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BOUNDS AND PROPERTIES OF LCD CODES OVER FIELDS

Seth Gannon and Hamid Kulosman1

ABSTRACT. In 2020, Pang et al. defined binary LCD [n, k] codes with biggest
minimal distance, which meets the Griesmer bound [1]. We give a correction
to and provide a different proof for [1, Theorem 4.2], provide a different proof
for [1, Theorem 4.3], examine properties of LCD ternary codes, and extend
some results found in [6] for any q which is a power of an odd prime.

1. INTRODUCTION

A linear code C is called a linear complementary dual code (LCD code) if
C ∩ C⊥ = 0 holds. LCD codes have many applications in cryptography, com-
munication systems, data storage, and quantum coding theory. In [3] a linear
programming bound for LCD codes and the definition for LD2(n, k) for binary
LCD [n, k]-codes are provided. In 2019 we generalized those results to a formula
for LD2(n, 2) which appears in [2]. In this paper we explore different bounds
and properties for the value LDq where q is a prime power.

The following is Massey’s Theorem which will be used often throughout this
paper:
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Theorem 1.1. ( [7, Proposition 1]) If G is a generator matrix for the [n, k] linear
code C over a field F, then C is an LCD code if and only if the k× k matrix GGT is
nonsingular.

2. BINARY LINEAR LCD [n, 2] CODES WITH BIGGEST MINIMAL DISTANCE, THAT

MEET GRIESMER BOUND

Below is our result from [2] which we provide as a lemma and will use
throughout this section.

Lemma 2.1. [2, Theorem 2.6] For any integer r ≥ 0 and s ∈ {3, 4, 5, 6, 7, 8} we
have:

LD2(6r + 3, 2) = 4r + 2,

LD2(6r + 4, 2) = 4r + 2,

LD2(6r + 5, 2) = 4r + 2,

LD2(6r + 6, 2) = 4r + 3,

LD2(6r + 7, 2) = 4r + 4,

LD2(6r + 8, 2) = 4r + 5.

In other words:

LD2(6r + s, 2) = 4r + ⌊s
6
⌋(1 + smod 6) + 2.

Remark 2.1. Note that the last equality of the above theorem holds for r = −1

which yields that: LD2(2, 2) = 1. Also, if you replace r with r − 1 you have the
following:

LD2(6r − 3, 2) = 4r − 2,

LD2(6r − 2, 2) = 4r − 2,

LD2(6r − 1, 2) = 4r − 2,

LD2(6r + 0, 2) = 4r − 1,

LD2(6r + 1, 2) = 4r + 0,

LD2(6r + 2, 2) = 4r + 1.

In this section we make a correction of the statement to [1, Theorem 4.2] and
give a different proof. We also provide a different proof of [1, Theorem 4.3].
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Let C be an [n, 2] binary linear code let u = (u1, u2, . . . , un) and v = (v1, v2, . . . ,

vn) be the first and second word in a generator matrix G for C for i, j ∈ { 0, 1}
define

Si,j = {ℓ : [ uℓ
vℓ ] =

[
i
j

]
, 1 ≤ ℓ ≤ n}.

For example S0,0 is the number of [ 00 ] columns in the matrix G.

Lemma 2.2. [1, Page 4] We have

GGT =

[
S10 + S11 S11

S11 S01 + S11

]
,

where the numbers Sij is the matrix GGT are taken modulo 2.

Lemma 2.3. Let C = {u,v,u+v,0} and Let C ′ = {u′,v′,u′+v′,0} be two binary
linear [n, 2] codes which have the same numbers S00, S10, S01, and S11 determined
using u, v in C and u′, v′ in C ′ are equivalent.

Proof. Let G (respectively G′) be the generator matrix for C (respectively C ′)
whose rows are u, v (respectively u′, v′). Then G and G′ have the same number
of columns of the say type, so C and C ′ are permutation equivalent. For binary
codes that is the same as equivalent. □

Lemma 2.4. Let C be an [n, 2, d] binary linear code. Then d ≤ ⌊2n
3
⌋.

