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AN EXTENDED KATZ’S DISTRIBUTION OBTAINED BY THE BETA
TRANSFORMATION FOR THE COUNT DATA

Michel Koukouatikissa Diafouka

ABSTRACT. In this paper, we introduce an extension of the Katz distribution
constructed by the beta transformation. This is a new three-parameter distri-
bution for the analysis and modeling of count data, which we call the new
extended Katz distribution. We will study the new distribution from a prob-
abilistic and statistical point of view. We perform a comparison study with
an other extension of the Katz distribution with two methods: graphical and
goodness-of-fit comparisons. For goodness-of-fit, we have considered the real
data and the parameters are estimated by the maximum likelihood method.

1. INTRODUCTION

In count data modeling, the lack of adequacy of the reference model, in this
case the Poisson model, leads to the formalization of one of the most important
questions: how to formulate an adequate probability model to remedy the lack
of adequacy of the Poisson model. This lack of adequacy is due to the variance
of the sample being larger or smaller than the mean, because the Poisson model
is only adequate if the variance is equal to the mean. These phenomena are
called overdispersion, underdispersion, or equidispersion, respectively, for the
variance that is larger, smaller, or equal to the mean. This is equivalent to the
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Fisher dispersion index being greater, smaller, or equal to one, respectively. In
the literature, several classes or families of probabilities have been proposed,
taking into account overdispersion, equidispersion, and/or underdispersion. We
can quote the weighted Poisson families coming from the concept of exponential
families [13,14] and the large Kemp class associated with generalized hyperge-
ometric functions [6, 9]. In particular, the Katz family of distributions [8] as a
special case of the last mentioned family, includes and generalizes the Poisson
family of distributions with a variable Fisher dispersion index, which allows it
to take into account situations of overdispersion, underdispersion, and equidis-
persion.

In [4], the authors have proposed a new specific transformation for discrete
distributions called the beta transformation as one of the alternatives to the
Poisson model. Given the distribution of a positive integer random variable, the
beta transformation introduces an additional parameter. For a distribution of
infinite support N, we have the following definition [4]:

Definition 1.1. Let X be a non-negative integer random variable with support
N and the probability mass function (pmf), pk = P (X = k), k ∈ N. The beta
transformation of X is the non-negative integer random variable Y with support
N and pmf, p(k) = P (Y = k), given as follows:

p(k) =


1− p0
β

, k = 0,

pk−1 −
pk
β
, k = 1, 2, . . . ,

where β satisfies the conditions β ≥ 1− p0 and β ≥ max
k≥1

(
pk
pk−1

)
.

From the Definition (1.1), The main objective of this paper is to introduce
the beta transformation of the Katz distribution as one of the alternatives to the
Poisson distribution for modeling count data. Indeed, Katz [8] has formulated
one of the best known probability models in the literature, whose recurrent ratio
of probabilities is given by:

(1.1)
pk+1

pk
=
λ+ γk

k + 1
,
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where λ > 0 and γ < 1, it is understood that if λ + γk < 0 then pk = 0 for
k = 1, 2, . . . [2]. The pmf corresponding to (1.1) is given by (1.2):

(1.2) pk =


λk

k!
e−λ, if γ = 0,

(λ/γ)kγ
k

k!
(1− γ)λ/γ, otherwise,

k = 0, 1, . . . ,

where (α)k = α(α+1) . . . (α+k−1) is the Pocchammer symbol, for k = 0, 1, . . . ,

and α any real number with (α)0 = 1. This family of distributions has been used
as a basis to develop other families of distributions, such as the extensions of
the Katz family proposed and developed in [1,6,15,16].

