Bn in (2.19) under the condition of theorem 3.1, we use the notation

Γj,k, ∆Γj,k and α appearing in lemma 21 of Dai and Heyde [3].
∣∣∣∣ ∂2Γ

∂y∂x

∣∣∣∣ is inte-

grable in {(x, y) : s ≤ x ̸= y ≤ t} by Lemma 21 of Dai and Heyde [3], equation
(2.13) and the Cauchy-Schwartz inequality, we have

Bn =
∑
j ̸=k

{
E
(
b(t

(n)
j−1)− b(s)

)(
BH(t

(n)
k−1)− b(s)

)}
∆Γj,k

≤ const|t− s|β
∑
j ̸=k

{∣∣∣∣ ∂2Γ

∂y∂x

(
t
(n)
j−1, t

(n)
k−1

)∣∣∣∣ (t(n)j − t
(n)
j−1

)(
t
(n)
k − t

(n)
k−1

)
+
∣∣∣t(n)j−1 − t

(n)
k−1

∣∣∣2H−2−α

0
((

t
(n)
j , t

(n)
j−1

)(
t
(n)
k − t

(n)
k−1

))
+0

((
t
(n)
j , t

(n)
j−1

)(
t
(n)
k − t

(n)
k−1

))}
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(2.21) → const |t− s|β
∫ ∫

[s,t]2

∣∣∣∣ ∂2Γ

∂y∂x

∣∣∣∣ dydx = 0(|t− s|).

Thus, in the case of condition 3.1, of (2.19),(2.20) and (2.21), the lemma
holds.Finally, we consider the case of condition 3.1. By following (2.19) and
using the inequality of condition 3.2, we have

An =
n∑

j=1

E

{(
b
′
(
t
(n)
j−1 − s

)
+ 0L4

(
t
(n)
j−1)− s

))2 (
BH(t

(n)
j )−BH(t

(n)
j−1)

)2
}

(2.22) ≤ const(t− s)2
q(n)∑
j=1

(
t
(n)
j − t

(n)
j−1

)2H

= 0(t− s).

By the same argument, under condition 3.2, we have

(2.23) Bn ≤ const(t− s)2
∑
j ̸=k

|∆Γj,k| = const|t− s|2+2H = 0(t− s).

Thus, in the case of condition 3.2, of (2.19),(2.22) and (2.23), the lemma holds.
This completes the proof of the lemma. □

Theorem 2.2. For any interval [t0, t] ⊆ [0, T ] and any sequence of partitions β(n) :

t0 = t
β(n)
0 < t

β(n)
1 < · · · < t

β(n)
q(n) = t with |β(n)| → 0 as n → ∞, write ∆t

(n)
j =

t
(n)
j+1 − t

(n)
j ,∆X

(n)
j = X

t
(n)
j+1

−X
t
(n)
j
, ∆B

(n)
H,j = BH(t

(n)
j+1)−BH(t

(n)
j ), ∆U

(n)
j = U(t

(n)
j+1,

X
t
(n)
j+1

)− U(t
(n)
j , X

t
(n)
j
), for j = 0, 1, . . . , q(n)− 1, n = 1, 2, . . . . Then we have

(2.24) Yt − Yt0 = U(t,Xt)− U(t0, Xt0) = lim
n→∞

q(n)∑
i=0

∆U
(n)
j .

Proof. From calculus, we have

∆U
(n)
j =

∂U

∂t

(
t
(n)
j + θn∆t

(n)
j , X

t
(n)
j+1

)
∆t

(n)
j +

∂U

∂x

(
t
(n)
j , X

t
(n)
j

)
∆X

(n)
j .

(2.25) +
∂2U

∂x2

(
t
(n)
j , X

t
(n)
j

+ δn∆X
(n)
j

)
(∆X

(n)
j )2,

where θn = θn(ω) and δn = δn(ω) are random variable such that 0 ≤ θn, δn ≤ 1

and lim
n→∞

θn = lim
n→∞

δn = 0 in the L2(Ω) sense. Since
∂U

∂x
is uniformly continuous

and the stochastic process Xt is continuous in the sense of L2(Ω)(see theorem
16 Dai and Heyce [3]).
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We have

(2.26) lim
n→∞

q(n)∑
j=0

∂U

∂t

(
t
(n)
j + θn∆t

(n)
j , X

t
(n)
j+1

)
∆t

(n)
j =∈t

t0

∂U

∂t
(τ,Xτ )dτ.

From Lemma we have

∆X
(n)
j = b(t

(n)
j )∆t

(n)
j + σ(t

(n)
j )∆B

(n)
H,j + 0L2(∆t

(n)
j ),

where 0L2(∆t
(n)
j ) means a term such that

(
E|0L2(∆t

(n)
j )|2

) 1
2
= 0

(
∆t

(n)
j

)
.