Proof. By the Griesmer bound n > d + ⌈d
2
⌉ ≥ d + d

2
= 3d

2
, hence d ≤ 2n

3
, hence

d ≤ ⌊2n
3
⌋. □

The following Theorem is a correction of the statement of [1, Theorem 4.2].
It also includes the statement of [1, Theorem 4.3]. The proofs of both of the
theorems are different.

Theorem 2.1. Let C be a binary LCD [n, 2] code with maximal possible d that
meets the Griesmer Bound. Then n ≡ 2(mod 6) or n ≡ 3(mod 6) and in both
cases the code C is unique up to equivalence. Conversely, if n ≡ 2(mod 6) or
n ≡ 3(mod 6) there exists one and only one (up to equivalence) binary LCD [n, 2]

code with maximal possible d, that meets Griesmer Bound.

Proof. Let C be an LCD binary [n, 2, d] code wit maximal possible d (i.e., such
that d = LD2(n, 2)).
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i. n ≡ 0(mod 6): We can write n = 6t for some t ≥ 1. By 2.4, d ≤ ⌊2n
3
⌋,

we get d ≤ 4t. For d = 4t, d + ⌈d
2
⌉ = 6t, hence the code would meet

Griesmer Bound if d = 4t. However, by 2.1, d = 4t − 1. Hence no LCD
code C with maximal d meets the Griesmer Bound in this case.

ii. n ≡ 1(mod 6): We can write n = 6t + 1 for some t ≥ 0. Since by, 2.4,
d ≤ ⌊2n

3
⌋, we get d ≤ 4t. For d = 4t, d+ ⌈d

2
⌉ = 6t < n. Hence there is no

[6t+ 1, 2] code which meets the Griesmer Bound.
iii. n ≡ 2(mod 6): We can write n = 6t+ 2 for some t ≥ 0. By 2.4, d ≤ ⌊2n

3
⌋,

we get d ≤ 4t + 1. For d = 4t + 1, d + ⌈d
2
⌉ = 6t + 2 = n, hence the

code meets the Griesmer Bound when d = 4t + 1. By 2.4 in the case
n = 6t + 2 is equal to 4t + 1, every LCD [6t + 2, 2] code with maximal
possible d meets the Griesmer Bound. It remains to see how many such
codes there are up to equivalence.

Let C = {u,v,u+v,0}. We can assume that the non-zero words have
the follow form

u:
4t+ 1 1s 2t+ 1 0s

v:
x 1s 4t+ 1− x 0s y 1s 2t+ 1− y 0s

u+ v:
x 0s 4t+ 1− x 1s y 1s 2t+ 1− y 0s

Then by counting ones in v and u+ v we get:

x+ y ≥ 4t+ 1

4t+ 1− x+ y ≥ 4t+ 1.

From the second equality

y ≥ x,

then this and the first inequality imply

y ≥ 2t+ 1.

Hence
y = 2t+ 1.

The words u, v, u+ v now have the following form:
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u:
4t+ 1 1s 2t+ 1 0s

v:
x 1s 4t+ 1− x 0s 2t+ 1 1s

u+ v:
x 0s 4t+ 1− x 1s 2t+ 1 1

Hence (by considering the ones in v and u+ v):

x+ 2t+ 1 ≥ 4t+ 1,

4t+ 1− x+ 2t+ 1 ≥ 4t+ 1.

