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HYBRID METHOD BASED ON EXPONENTIAL PENALTY FUNCTION AND
MOMA-PLUS METHOD FOR MULTIOBJECTIVE OPTIMIZATION

Alexandre Som, Kounhinir Some1, and Abdoulaye Compaore

ABSTRACT. In this paper, we propose a modified version of the MOMA-plus
method to solve multiobjective optimization problems. We use an exponential
penalty function instead of the Lagrangian penalty function in the initial ver-
sion of MOMA-Plus in order to improve the convergence and distribution to
the Pareto optimal solutions. The theoretical and numerical results show that
this new version improves the quality of the obtained solutions compared to
the last version. Six test problems have been successfully resolved, allowing
us to highlight the good convergence and good distribution of Pareto optimal
solutions.

1. INTRODUCTION

Decision problems are mostly modeled as multiobjective optimization prob-
lems. Multiobjective optimization problems are mathematical representations in
which multiple functions are optimized simultaneously, often with constraints.
In general, multiobjective optimization problems do not have a unique solution
due to the conflicting nature of objective functions. These problems are difficult
to resolve, and there is no general method that is able to solve them efficiently.
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In the literature, there are many methods to resolve these kinds of problems.
These methods can be classified into two main groups, namely the exact meth-
ods [7] and the metaheuristics [9, 17]. The methods of the first group are not
suitable when the number of variables and/or objective functions is large. The
second group of methods aims to find a good approximation of Pareto optimal
solutions. Many methods proceed by transforming the multiobjective optimiza-
tion problem into a single-objective optimization problem without constraint by
using scalarization function and penalty function successively. That is the cas of
MOMA-Plus method.

The MOMA-Plus method [21], is a method that transforms the initial problem
into a single-objective optimization problem without constraints. It uses a La-
grangian penalty function and an aggregation function to convert any nonlinear
multiobjective optimization problem. Weighted Chebychev distance is used in
nonlinear cases and weighted son in linear cases. It is important to note that
the MOMA-plus method has been used to solve several types of optimization
problems, such as linear multiobjective optimization problems [19], nonlinear
multiobjective optimization problems [20, 21], single-objective and multiobjec-
tive affectation and transport problems [14, 15], single-objective and multiob-
jective fuzzy optimization problems [2, 3], etc. Through these different works,
MOMA-Plus has given satisfactory results, but it is not the best simultaneously
on convergence, distribution and speed. This is why this current work aims
to improve the performance of MOMA-Plus by using the exponential penalty
function instead of the Lagrangian penalty function.

In the literature, there are many penalization techniques to convert a con-
strained problem into an unconstrained problem [5, 8, 10–12, 16, 22]. For this
paper, we will focus on that of Sanming Liu et al [11] which propose a penalty
function based on an exponential function. The optimality of solution of sub-
problem obtained bu using his exponential penalty function is proved. In ad-
dition, it is proved that, this penalty function is suitable for solving min−max

problem.
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In this work, the coupling of MOMA-Plus method and the exponential penalty
function has given a new method for the resolution of some multiobjective non-
linear multiobjective optimization problems. We have demonstrated theoreti-
cally the convergence of the algorithm of the new version. In addition, six test
problems [6] are solved and numerical solutions are compared to those of the
last version. This allowed us to highlight the performance of the novel version.

For a best presentation of this work, Section 2 will be used as preliminary.
Section 3 will include the main results of this paper, and Section 4 will deal with
the conclusion.

2. PRELIMINARIES

2.1. Definitions. A multiobjective optimization problem can be described as
follows:

(2.1)
min f(x) = (f1(x), f2(x), . . . , fp(x))

s.t :

{
g(x) ≤ 0

x ∈ Rn

where f = (f1, f2, . . . , fp) is the vector whose components are the objectives
functions and g = (g1, g2, . . . , gm) is the vector whose components are the con-
straints functions.

For the solution of such a problem, it is necessary to know some sets as the de-
cision space (noted by χ) and objective space (noted by Y) with are respectively
the set of admissible solutions and its image by f . We have

χ = {x ∈ Rn : g(x) ≤ 0} and Y = {f(x) : x ∈ χ}.