Therefore,
q(n)−1∑
j=0

∂U

∂x
(t

(n)
j , X

t
(n)
j
)∆X

(n)
j

=

q(n)−1∑
j=0

∂U

∂x
(t

(n)
j , X

t
(n)
j
){b(t(n)j )∆t

(n)
j + σ(t

(n)
j )∆B

(n)
H,j}+ 0L2(1),

where 0L2(1) means a term such that E|0L2(1)|2 = 0. Hence

lim
n→∞

q(n)−1∑
j=0

∂U

∂x

(
t
(n)
j , X

t
(n)
j

)
∆X

(n)
j

(2.27) =

∫ t

t0

∂U

∂x
(τ,Xτ ){b(τ) + σ(τ)dBH(τ)}.

from Lemma and noticing that

E (BH(t+ τ)−BH(τ))
2 = τ 2HVH

we have

(∆X
(n)
j )2 = 0L2(∆t

(n)
j )

=
∂2U

∂x2
(t

(n)
j , X

t
(n)
j

+ δn∆X
(n)
j )(∆X

(n)
j )2 = 0L2(∆t

(n)
j ).

and hence

(2.28) lim
n→∞

q(n)−1∑
j=0

∂2U

∂x2
(t

(n)
j , X

t
(n)
j

+ δn∆X
(n)
j )(∆X

(n)
j )2 = 0.
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Therefore, we have

Yt − Yt0 =

∫ t

0

{∂U
∂t

(τ,Xτ ) + b(τ)
∂U

∂x
(τ,Xτ )}dτ +

∫ t

0

∂U

∂x
(τ,Xτ )σ(τ)dBH(τ),

or equivalent to

(2.29) dYt = {∂U
∂t

(t,Xt) + b(t)
∂U

∂x
(t,Xt)}dt+ σ(t)

∂U

∂x
(t,Xt)dBH(t).

□

3. APPLICATION TO THE STUDY OF SOME FRACTIONAL MODELS WITHOUT JUMP

We will propose some models of stochastic differential equation directed by a
fractional Brownian motion without jumps.

3.1. Fractional Black-Scholes model. Here, we are interested in solving a sto-
chastic differential equation of the fractional model without Black-Scholes jump
defined below:

(3.1) dXt = bXtdt+ σXtdB
H
t q,

where b and σ are constants and BH
t is a fractional brownian motion of Hurst

parameter H ∈ (
1

2
, 1).

The previous equation cannot be solved within the framework of Itô′s sto-
chastic integral theory, because BH

t is no a semi-martingale in general, except

the case where H =
1

2
. New stochastic calculations are developed to deal with

such.

Proof. To find the explicit solution of the equation, we apply Itô′s formula with
Yt = ln(Xt)

d (Yt) =
∂F

∂t
(t,Xt)dt+

∂F

∂x
(t,Xt)dXt +

1

2

∂2F

∂x2
(t,Xt)(dXt)

2.

Let us Yt = F (t,Xt) = ln(Xt) where F is a function with continuous derivatives
up to order 2.

Indeed,

∂F

∂t
(t,Xt) = 0,

∂F

∂x
(t,Xt) =

1

Xt

and
∂2F

∂x2
(t,Xt) = − 1

X2
t

,
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or

d (Yt) = d(ln(Xt)) =
dXt

Xt

− 1

2

d2Xt

X2
t

,

or dXt = bXtdt+ σXtdB
H
t , we have:

d (Yt) =
bXtdt+ σXtdB

H
t

Xt

− 1

2

(bXtdt+ σXtdB
H
t )2

X2
t

=
bXtdt+ σXtdB

H
t

Xt

− 1

2

b2X2
t dt

2 + 2bX2
t σdt.dB

H
t + σ2X2

t (dB
H
t )2

X2
t

.

Using the following conventions

dt.dBH
t = dBH

t .dt = dt.dt = 0 and dBH
t .dBH

t = δdt

we have:

d (Yt) =
bXtdt+ σXtdB

H
t

Xt

− 1

2

σ2X2
t (dB

H
t )2

X2
t

= bdt+ σdBH
t − σ2

2
dt

d (Yt) =

(
b− σ2

2

)
dt+ σdBH

t

or

F (t,Xt) = F (0, X0) +

∫ t

0

(
b− σ2

2

)
ds+ σ

∫ t

0

dBH
s = Y0 +

(
b− σ2

2

)
t+ σBH

t .

So,

(3.2) Xt = X0 exp

((
b− σ2

2

)
t+ σBH

t

)
is unique solution of equation (3.1).