These inequalities imply respectively x ≥ 2t and x ≤ 2t + 1. Thus, x ∈
{2t, 2t + 1}. In the case x = 2t, we get from u and v the values S10 =

2t + 1, S01 = 2t + 1, and S11 = 2t. In the case x = 2t + 1, we get from
u and u + v, S10 = 2t + 1, S01 = 2t + 1, and S11 = 2t. Hence, the codes
that we obtain in the two cases are equivalent 2.3. These codes are LCD
as GGT (from u, v in case x = 2t) looks like[

4t+ 1 2t

2t 4t+ 1

]
=

[
1 0

0 1

]
.

iv. n ≡ 3(mod 6): Reasoning like in the n ≡ 2(mod 6) case, we conclude
that there is, up to equivalence, exactly one LCD [n, 2] code with maximal
d, which meets the Griesmer Bound.

v. n ≡ 4(mod 6): Reasoning like in the n ≡ 1(mod 6) case, we conclude
that there is no [6t+ 4, 2] code which meets the Griesmer Bound.

vi. n ≡ 5(mod 6): We can write n = 6t + 5 for some t ≥ 0. In this case the
code would meet the Griesmer Bound if d = 4t+3, however the maximal
d for an LCD [6t+ 5, 2] codes is 4t+ 2. Thus, no LCD code with maximal
d meets the Griesmer Bound in this case.

□

3. TERNARY LINEAR LCD [n, 2] CODES WITH BIGGEST MINIMAL DISTANCE, THAT

MEET GRIESMER BOUND

The quantity LD2(n, k) that we defined for binary codes will be denoted by
LD3(n, k) in the case of ternary codes (i.e. codes over F3).
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Definition 3.1. LD3(n, k) = max{d | there exists a ternary [n, k, d] LCD code}.

Theorem 3.1. [1, Theorem 5.3 & Theorem 5.4] Let n ≥ 2. Then LD3(n, 2) = ⌊3n
4
⌋

for n ≡ 1, 2(mod 4) and LD3(n, 2) = ⌊3n
4
⌋ − 1 for n ≡ 0, 3(mod 4).

In the next theorem we will determine for which n ternary LCD [n, 2] codes
with maximal d meet the Griesmer Bound.

Theorem 3.2. Let C be a ternary LCD [n, 2, d] code with d = LD3(n, 2). Then C

meets the Griesmer Bound if and only if n ≡ 2(mod 4).

Proof. By using the Griesmer Bound we get n ≥ d + ⌈d
3
⌉, hence d ≤ 3n

4
and

d ≤ ⌊3n
4
⌋.

i. n ≡ 0(mod 4): Set n = 4t for some t ≥ 1. Then, d ≤ ⌊3n
4
⌋ = 3t. We

calculate d + ⌈d
3
⌉ for d = 3t and get 4t, which is equal to n, so that

the code meets the Griesmer Bound when d = 3t = ⌊3n
4
⌋. However,

LD3(n, 2) = ⌊3n
4
⌋− 1, so no ternary LCD[n, 2, d] code with d = LD3(n, 2)

can meet the Griesmer Bound in this case.
ii. n ≡ 1(mod 4): Set n = 4t + 1 for some t ≥ 1. Then ⌊3n

4
⌋ = 3t. If we

calculate d + ⌈d
3
⌉ for d = 3t, we get 4t < n, so the codes with this d do

not meet the Griesmer Bound. Since LD3(n, 2) = 3t we conclude that
no ternary LCD [n, 2, d] code with d = LD3(n, 2) can meet the Griesmer
Bound in this case too.

iii. n ≡ 2(mod 4): Set n = 4t + 2 for some t ≥ 0. Then ⌊3n
4
⌋ = 3t + 1. If we

calculate d+⌈d
3
⌉ for d = 3t+1, we get 4t+2 which is equal to n, Since in

this case LD3(n, 2) = ⌊3n
4
⌋ = 3t+1, by Theorem 3.2 we conclude that any

ternary LCD [n, 2, d] code with d = LD3(n, 2) meets the Griesmer Bound
in this case.

iv. n ≡ 3(mod 4): By reasoning like in the first case we conclude that no
ternary LCD [n, 2, d] code with d = LD3(n, 2) can meet the Griesmer
Bound in this case as well.