The rest of the paper is as follows: in section 2, we present the beta trans-
formation of the Katz distribution, which we call the new extension of the Katz
distribution. In this section, we study, among other things, this new extension
from a probabilistic and statistical point of view. In section 3, we carry out a
comparison study with the Katz extension proposed in [6], an extension which
has the same number of parameters as the new Katz extension, namely three pa-
rameters. We have chosen two methods of comparison: graphical comparison
and by goodness-of-fit statistics. For the last comparison method, we consid-
ered real data and the parameters were estimated by the maximum likelihood
method. Therefore, the asymptotic behavior of the estimators was not studied
because it naturally follows from it. Finally, the work is closed with a conclusion
in section 4.

2. NEW EXTENDED KATZ’S DISTRIBUTION

In this section, we successively discuss the following concepts in turn: prob-
ability mass function and recurrent ratio probabilities; probability generating
function; moments and dispersion; and estimating of parameters.

2.1. Probability mass function and recurrent ratio of probabilities. Let be
X a Katz random variable with parameters (λ, γ) and suppose γ 6= 0, because,
in this case, the Katz distribution reduces to the Poisson distribution with pa-
rameter λ:
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Definition 2.1. The pmf of the beta transformation Y of X, p(k) = P (Y = k), is
given by:

(2.1) p(k) =


1− (1− γ)λ/γ

β
, k = 0,

(λ/γ)k(1− γ)λ/γγk

βk!

(
βk

λ+ γ(k − 1)
− 1

)
, k = 1, 2, . . . ,

under conditions β ≥ 1− (1− γ)λ/γ and β ≥ max
k≥1

(
λ+ γ(k − 1)

k

)
.

We call this beta transformation the new extended Katz distribution, denote
NEK(λ, γ, β).

It follows the following important remark:

Remark 2.1. Note that for γ < 0, the support of the Katz distribution reduces to

{0, 1, . . . , N}, where N = −λ
γ

or N =

[
−λ
γ

]
+ 1 according as −λ

γ
is or is not

an integer [15]. The beta transformation of this terminating distribution has as

support {0, 1, . . . , N + 1} and the probability at N + 1 is
(λ/γ)Nγ

N

N !
(1 − γ)λ/γ =(

−γ
1− γ

)N
, all else being equal. In this case, the Katz distribution is reduced to the

binomial distribution and its beta transformation is called an extended binomial
distribution in [4].

Under the conditions on the parameters, (2.1) can be written as follows:

p(k) =
(λ/γ)k(1− γ)λ/γγk

βk!

(
βk

λ+ γ(k − 1)
− 1

)
×(2.2)  1− (1− γ)λ/γ(

βk

λ+ γ(k − 1)
− 1

)
(1− γ)λ/γ


δ0(k)

, k = 0, 1, . . .

where δ0 is the unit mass concentrated at zero. Relationshipship (2.2) is neces-
sary to determine the maximum likelihood.
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The recurrent ratio of probabilities corresponding to (2.1) is given by (2.3):

(2.3)
p(k + 1)

p(k)
=


(β − λ)(1− γ)λ/γ

1− (1− γ)λ/γ
, k = 0

[γ − λ+ (β − γ)(k + 1)][λ+ γ(k − 1)]

[γ − λ+ (β − γ)k](k + 1)
, k = 1, 2, . . .

In particular, if γ = 0, i.e. (1−γ)λ/γ|γ=0 = lim
γ→0

(1−γ)λ/γ = e−λ, theNEK(λ, γ, β)

is the extended Poisson distribution, with parameters (λ, β), denote EPo(λ, β)
in [4].

2.2. Probability generating function. From [2] and Lemma 2.1 of [4], the
probability generating function of NEK(λ, γ, β) is given by (2.4):

(2.4) GY (t) =


1− (1− βt)eλ(t−1)

β
, if γ = 0,

1

β

[
1− (1− βt)

(
1− γt
1− γ

)λ/γ]
, otherwise.

2.3. Caracteristics: moments and dispersion. From Corollary 2.1 of [4], the
mean and the variance of NEK(λ, γ, β) are given respectively by:

E(Y ) = 1 +
λ(1− β−1)

1− γ
,

and

V (Y ) =
λ(1− β−1) + 2λβ−1(1− γ) + λ2(1− β−1)β−1

(1− γ)2
.