Definition 2.1. A solution x∗ ∈ χ is weakly Pareto optimal for the problem (2.1)
if and only if there is no point x ∈ χ such that:

fj(x) < fj(x
∗), ∀j = 1, 2, . . . , p.

Definition 2.2. A solution x∗ ∈ χ is Pareto optimal if there is no solution x ∈ χ

such that fj(x) ≤ fj(x
∗), ∀j = 1, 2, . . . , p and for at least one k ∈ {1, 2, . . . , p}, we

have fk(x) < fk(x
∗).

In addition to these definitions, we will also use the notion of ideal point.
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Definition 2.3 ( [7]). The ideal point is the vector z∗ ∈ Rp whose components z∗j
are obtained by individually minimizing each objective function fj, j = 1, 2, . . . , p

under the constraints of the initial multiobjective optimization problem. In other
words

(2.2)
z∗j = min fj(x)

s.t :

{
g(x) ≤ 0

x ∈ Rn.

Definition 2.4. The weighted Chebychev distance is a function which allows to
transform multiobjective optimization function to single-objective optimization func-
tion. It is formulates by:

(2.3) Ψ(f(x), λ, z∗) = max
j=1,2,...,p

{
λj|fj(x)− z∗j |

}
,

with λ = (λ1, λ2, . . . , λp) such that λj > 0 and
p∑
j

λj = 1.

2.2. Exponential penalization function. A Penalty function is a function that
transform a constrained optimization problem into an unconstrained optimiza-
tion problem. In this work, we will only use the exponential penalization defined
in [11].

Definition 2.5. ( [11]) The exponential penalty function is defined as follows:

(2.4) Πn(x) =
1

κn

m∑
i=1

υ[κngi(x)],

where κn is the penalty coefficient verifying the property:

(2.5) lim
n→+∞

κn = +∞,

and υ is a real-valued function defined by:

(2.6) υ(t) = exp(t− 1).

Using the penalty function (2.4) allows us to transform the problem (2.1) into
a multiobjective optimization problem without constraints. In other words:

(2.7) min
{
f(x) +

1

κn

m∑
i=1

υ[κngi(x)]
}
.
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This is equivalent to:

(2.8) min
{
f1(x) +

1

κn

m∑
i=1

υ[κngi(x)], . . . , fp(x) +
1

κn

m∑
i=1

υ[κngi(x)]
}
.

Definition 2.6. ( [11]) Let Sn ⊂ Rk, n ∈ {1, 2, . . .}, denote:

X lim
n→+∞

Sn = {x ∈ Rk : x ∈ Sn, for infinitely many n ∈ N};

X lim
n→+∞

Sn = {x ∈ Rk : x ∈ Sn, for all but finitely many n ∈ N}.

Note that χ∗ is the set of weakly Pareto optimal solutions of the problem (2.1);
χ∗
n is the set of weakly Pareto optimal solutions of the problem (2.8); Ω∗ is the

the set of Pareto optimal solutions of the problem (2.1) and Ω∗
n the the set of

Pareto optimal solutions of the problem (2.8) .

2.3. Alienor transformation.

Definition 2.7. [3] We call Alienor transformation, any transformation allowing
to reduce a function of several variables to a function of single variable with the
help of α−dense curves.

α−dense curves are studied in [4] and the interested reader can consult it.
The Alienor transformation that we use in this paper is the Konfe-Cherruault
transformation [1]. It is given by the following relation (2.9):

(2.9) xi = σi(θ) =
1

2

[
(bi − ai) cos(ωiθ + φi) + ai + bi

]
, i = {1, . . . , n}

where ωi and φi are slowly increasing sequences and θ ∈ [0; θmax], with

θmax =
(b− a)θ1 + (b+ a)

2
and θ1 =

2π − φ1

ω1

, with a = min
i=1,n

ai and b = max
i=1,n

bi.

Theorem 2.1. [3] Any point xi ∈ [ai; bi] can be approximated by at least one point
defined by the Alienor transformation σi(θ).