□

Let C be a ternary linear [n, 2] code. Let u = (u1, u2, . . . , un) and v = (v1, v2,

. . . , vn) be the first and second word in a generator matrix G for C. For i, j ∈
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{ 0, 1, 2} define the following as in [1, Page 6]

Si,j = {ℓ : [ uℓ
vℓ ] =

[
i
j

]
, 1 ≤ ℓ ≤ n}.

Lemma 3.1. [1, Page 6] Let C be a ternary linear [n, 2] code with generator
matrix G whose rows are u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn). Then

GGT =
[
S10+S20+S12+S21+S11+S22 S11+2S12+S21+S22

S11+2S12+S21+S22 S10+S20+S12+S21+S11+S22

]
where the numbers Sij is the matrix GGT are taken modulo 3.

Proposition 3.1. When n = 2, there is exactly one ternary LCD [n, 2, d] code with
the maximal possible d, which meets the Griesmer Bound, namely the code F2

3.

Proof. When n = 2, LD3(n, 2) = ⌊3n
4
⌋ = ⌊6

4
⌋ = 1 by 3.1. Since for d = 1, d+⌈d

3
⌉ =

2 = n, every ternary LCD [2, 2] code with maximal d meet the Griesmer Bound.
However, there is exactly one such codes since there are 9 linear combinations
of two words over F3, so that the code is equal to F2

3. □

A statement like the following was not mentioned in [1].

Theorem 3.3. When n = 4t + 2 with t ≥ 1, there are (up to equivalence) two
ternary LCD [n, 2, d] codes with maximal possible d, which meet Griesmer Bound.

Proof. When n = 4t+2, by 3.1 we have that LD3(n, 2) = ⌊3n
4
⌋ = ⌊12t+6

4
⌋ = 3t+1.

When d = 3t+1, d+⌈d
3
⌉ = 4t+2 = n, so with this d the codes meet the Griesmer

Bound. It remains to see how many such codes there are up to equivalence. Let
u and v be the first and second rows of a generator matrix of such a code C. We
can assume that u and v have the following form:

u:
1s 2s

3t+ 1
0s

t+ 1

v:
a1

1s
a2

2s
a3

0s
b1

1s
b2

2s
b3

0s
c1

1s
c2

2s
c3

0s

FIGURE 1.

This code is equivalent with the code whose generator matrix has the follow-
ing words:
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u:
1s

3t+ 1
0s

t+ 1

v:
a1 + b2

1s
a2 + b1

2s
a3 + b3

0s
c1 + c2

2s
c3

0s

FIGURE 2.

The word u+ v from 2 has the following form:

u+ v:
a1 + b2

2s
a2 + b1

0s
a3 + b3

1s
c1 + c2

1s
c3

0s

FIGURE 3.

Taking into account the number of ones and twos in the 3 words above, we
get:

(3.1) a1 + a2 + a3 + b1 + b2 + b3 = 3t+ 1,

(3.2) a1 + a2 + b1 + b2 + c1 + c2 ≥ 3t+ 1,

(3.3) a1 + a3 + b1 + b3 + c1 + c3 ≥ 3t+ 1.

From (3.1) and (3.2) we get

(3.4) c1 + c2 ≥ a3 + b3,

and from (3.1) and (3.3) we get

(3.5) c1 + c2 ≥ a2 + b1.

The word 2u+ 2v from 2 has the following form:

2u + 2v:
a1 + b2

1s
a2 + b1

0s
a3 + b3

2s
c1 + c2

2s
c3

0s

Counting ones and twos we get

(3.6) a1 + b2 + a3 + b3 + c1 + c2 ≥ 3t+ 1,
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which together with (3.1) implies

(3.7) c1 + c2 ≥ a1 + b2.