□

The conditional density function is log-nominal with the mean and the vari-
ance of its logarithmic transformation, i.e., the log-mean and la log-variance)
given by

µ = log(X0) +

(
b− σ2

2

)
t, σ2

1 = σ2t

with mean and variance

E [Xt] = exp

(
µ+

1

2
σ2
1t

)
= x0 exp (bt) ,

V [Xt] = exp
(
2µ+ σ2

1

) (
exp

(
σ2
1

)
− 1

)
=

(
exp

(
µ+

1

2
σ2t

))2 (
exp

(
σ2t

)
− 1

)
,
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or E [Xt] = exp
(
µ+ 1

2
σ2t

)
= x0 exp (bt). So,

V [Xt] = (x0 exp (bt))
2 (exp (σ2t

)
− 1

)
= x2

0 exp (2bt)
(
exp

(
σ2t

)
− 1

)
.

This allows us to say that the process Xt solution of the model converged in

probability to 0 if b <
−σ2

2
,

pθ(t, y | x0) =
1

σ1y
√
2π

exp

{
−(log y − µ)2

2σ2
1

}
=

1

σy
√
2πt

exp

{
−
(log y − (log x+ (b− 1

2
σ2)t))2

2σ2t

}
.

□

3.2. Fractional Ornstein-Ulhenbeck model. The fractional Ornstein-Ulhenbeck
process (FOU) is a fractional analogue of the Ornstein-Ulhenbeck process. That
is, a continuous process X that is the solution of the equation

(3.3) dXt = b (a−Xt) dt+ σXtdB
H
t ,

where b > 0, a and σ > 0 are parameters and BH =
{
BH

}
t≥0

is a Fractional
Brownian motion with Hurst parameter H ∈ (1

2
, 1) The solution of the equation

(3.3)is:

(3.4) Xt = X0e
−bt + a

(
1− e−bt

)
+ σ

∫ t

0

eb(s−t)dBH
s .

Proof. The solution of the stochastic differential equation (3.3) can be found by
applying the fractional Itô′s lemma with Yt = ebtXt,

d (Yt) =
∂F

∂t
(t,Xt)dt+

∂F

∂x
(t,Xt)dXt +

1

2

∂2F

∂x2
(t,Xt)(dXt)

2.

Indeed, let Yt = F (t,Xt) = ebtXt where F a function with conyinuous derivatives
up to order 2,

∂F

∂t
(t,Xt) = bebtXt = bF (t,Xt),

∂F

∂x
(t,Xt) = ebt et

∂2F

∂x2
(t,Xt) = 0,

from where

d (Yt) = d(ebtXt) = bebtXtdt+ ebtdXt.

Replace dXt with its value in d (Yt),

d
(
Xte

bt
)
= bebtXtdt+ abebtdt− bebtXtdt+ σebtdBH

t = abebtdt+ σebtdBH
t
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by integrating both sides, we have:

F (t,Xt) = F (0, X0) +

∫ t

0

abebsds+

∫ t

0

σebsdBH
s

= X0 + a
(
ebt − 1

)
+ σ

∫ t

0

ebsdBH
s .

So,

ebtXt = X0 + a
(
ebt − 1

)
+ σ

∫ t

0

ebsdBH
s ,

and from here

Xt = X0e
−bt + a

(
1− e−bt

)
+ σ

∫ t

0

eb(s−t)dBH
s ,

where the stochastic integral is understood as a pathwise integral. □

It follows that the process X of this model is a Gaussian process with a mean
function

E [Xt] = E
[
X0e

−bt + a
(
1− e−bt

)
+ σ

∫ t

0

eb(s−t)dBH
s

]
.

Therefore,

E [Xt] = X0e
−bt + a(1− e−bt),

and the covariance function

Cov (XtXs) = E ((Xs − E (Xs)) (Xt − E (Xt)))

= σ2e−b(s+t)

∫ s

0

e2budu =
σ2

2b
e−b(s+t)

(
e2bmin{t,s} − 1

)
.

and of variance

V [Xt] = V

(
X0e

−bt + a
(
1− e−bt

)
+ σ

∫ t

0

eb(s−t)dBH
s

)
= V

(
X0e

−bt + a
(
1− e−bt

))
+ σ2V

(∫ t

0

eb(s−t)dBH
s

)
.

Thus, according to the isometry of Itô, we have:

V

(∫ t

0

eb(s−t)dBH
s

)
= E

[(∫ t

0

eb(s−t)dBH
s

)2
]
= E

[∫ t

0

e2b(s−t)(dBH
s )2

]
= E

[∫ t

0

e2b(s−t)ds

]
=

1

2b
(1− e−2bt).
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Therefore

V [Xt] =
σ2

2b
(1− e2bt).