2.4. MOMA-plus method. MOMA-plus method was developed by Somé. K. et
al [20] for solving multiobjective optimization problems. The different steps of
the MOMA-plus method are :

(1) STEP I: Scalarization : transform the problem (2.1) into a single-objective
optimization problem with constraints.

(2) STEP II: Penalization : transform the last formulation into a single-
objective optimization problem without constraints.
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(3) STEP III: Alienor transformation : transform the obtained formulation
at the step II into one variable optimization problem;

(4) STEP IV: Solutions research : resolve the single-objective optimization
problem with one variable;

(5) STEP V: Solution initialization : transform the obtained solution in R
to the solution of the initial problem.

3. MAIN RESULTS

3.1. Theoretical results. In this work, MOMA-Plus method is modified at two
levels. At the one hand we start this version by the penalization and at the other
hand we replace the Lagrangian penalty function by the exponential penalty
function.

3.1.1. Penalization of objective functions. At this step, we have used the the ex-
ponential penalty function to transform constrained optimization problem into
unconstrained optimization problem.

Theorem 3.1. All Pareto optimal of (2.8) is also Pareto optimal solution of (2.1)
and reciprocally.

Proof. Let x∗ be a Pareto optimal solution of problem (2.8). Suppose that x∗ is
not a Pareto optimal solution of problem (2.1) then there exist y ∈ χ such that
∀ j = 1, . . . , p, fj(y) ≤ fj(x

∗) and at last one k ∈ {1, . . . , p}, fk(y) < fk(x
∗). As

x∗, y ∈ χ then there exist n0 ≥ 0 such that ∀n ≥ n0,

fj(y) +
1

κn

m∑
i=1

υ[κngi(y)] ≤ fj(x
∗) +

1

κn

m∑
i=1

υ[κngi(x
∗)],

∀j = {1, . . . , p}, and all k ∈ {1, . . . , p}. This implies

fk(y) +
1

κn

m∑
i=1

υ[κngi(y)] < fk(x
∗) +

1

κn

m∑
i=1

υ[κngi(x
∗)].

That is absurd because x∗ is a Pareto optimal solution of problem (2.8).
Conversly, let x∗ be a Pareto optimal solution of problem (2.1). Suppose that

x∗ is not a Pareto optimal solution of problem (2.8), then there exist x ∈ χ such
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that

j(x) +
1

κn

m∑
i=1

υ[κngi(x)] ≤ fj(x
∗) +

1

κn

m∑
i=1

υ[κngi(x
∗)],

∀j = 1, . . . , p and at last one k ∈ {1, . . . , p},

fk(x) +
1

κn

m∑
i=1

υ[κngi(x)] < fk(x
∗) +

1

κn

m∑
i=1

υ[κngi(x
∗)].

As x, x∗ ∈ χ, there exist n0 ≥ 0 such that ∀n ≥ n0, fj(x) ≤ fj(x
∗) , ∀j = 1 . . . , p

and at last one k ∈ {1, . . . , p}, fk(x) < fk(x
∗). That is absurd because x∗ is a

Pareto optimal solution of problem (2.1). �

3.1.2. Scalarization. To transform the problem (2.1) into an unconstrained single-
objective optimization problem we propose to use the relation (2.8) and to apply
an aggregation technique. By replacing fj of the relation (2.3) by:

(3.1) Fj(x) = fj(x) +
1

κn

m∑
i=1

υ[κngi(x)],

we obtain the aggregation function Ψ written as:

(3.2) Ψ(F, λ, z∗) = max
j=1,2,...,p

[
λj|Fj − z∗j |

]
.

The problem (2.8) becomes:

(3.3) min
x

Ψ(F (x), λ, z∗).

This transformation gives us a single objective optimization problem without
constraints.

Let x∗ be the optimal solution of the problem (3.3) for each (λ1, λ2, . . . , λp) > 0

such that λ1 + λ2 + . . . + λp = 1 and let Yn be the set of all optimal solutions of
the problem (3.3). We have the following theorems :

Theorem 3.2. lim
n→+∞

(Yn\χ∗
n) = ∅.