If we consider other linear combinations of u and v from 2 and do a similar
reasoning, we end up with one of the inequalities (3.4), (3.5), (3.7) or with
the inequality (3.1). Note that there are exactly 8 non-zero linear combinations,
each of the relations (3.1), (3.4), (3.5), (3.7) would be yielded from exactly two
linear combinations. If we add (3.4), (3.5), and (3.7) we get:

3(c1 + c2) ≥ a1 + b2 + a2 + b1 + a3 + b3 = 3t+ 1.

Hence,

c1 + c2 ≥ t+
1

3
,

and so
c1 + c2 ≥ t+ 1.

However, from the word u in 2 we can see that

c1 + c2 ≤ t+ 1.

Hence,

c1 + c2 = t+ 1,

c3 = 0.
(3.8)

Now, (3.4), (3.5), (3.7), and (3.8) imply:

(3.9) a1 + b2 ≤ t+ 1

(3.10) a2 + b1 ≤ t+ 1

(3.11) a3 + b3 ≤ t+ 1

Adding (3.9) and (3.10) we get

(3.12) a1 + b2 + a2 + b1 ≤ 2t+ 2,
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which together with (3.1) implies

(3.13) a3 + b3 ≥ t− 1.

Similarly, we get

(3.14) a1 + b2 ≥ t− 1,

(3.15) a2 + b1 ≤ t− 1.

Now from (3.9), (3.10), (3.11), (3.13), (3.14), and (3.15) we conclude

(3.16) a1 + b2 ∈ {t− 1, t, t+ 1},

(3.17) a2 + b1 ∈ {t− 1, t, t+ 1},

(3.18) a3 + b3 ∈ {t− 1, t, t+ 1}.

The relations (3.16), (3.17), (3.18), and (3.1) imply that there are six possible
cases:

(3.19) a1 + b2 = t− 1, a2 + b1 = a3 + b3 = t+ 1,

(3.20) a2 + b1 = t− 1, a1 + b2 = a3 + b3 = t+ 1,

(3.21) a3 + b3 = t− 1, a1 + b2 = a2 + b1 = t+ 1,

(3.22) a1 + b2 = a2 + b1 = t, a1 + b2 = t+ 1,

(3.23) a1 + b2 = a3 + b3 = t, a2 + b1 = t+ 1,
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(3.24) a2 + b1 = a3 + b3 = t, a1 + b2 = t+ 1.

In each of these cases we have codes with maximal possible d = 3t+ 1 which
meet the Griesmer Bound. We need to check which of them are LCD. From 2,
we use 3.1 to calculate GGT . For example, in case (3.19) we get

GGT =

[
3t+ 1 3t+ 1

3t+ 1 3t+ 1

]
=

[
1 1

1 1

]
,

so the code is not a LCD by 1.1. Similarly, the codes (3.20) and (3.22) are not
LCD. In the case (3.21) we get

GGT =

[
3t+ 1 3t+ 2

3t+ 2 3t+ 2

]
=

[
1 2

2 2

]
,

so the code is LCD. Similarly, the codes (3.23) and (3.24) are LCD.
So far we concluded that we have three [n, 2, d] LCD codes with largest possi-

ble d (up to equivalence) that meet the Griesmer Bound. They have generator
matrices with words u, and v from 2, with the parameters a1, a2, a3, b1, b2,
b3, c1, and c2 satisfying (3.8), (3.21), (3.23), and (3.24). We not consider the
equivalence of these 3 codes. The code (3.21) has in all of its 8 non-zero words
the number of zeros equal to either t− 1 or t + 1. Since the number of zeros in
every non-zero word is not equal to t, we conclude that this code is not equiva-
lent to the codes (3.23) or (3.24). The reason is the fact that the codes (3.23)
and (3.24) have some words with t zeros, and the number of zeros cannot be
changed by permutation of coordinates and multiplication of certain columns
by 2. The code (3.23) and (3.24) are equivalent since the generator matrix with
rows u, and v for the code (3.23) is equal to the generator matrix with rows u,
and 2u + v for the code (3.24). Thus up to equivalence, we have two ternary
LCD [4t + 2, 2] codes (t ≥ 1) with biggest possible d, which meet the Griesmer
Bound. □