For the dispersion, we have the Proposition 2.1.

Proposition 2.1. The NEK(λ, γ, β) family is:

- overdispersed if λ

(
1 +

√
β

[
1 +

β − 1

λ
γ

])
− β(1 − γ) > 0 when β < 1

and γ <
λ

1− β
or β > 1 and − λ

β − 1
< γ < 1;

- underdispersed if one of the following three conditions apply:

- 0 <
λ

1− β
< γ < 1 when β < 1;
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- γ < − λ

β − 1
< 0 when β > 1;

- λ

(
1 +

√
β

[
1 +

β − 1

λ
γ

])
− β(1− γ) < 0 when β < 1 and

γ <
λ

1− β
or β > 1 and − λ

β − 1
< γ < 1.

Proof. Note I(Y ) the Fisher dispersion index. We have:

V (Y )− E(Y ) = λ2β

(
1 +

β − 1

λ
γ

)
− [λ− β(1− γ)]2 .

Thus, if 1 +
β − 1

λ
γ < 0, i.e., β < 1 and 0 <

λ

1− β
< γ < 1 or β > 1 and

γ < − λ

β − 1
< 0, then V (Y )− E(Y ) < 0, i.e., I(Y ) < 0.

And if 1+
β − 1

λ
γ > 0, i.e., β < 1 and γ <

λ

1− β
or β > 1 and − λ

β − 1
< γ < 1,

we have:

V (Y )− E(Y ) =
1

β2(1− γ)2

[
λ

√
β

[
1 +

β − 1

λ
γ

]
+ β(1− γ)− λ

]
×

[
λ

(
1 +

√
β

[
1 +

β − 1

λ
γ

])
− β(1− γ)

]
.(2.5)

The signe of V (Y ) − E(Y ) depends only on the second factor of the second

member of (2.5). Thus, I(Y ) > 1 (< 1) if λ

(
1 +

√
β

[
1 +

β − 1

λ
γ

])
−β(1−γ) >

0 (< 0). �

In particular, if γ = 0, the Fisher dispersion index of the extended Poisson
family is greater, smaller or equal to one according as λ

(
1 +
√
β
)
−β is positive,

negative or null, respectively [3].

2.4. Parameters estimation. Let put θ = (λ, γ, β) the vector of parameters and
consider a n−sample x = x1, . . . , xn. Using the pmf of the new extended Katz
distribution given by (2.2), the logarithm of the maximum likelihood function
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corresponding is:

l(θ) =
nλ

γ

[
1− δ0(x)

]
log(1− γ) + nδ0(xi) log[1− (1− γ)λ/γ]− n log β+(2.6)

nx log γ +
n∑
i=1

log(λ/γ)xi +
n∑
i=1

log

[(
βxi

λ+ γ(xi − 1)
− 1

)1−δ0(xi)
]

where x =
1

n

n∑
i=1

xi, log(x!) =
1

n

n∑
i=1

log(xi!) and δ0(xi) =
1

n

n∑
i=1

δ0(xi). Rela-

tionship (2.6) is valid for 0 < γ < 1, in particular. For γ < 0 or γ = 0, the
log-likelihood is deduced from corresponding pmf (see [4] more details).

In practice, given (2.6), estimators can be easily determined using the maxLik
package for the r statistical environment (see [7] for more details).

3. COMPARISON STUDY WITH AN OTHER EXTENSION

In this section, we exploit two comparison methods: graphical and goodness-
of-fit comparisons.