Proof. Assume that lim
n→+∞

(Yn\χ∗
n) 6= ∅, then ∃x∗ ∈ lim

n→+∞
(Yn\χ∗

n) and a subset

nρ ⊂ N, ρ ∈ {1, 2, . . .} such as x∗ ∈ (Ynρ\χ∗
nρ
). Then x∗ ∈ Ynρ and x∗ /∈ χ∗

nρ
. Since

x∗ /∈ χ∗
nρ

, then

(3.4) ∃y ∈ χ∗
nρ

: Fj(y) < Fj(x
∗) ,∀j = 1, . . . , p.
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If x∗ ∈ χ , ∃x′ ∈ χ∗
nρ

Fk(x
′) < Fk(x

∗) ∀k = {1, 2, . . . , p}

=⇒ Fk(x
′)− z∗k < Fk(x

∗)− z∗k .
=⇒ |Fk(x

′)− z∗k| < |Fk(x
∗)− z∗k| because Fk(x

′)− z∗k > 0, ∀k = 1, 2, . . . , p.
=⇒ λk|Fk(x

′)− z∗k| < λk|Fk(x
∗)− z∗k| because λj > 0, ∀j = 1, 2, . . . , p.

=⇒ max
k=1,2,...,p

{λk|Fk(x
′)− z∗k|} < max

k=1,2,...,p
{λk|Fk(x

∗)− z∗k|}.

That is equivalent to Ψ(F (x′), λ, z∗) < Ψ(F (x∗), λ, z∗); which is absurd because
x∗ is the optimal solution of the problem (3.3).

If x∗ /∈ χ, then there is y ∈ χ, such that fj(y) < fj(x
∗) ∀ j = 1, 2, . . . , p .

As y ∈ χ and x∗ /∈ χ, we have:

lim
nρ−→+∞

1

κnρ

m∑
i=1

υ[κnρgi(y)] = 0 and lim
nρ−→+∞

1

κnρ

m∑
i=1

υ[κnρgi(x
∗)] = +∞.

Then, there exist ρ0 ∈ N, such that for ρ ≥ ρ0:

fj(y) +
1

κnρ

m∑
i=1

υ[κnρgi(y)] < fj(x
∗) +

1

κnρ

m∑
i=1

υ[κnρgi(x
∗)].

Hence: Fj(y) < Fj(x
∗),

=⇒ Fj(y)− z∗j < Fj(x
∗)− z∗j ,∀j = 1, 2, . . . , p.

=⇒ λj|Fj(y)− z∗| < λj|Fj(x
∗)− z∗|, ∀ j = 1, 2, . . . , p.

Hence max
j=1,...,p

{λj|Fj(y)− z∗|} < max
j=1,...,p

{λj|Fj(x
∗)− z∗|}.

⇔ Ψ(F (y), λ, z∗) < Ψ(F (x∗), λ, z∗). Which is absurd, then lim
n→+∞

(Yn\χ∗
n) = ∅ �

Theorem 3.3. lim
n→+∞

(Yn\χ∗
n) = ∅.

Proof. Let’s assume that lim
n→+∞

(Yn\χ∗
n) 6= ∅, then ∃x∗ ∈ lim

n→+∞
(Yn\χ∗

n). ∃n0 ∈ N,

such as ∀ n ≥ n0: x∗ ∈ Yn\χ∗
n. Then x∗ ∈ Yn and x∗ /∈ χ∗

n.
As x∗ /∈ χ∗

n, then

(3.5) ∃y ∈ χ∗
n : Fj(y) < Fj(x

∗),∀j = 1, 2, . . . , p.

If x∗ ∈ χ , ∃x′ ∈ χ∗
n et k = 1, 2, . . . , p such that Fk(x

′) < Fk(x
∗).

=⇒ ∃x′ ∈ χ∗
n Fk(x

′)− z∗k < Fk(x
∗)− z∗k, ∀k = 1, 2, . . . , p.