4. LD3(n, n− i) = 2 UNDER CERTAIN ASSUMPTIONS

Theorem 4.1. For every i ≥ 3 and n ≥ 3i+1
2

, LD3(n, n− i) = 2.
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Proof. Let C be a ternary [n, n − i, d] code. Using the sphere packing bound we
have

3n−i
(
1 + 2n+ · · ·+ 2t

(
n
t

))
≤ 3n,

where t = ⌊d−1
2
⌋. Hence

(4.1) 1 + 2n+ · · ·+ 2t
(
n
t

)
≤ 3i.

When n ≥ 3i+1
2

, 1 + 2n ≥ 3i + 2. Hence (4.1) implies that t = 0, i.e., ⌊d−1
2
⌋ = 0.

Hence d ≤ 2. Now we show that there is a ternary LCD [n, n−i, 2] code for every
i ≥ 3 and n ≥ 3i+1

2
. If i ≡ 0(mod 3), let

G =
[
In−i ︸ ︷︷ ︸

i

1 1 . . . 1

]
, where 1 =

[ 1
1
.
.
.
1

]
}n− i.

Let R1, R2, . . . Rn−i be the rows of G. Then ⟨Rj, Rj⟩ = 1 for every j ∈ {1, 2, . . . , n−
i}, and ⟨Rj, Rj′⟩ = 0 for any j, j′ ∈ {1, 2, . . . , n − i} with j ̸= j′. Hence
GGT = In−i. If i ≡ 1(mod 3), let

G =
[
In−i ︸ ︷︷ ︸

i

1 1 . . . 1 000
]
, where 000 =

[ 0
0
.
.
.
0

]
}n− i.

Using the same Reasoning as the previous case we see that GGT = In−i.
Finally if i ≡ 2(mod 3), let

G =
[
In−i ︸ ︷︷ ︸

i

1 1 . . . 1 000 000
]
.

Like in the previous two cases GGT = In−i. Whenever GGT = In−i, the code
C whose generator matrix is G is LCD by 5.1. Note also that the minimum
distance will always be ≥ 2 since we always have at least one 1 column (since
i ≥ 3) and a linear combination of greater than or equal to 2 rows of G has at
least 2 non-zero values coming from the In−i part. □

5. NONEXISTENCE OF CERTAIN LCD TERNARY CODES

Lemma 5.1. There is no [n, 1, 3j] LCD code for j ≥ 1 and n ≥ 3.

Proof. Suppose to the contrary. Let C be an LCD[n, 1, 3j] ternary code. Then
GGT = [⟨R1, R1⟩] = [0] since each addend in ⟨R1, R1⟩ is either 0 or 1 and there
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are 3j ones, hence ⟨R1, R1⟩ = 0. Here R1 is the only row of a generator matrix
G of C. Now by 1.1 C is not a LCD code, a contradiction. □

Theorem 5.1. Suppose i, k ≥ 1

i. If n ≡ 0(mod 3) and n ≥ 12i, there is no [n, k, n− 3i] LCD ternary code.
ii. If n ≡ 1(mod 3) and n ≥ 12i+ 4, there is no [n, k, n− 3i− 1] LCD ternary

code.
iii. If n ≡ 2(mod 3) and n ≥ 12i+ 8, there is no [n, k, n− 3i− 2] LCD ternary

code.

Proof.

i. For k = 1, there is no [n, 1, n − 3i] LCD ternary code by 5.1 since n ≡
0(mod 3). Let k = 2. Suppose to the contrary. Let C be an [n, 2, n − 3i]

LCD ternary code. By the Griesmer Bound, n ≥ n−3i+⌈n−3i
3

⌉ = n−3i+
n
3
−i, which implies n ≤ 12i. Hence n = 12i (since we assumed n ≥ 12i).