This shows that the Ornstein-Uhlenbeck process converges in distribution to a
Gaussian random variable of distribution N(µ, σ

2

2b
) when t → ∞.

3.3. Fractional Lotka-Volterra model. The following Lotka-Volterra model equa-
tion

(3.5) dXt = Xt (a− bXt) dt+ σXtdB
H
t

has for solution

(3.6) Xt = X0 exp

(
(a− σ2

2
)t+ σBH

t

)(
1 +X0ab

∫ t

0

Φ−1
s ds

)−1

where Φ = e−[(a−σ2

2
)ht+σBH

t ] (see [1])

Proof. The solution of the stochastic differential equation (3.5) is obtained by
applying the Itô′s formula to the transformation function Yt = F (t,Xt) = lnXt,

where F a function having continuous derivatives up to order 2 so that:

∂F

∂t
(t,Xt) = 0,

∂F

∂x
(t,Xt) =

1

Xt

and
∂2F

∂x2
(t,Xt) = − 1

X2
t

or

d (Yt) = d(lnXt) = X−1
t dXt −

1

2
X−2

t (dXt)
2 .

Replacing dXt of the stochastic differential equation above and we have:

d (Yt) =
(
X−1

t Xt (a− bXt) dt+ σX−1
t XtdB

H
t

)
− 1

2
X−2

t

(
Xt (a− bXt) dt+ σXtdB

H
t

)2
=

(
(a− bXt) dt+ σdBH

t

)
− 1

2

[
(a− bXt)

2 d2t+ σ2(dBH
t )2

+2aσdBH
t .dt− 2bσdt.dBH

t

]
.

Using the following conventions

dt.dBH
t = dBH

t .dt = dt.dt = 0 et dBH
t .dBH

t = δdt,

we have:

(a− bXt)
2 d2t = 0, σ2(dBH

t )2 = σ2dt, 2aσdBH
t .dt = 0 et 2bσdt.dBH

t = 0
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or

d (Yt) = (a− bXt) dt+ σdBH
t − 1

2
σ2dt

=

(
a− bXt −

1

2
σ2

)
dt+ σdBH

t

Yt = Y0 +

∫ t

0

(
a− bXt −

1

2
σ2

)
ds+

∫ t

0

σdBH
s .

Replacing Yt by lnXt, we obtain

lnXt = Y0 +

∫ t

0

(
a− bXt −

1

2
σ2

)
ds+

∫ t

0

σdBH
s

which then gives

Xt = exp

{
Y0 +

∫ t

0

(
a− bXt −

1

2
σ2

)
ds+

∫ t

0

σdBH
s

}
= exp (Y0) exp

(∫ t

0

(
a− bXt −

1

2
σ2

)
ds+

∫ t

0

σdBH
s

)
.

Therefore,

Xt = X0 exp

(
(a− σ2

2
)t+ σBH

t

)(
1 +X0ab

∫ t

0

Φ−1
s ds

)−1

,

where Φ = e−[(a−σ2

2
)t+σBH

t ]. □

The last equation is a stochastic linear differential equation and it is solved
using the previous formulas to give Yt = lnXt.

3.4. Fractional Cox-Ingersoll-Ross fractionnaire( FCIR) model. The follow-
ing Fractional Cox-Ingersoll-Ross model equation (FCIR)

(3.7) dXt = b (k −Xt) dt+ σ
√
XtdB

H
t ,

where k, b and σ are constants. The stochastic differential equation has the
explicit solution

(3.8) Xt = e−btX0 + k
(
1− e−bt

)
+ σ

∫ t

0

e−b(t−s)
√

XsdB
H
s .
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Proof. The solution of the stochastic differential equation (3.7) is obtained by
applying the Itô′s formula to the transformation function Yt = F (t,Xt) = ebtXt,

where F a function having continuous derivatives up to order 2 so that:

∂F

∂t
(t,Xt) = bebtXtdt,

∂F

∂x
(t,Xt) = ebt and

∂2F

∂x2
(t,Xt) = 0

or

d (Yt) = d(ebtXt) = bebtXtdt+ ebtdXt.

Replacing dXt with its value in d (Yt),

d (Yt) = bebtXtdt+ ebt
(
b (k −Xt) dt+ σ

√
XtdB

H
t

)
= bkebtdt+ σ

√
Xte

btdBH
t

or

F (t,Xt) = F (0, X0) +

∫ t

0

bkebsds+

∫ t

0

σ
√
Xse

bsdBH
s ,

ebtXt = X0 + k
(
ebt − 1

)
+ σ

∫ t

0

√
Xse

bsdBH
s .

So,

Xt = X0e
−bt + k

(
1− e−bt

)
+ σ

∫ t

0

√
Xse

b(s−t)dBH
s .

□
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