=⇒ |Fk(x
′)− z∗k| < |Fk(x

∗)− z∗k|, because Fj(x
′)− z∗j > 0, ∀j = 1, 2, . . . , p.
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As λj > 0, λk|Fk(x
′)− z∗k| < λk|Fk(x

∗)− z∗k|,∀j = 1, 2, . . . , p. We have

max
k=1,...,p

{λk|Fk(x
′)− z∗k|} < max

k=1,...,p
{λk|Fk(x

∗)− z∗k|}.

That is equivalent to Ψ(F (x′), λ, z∗) < Ψ(F (x∗), λ, z∗), which is absurd because
x∗ is the optimal solution of the problem (3.3).

If x∗ /∈ χ, then there exist y ∈ χ such that fj(y) < fj(x
∗), ∀j = 1, 2, . . . , p.

Then

fj(y) +
1

κn

m∑
i=1

υ[κngi(y)] < fj(x
∗) +

1

κn

m∑
i=1

υ[κngi(x
∗)].

This is equivalent to: Fj(y) < Fj(x
∗),∀j = 1, 2, . . . , p. So Fj(y) − z∗j < Fj(x

∗) −
z∗j ,∀j = 1, 2, . . . , p.

=⇒ λj|Fj(y)− z∗| < λj|Fj(x
∗)− z∗|, ∀ j = 1, 2, . . . , p.

=⇒ max
j=1,2,...,p

{λj|Fj(y)− z∗|} < max
j=1,2,...,p

{λj|Fj(x
∗)− z∗|}.

=⇒ Ψ(F (y), λ, z∗) < Ψ(F (x∗), λ, z∗). That is absurd, because x∗ ∈ Yn.

Hence lim
n→+∞

(Yn\χ∗
n) = ∅ �

Theorem 3.4. Any optimal solution of problem (3.3) is a Pareto optimal solution
of problem (2.8) and reciprocally.

Proof. Let x∗ be the optimal solution of problem (3.3), then ∀ y ∈ χ; Ψ(F (x∗), λ,

z∗) < Ψ(F (y), λ, z∗). Suppose that x∗ is not a Pareto optimal solution of (2.8),
then ∃x ∈ χ such that

fj(x) +
1

κn

m∑
i=1

υ[κngi(x)] ≤ fj(x
∗) +

1

κn

m∑
i=1

υ[κngi(x
∗)],

∀j = 1, 2, . . . , p and at last one k ∈ {1, . . . , p} such that

fk(x) +
1

κn

m∑
i=1

υ[κngi(x)] < fk(x
∗) +

1

κn

m∑
i=1

υ[κngi(x
∗)].

⇒ Fj(x) ≤ Fj(x
∗), j = 1, 2, . . . , p and at last one k ∈ {1, . . . , p} we have Fk(x) ≤

Fk(x
∗).

As z∗ is the ideal point of (2.8), then

=⇒ Fj(x) − z∗j ≤ Fj(x
∗) − z∗j ,∀j = 1, 2, . . . , p and at last one k = {1, . . . , p},

Fk(x)− z∗k < Fk(x
∗)− z∗k.
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=⇒ |Fj(x)−z∗j | ≤ |Fj(x
∗)−z∗j |,∀j = 1, 2, . . . , p and at last one k ∈ {1, . . . , p},

|Fk(x)− z∗k| < |Fk(x
∗)− z∗k|.

=⇒ λj|Fj(x) − z∗j | ≤ λj|Fj(x
∗) − z∗j |,∀j = 1, 2, . . . , p and at last one k ∈

{1, . . . , p}, such that
λk|Fk(x)− z∗k| < λk|Fk(x

∗)− z∗k|, because λl > 0, ∀l = 1, 2, . . . , p.

=⇒ ∃x ∈ χ such that Ψ(F (x), λ, z∗) ≤ Ψ(F (x∗), λ, z∗).