We compare the new extended Katz distribution with a three-parameter ex-
tended Katz distribution. Indeed, this three-parameter extension of the Katz
distribution has been introduced in [6], denote EK, from the recurrent ratio of
probabilities defined by:

(3.1)
pk+1

pk
=
λ+ γk

k + α
, k = 0, 1, . . . ,

where λ > 0, γ < 1 and α > 0, it is always understood that for γ < 0 if λ+γk < 0

then p(k) = 0 for each k = 1, 2, . . . [2]. The pmf corresponding to (3.1) is [1]:

(3.2) pk =
(λ/γ)k(γ)

k

(α)k
p0, k = 0, 1, . . . ,

where p−10 =2 F1(λ/γ, 1;α; γ) with 2F1 is the hypergeometric function. From
(3.2), given an n−sample x = (x1, . . . , xn) and putting θ = (λ, γ, α) the vector
of parameters, the log-likelihood maximum is gien by:

l(θ) =
n∑
i=1

log [(λ/γ)xiγ
xi ]−

n∑
i=1

log(α)xi − n log [2F1(λ/γ, 1;α; γ)] .

For α = 1, the EK family is reduced to the Katz family [6,8].
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3.1. Graphical comparison. We use the criterion Uk = k
pk
pk−1

to compare the

distributions graphically. This criterion was proposed in [12] and used in [16]
to compare the EK family with an extension of the Crow-Bardwell family. To
these families, we add the Poisson and Katz families.

For these distributions, Uk functions are:

(i) Poisson family: Uk = λ, k = 1, 2, . . .

(ii) Katz family: Uk = λ+ γ(k − 1), k = 1, 2, . . .

(iii) EK family: Uk =
k[λ+ γ(k − 1)]

α + k − 1
, k = 1, 2, . . .

(iv) NEK family: Uk =


(β − λ)(1− γ)λ/γ

1− (1− γ)λ/γ
, k = 1,

[γ − λ+ (β − γ)k][λ+ γ(k − 2)]

γ − λ+ (β − γ)(k − 1)
, k = 2, 3, . . .

FIGURE 1. Comparison of K and NEK families

Figures 1 and 2 show the plots of Uk against k for different parameter values
of these distributions. In Figure 1, we have plotted the Uk curves of the Katz
distribution for (λ = 3, γ = 0.3) and (λ = 3, γ = −0.1) corresponding to the
negative binomial and binomial distributions, respectively, as well as those of
the new Katz extension for (λ = 3, γ = 0.3, β = 5) and (λ = 3, γ = −0.1, β =

4) corresponding to the extensions of the negative and binomial distributions,
respectively. The NEK curves have a spike at the beginning (at point k = 2)
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FIGURE 2. Comparison of EK and NEK families

and have the same behavior at the end as those of the Katz distribution. In
Figure 2, we have plotted the Uk curves of the Katz extension for (λ = 3, γ =

−0.15, α = 0.5) and (λ = 3, γ = −0.15, α = 7), and the new Katz extension for
(λ = 3, γ = −0.15, β = 4) and (λ = 3, γ = −0.15, β = 7). The curves of the new
extension always have a spike at the beginning (at point k = 2), while when
α = 7 for the Katz extension and β = 4 for the new extension, the curves have
the same behavior at the end and are above the Poisson one. When α = 7 for the
Katz extension and β = 7 for the new extension, the curve of the Katz extension
cuts and is above the Poisson one at the end while the one of the new extension
cuts and is below the Poisson one.

3.2. Goodness-of-fit comparison. For the goodness-of-fit comparison, we use
the following statistics: the Akaike’s an information criterion (AIC) and the
statistic of the Pearson’s chi-squared test (χ2). The p − value and the log-
likelihood value (logL) are also presented.

We consider three types of real data: over-, equi- and under-dispersed data
presented in Tables 1, 2 and 3, respectively. First data from in [5] and show
the distribution of the number of accidents among 647 machine operators in a
fixed period of time. In [5], these data were used to introduce the negative
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binomial distribution, a distribution that is considered the prototype of overdis-
persed distributions. The mean and variance of sample are 0.46522 and 0.6919,
respectively. Second data from in [11] and show the distribution of spiders un-
der boards; the mean and variance corresponding are 0.425 and 0.4546. Third
data from in [10] and show the observed data on the number of outbreaks of
strikes in 4-week periods, in a coal mining industry in the United Kingdom dur-
ing 1948-1959. The mean and variance are 0.9935 and 0.7418, respectively.