Then n − 3i = 9i. However, by 3.1, LD3(12i, 2) = ⌊3·12i
4

⌋ − 1 = 9i − 1.
Which is a contradiction.

Now suppose k ≥ 3. Suppose to the contrary. Let C be an [n, k, n− 3i]

LCD ternary code. Since n ≥ 12i, n − 3i ≥ 9i. Hence by the Griesmer
Bound, n ≥ n − 3i + ⌈n−3i

3
⌉ + ⌈9i

9
⌉, which implies 3i ≥ n

3
− i + i and so

n ≤ 9i, a contradiction.
ii. For k = 1, there is no [n, 1, n− 3i− 1] LCD ternary code by 5.1 since n ≡

0(mod 3). Let k = 2. Suppose to the contrary. Let C be an [n, 2, n−3i−1]

LCD ternary code. By the Griesmer Bound we have n ≥ n − 3i − 1 +

⌈n−3i−1
3

⌉. If we write n = 3m + 1 we get from here 3i + 1 ≥ m − i,
hence 4i + 1 ≥ m = n−1

3
, hence n ≤ 12i + 4. Hence n = 12i + 4 (since

we assumed n ≥ 12i + 4). However, by 3.1, LD3(12i + 4, 2) = 9i + 2

and n − 3i − 1 = 9i + 3. We have a contradiction. Suppose k ≥ 3.
Suppose to the contrary. Let C be an [n, k, n− 3i− 1] LCD ternary code.
Since n ≥ 12i + 4, n − 3i − 1 ≥ 9i + 3. Hence by the Griesmer Bound,
n ≥ n − 3i − 1 + ⌈n−3i−1

3
⌉ + ⌈9i+3

9
⌉, which implies 3i ≥ n

3
− 1 and so

n ≤ 9i+ 3, a contradiction.
iii. For k = 1, there is no [n, 1, n− 3i− 2] LCD ternary code by 5.1 since n ≡

0(mod 3). Let k = 2. Suppose to the contrary. Let C be an [n, 2, n−3i−2]

LCD ternary code. By the Griesmer Bound we have n ≥ n − 3i − 2 +
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⌈n−3i−2
3

⌉. If we write n = 3m + 2 we get from here 3i + 2 ≥ m − i,
hence 4i + 2 ≥ m = n−2

3
, hence n ≤ 12i + 8. Hence n = 12i + 8 (since

we assumed n ≥ 12i + 8). However, by 3.1, LD3(12i + 8, 2) = 9i + 2

and n − 3i − 1 = 9i + 3. We have a contradiction. Now suppose k ≥ 3.
Suppose to the contrary. Let C be an [n, k, n− 3i− 2] LCD ternary code.
Since n ≥ 12i + 8, n − 3i − 2 ≥ 9i + 6. Hence by the Griesmer Bound,
n ≥ n − 3i − 2 + ⌈n−3i−2

3
⌉ + ⌈9i+6

9
⌉, which implies 3i ≥ n

3
− 2 and so

n ≤ 9i+ 6, a contradiction.

□

6. THE RELATION LDq(n, k) ≤ LDq(n, k − 1)

For binary codes the relation LD2(n, k) ≤ LD2(n, k − 1) for any 2 ≤ k ≤ n was
proved in [4, Theorem 8]. For ternary codes a proof was given in [6]. For other
q a proof was given in the same paper by Harada and Saito. Their proof relies
on the proof for q = 3 and a theorem from [5] . For codes over Fq a proof was
also attempted in [1], but it is not correct since [1, Lemma 7.1] is not proven
correctly. We now give a simple proof over Fq (q a power of an odd prime) using
the following theorem of Serre:

Theorem 6.1. [4, Proposition 24] Let q be a power of an odd prime. If M is a
k × k regular matrix over Fq with k ≥ 2, then there exists a k × k regular matrix
Q such that

QMQT = diag[1, 1, . . . , 1, δ],

where δ = 1 if det(M) is a square in Fq, and δ is any non-square in Fq if det(M) is
a non-square in Fq

Theorem 6.2. [4, Theorem 25] Let q be a power of an odd prime and C an [n, k, d]

code Fq. Then C is LCD if and only if there is a generator matrix G of C such that
GGT = diag[1, 1, . . . , 1, δ], where δ ∈ Fq \ {0}.