TABLE 1. Number of accidents for machine operators [5]

Data Distributions
Count Observed Katz EK NEK
0 447 445.8969 446.9444 446.9877
1 132 134.8641 132.8266 131.0274
2 42 43.9947 44.6364 46.9515
3 21 14.7002 15.0002 15.1570
4 3 4.9701 5.0409 4.7534
5 2 2.5739 2.5514 2.1230
Total 467 646.9999 646.9999 647.0000
MLEs λ̂ = 0.30246 λ̂ = 0.00004542 λ̂ = 0.32703

γ̂ = 0.34997 γ̂ = 0.3361 γ̂ = 0.30035

α̂ = 0.0001528 β̂ = 0.46637
logL -592.2671 -592.1506 -506.175
AIC 1188.534 1190.301 1018.35
χ2 3.7627 3.5061 3.4359
p− value 0.5841 0.6225 0.6331

For data in Tables 1 and 2, the new extended Katz family provides a better fit
than the extended Katz for all goodness-of-fit statistics. In Table 3, the extended
Katz family provides a better fit than the new extended Katz for the chi-square
statistic; while the new extended Katz family has a better AIC than the extended
Katz family. We have completed the Poisson family only in equidispersion sti-
tuation, because we can’t modeling the over- or under-dispersed data by an
equidispersed distribution. As show in Table 2, in the equidispersion stuation,
the Katz family fits slightly better than the extended Katz family.
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TABLE 2. Distribution of spiders under boards [11]

Data Distributions
Count Observed Poisson Katz EK NEK
0 159 156.9047 159.0621 159.1324 158.9950
1 64 66.6845 63.3431 63.1457 63.8050
2 13 14.1705 14.6105 14.7721 14.0583
3 4 2.0075 2.5539 2.5457 2.5929
4+ 0 0.2328 0.4304 0.4041 0.5489
Total 240 240.0000 240.0000 240.0000 240.0001
MLEs λ̂ = 0.4250 λ̂ = 0.3982 λ̂ = 0.48275 λ̂ = 0.1909

γ̂ = 0.0631 γ̂ = 0.0358 γ̂ = 0.1623

α̂ = 1.21656 β̂ = 0.2838
logL -205.4559 -205.2142 -205.2135 -189.0786
AIC 412.9118 414.4283 416.4269 384.1572
χ2 2.4432 1.4336 1.4591 1.3928
p− value 0.6548 0.8383 0.8339 0.8455

TABLE 3. Number of outbreaks strikes [10]

Data Distributions
Count Observed Katz EK NEK
0 46 50.4395 46.0325 45.9786
1 76 65.0879 75.0405 75.3973
2 24 32.2716 26.7650 26.4167
3 9 7.4531 6.5470 6.4738
4 1 0.7478 1.6150 1.7336
Total 156 156.9999 156.0000 156.0000
MLEs λ̂ = 1.2905 λ̂ = 0.3142 λ̂ = 0.3142

γ̂ = −0.2988 γ̂ = 0.1111 γ̂ = 0.1596

α̂ = 0.1928 β̂ = 0.9837
logL -188.9164 -187.3729 -151.4964
AIC 381.8328 380.7459 308.9929
χ2 4.7464 1.4513 1.5221
p− value 0.3143 0.8352 0.8227

4. CONCLUSION

The beta transformation is an attractive and interesting technique to construct
the new variables as alternatives to the Poisson variable by adding an additional
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parameter to the distributions of the original variables. The new Katz exten-
sion constructed by this technique is as flexible and competitive as the three-
parameter Katz extension, as shown by the numerical results in the comparative
study. This new extension of the Katz family includes and generalizes, in par-
ticular, the extensions of the Poisson, binomial, and negative binomial families
constructed by the beta transformation. Its Fisher dispersion index, which can
be larger, smaller or equal to one, allows it to model both overdispersed, under-
dispersed equidispersion count data.
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