Theorem 6.3. We have

LDq(n, k) ≤ LDq(n, k − 1)

for any n ≥ 2, k ≥ 2 and q a power of an odd prime.
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Proof. Let n ≥ 2, k ≥ 2 and q a power of an odd prime. Let C be an LCD [n, k]

code over Fq with d = LDq(n, k). Then by 6.2 there is a generator matrix G for
C such that

GGT = diag[1, 1, . . . , 1, δ],

δ ∈ Fq \ {0}. Let G1 be the matrix whose rows are the first k − 1 rows of G

and let C1 be the code with generator matrix G1. Then C1 is an [n, k − 1] code,
which is LCD by as G1G

T
1 = Ik−1. Since d(C1) ≥ d(C), we in particular have

LDq(n, k) ≤ LDq(n, k − 1). □

Corollary 6.1. Suppose 2 ≤ k ≤ n. Then

LDq(n, k) ≤ LDq(n, k − 1)

for any q.

Proof. For q = 2 see [4, Theorem 8]. For q a power of an odd prime, see 6.3.
Now assume q ≥ 4. Let C be an LCD [n, k] code over Fq with d = LDq(n, k). Let
D be any [n, k− 1] sub-code of C. By [5], D is equivalent to some LCD [n, k− 1]

code E. Hence they have the same minimum distance. Since d(D) ≥ d(C), we
have d(E) ≥ d(C). Hence LDq(n, k) ≤ LDq(n, k − 1). □

7. AN LCD [n, k + 1] CODE CONTAINING THE GIVEN LCD [n, k] CODE AS A

SUBCODE

The next theorem was proved for q = 3 in [6, Proposition 5(i) and Remark
6]. We give a constructive proof for any q which is a power of an odd prime
using [4, Proposition 24].

Theorem 7.1. Suppose that 1 ≤ k ≤ n− 1 and that q is a power of an odd prime.
For any LCD [n, k] code over Fq there is an LCD [n, k + 1] code containing C as a
subcode.

Before we give a proof of the above theorem, we will give the next corollary
of [4, Theorem 25].

Corollary 7.1. Let q be a power of an odd prime. If C is an LCD [n, k] code over
Fq with k ≥ 1 and n− k ≥ 1, then there is a word x ∈ C⊥ such that ⟨x, x⟩ = 1.
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Proof. By 1.1, C⊥ is an LCD [n, n − k] code. By 6.2 it has a generator matrix G

such that GGT = diag[1, 1, . . . , 1, δ], δ ∈ Fq \ {0} Hence there is a word in C⊥ (a
row of the generator matrix) such that ⟨x, x⟩ = 1. □

Proof. Let G be a generator matrix of C. By 1.1, C⊥ is an LCD [n, n − k] code.
Hence by the 7.1, there is a word x ∈ C⊥ such that ⟨x, x⟩ = 1. Consider the
matrix G′ obtained by putting the word x in the first row of G′ and the rows G

in the rows below (in the order they are in G). Then

G′(G′)T =



1 0 . . . 0

0

.

. GGT

.

0


Hence, G′(G′)T is regular (as GGT is regular), so the code C ′ whose generator
matrix is G′ is a LCD code by 1.1 and C is a subcode of C ′. □

Remark 7.1. The difference between this proof and the proof in [6] is in the way
the word x is produced. In [6, Lemma 3(i)] a theorem about self-orthogonality
of ternary codes was used, so the constructive proof given in [6, Remark 6] works
for only ternary codes. The above proof uses Serre’s Theorem and our constructive
proof works for any Fq, q a power of an odd prime.
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