That is absurd because x∗ is an optimal solution for the problem (3.3).
Conversly, let x be a Pareto optimal solution of problem (2.8). Suppose that
x is not an optimal solution of problem (3.3), then exist x ∈ χ such that
Ψ(F (x), λ, z∗) < Ψ(F (x), λ, z∗). As x is a Pareto optimal solution of (2.8), @y ∈ χ,

such that fj(y) +
1

κn

m∑
i=1

υ[κngi(y)] − z∗j ≤ fj(x) +
1

κn

m∑
i=1

υ[κngi(x)] − z∗j , ∀j =

1, 2, . . . , p and and last one k ∈ {1, . . . , p}we have, fk(y)+
1

κn

m∑
i=1

υ[κngi(y)]−z∗k <

fk(x) +
1

κn

m∑
i=1

υ[κngi(x)]− z∗k,

Then Fj(y) − z∗j ≤ Fj(x) − z∗j , ∀j = 1, 2, . . . , p and at last one k ∈ {1, . . . , p},
Fk(y)− z∗k < Fk(x)− z∗k.

So @ y ∈ χ, λj|Fj(y)− z∗j | ≤ λj|Fj(x)− z∗j |, ∀j = 1, 2, . . . , p and at last one
k ∈ {1, . . . , p} λk|Fk(y)− z∗k| < λk|Fk(x)− z∗k|.
Then @ y ∈ χ such that Ψ(F (y), λ, z) < Ψ(F (x), λ, z). Therefore x is the optimal
solution of problem (3.3). �

3.1.3. Alienor Transformation [3]. The application of the relation (2.9) to the
problem (3.3), give us a single-objective optimization problem of only one vari-
able represented by the relation (3.6):

(3.6)

min L(θ)

θ ∈ [0; θmax]

Theorem 3.5. ( [3]) Any minimum of the problem (3.3) can be approximated by
a minimum of the problem (3.6).

Proof. For the proof, see in [3]. �

3.1.4. Solutions research. Since the problem (3.6) is single-objective with only
one variable then we will use the Nelder-Mead algorithm [13] which is appro-
priate for its solutions.
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3.1.5. Solutions initialization. The obtained solution at the previous step must
be transform to the solution of the initial problem. That is possible by re-using
of the Alienor transformation described in Section 2.3.

3.1.6. Modified algorithm of MOMA-plus. The main lines of the modified MOMA-
plus method are defined as follows :

Input: Enter the value of κn and choose λj such as
p∑

j=1

λj = 1

F (x)←−
{
f(x) +

1

κn

m∑
i=1

υ[κngi(x)]
}

for For j ← 1 to p do

Ψ(F (x), λ, z∗)← max
[
λj|Fj(x)− z∗j |

]
Γ (x)← Ψ(F (x), λ, z∗)

end
for i← 1 to n do

σi(θ)← xi

end
Γ (θ)← Γ (σ1(θ), σ2(θ), . . . , σn(θ))
return θ∗ found by Nelder-Mead algorithm [13]
for i← 1 to n do

xi ←− σ(θ∗)
end
return Display the solution x of the problem which is one of the best
compromise corresponding to fixed λk;

Algorithm 1: MOMA-PLUS MODIFIED ALGORITHM

3.2. Numerical results.

3.2.1. Presentation of the test problems. The multiobjective optimization prob-
lems we will study are the Zitzler test problems [6] and are listed in the table
1.
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TABLE 1. Multiobjective problems

Indexes Multiobjective problems n Bounds

T1


minf1(x1, x2) = x1

minf2(x1, x2) =
1 + x2

x1

0.1 ≤ x1 ≤ 1

0 ≤ x2 ≤ 5

2 x1, x2 ∈ [0; 1]

T2


minf1(x) = x2

minf2(x) = (x− 2)2

−5 ≤ x ≤ 5

1 x ∈ [0; 4]

T3



minf1(x) = x1

minf2(x) = g
(
1−

√
f1(x)
g(x)

)
g(x) = 1 +

9

n− 1
×

n∑
i=2

xi

x = (x1, x2, . . . , xn) ∈ [0.1]n

30 xi ∈ [0; 1]

T4



minf1(x) = x1

minf2(x) = g(x)

(
1−

(
f1(x)

g(x)

)2
)

g(x) = 1 +
9

n− 1
×

n∑
i=2

xi

x = (x1, x2, . . . , xn) ∈ [0.1]n

30 xi ∈ [0; 1]

T5



minf1(x) = x1

minf2(x) = g(x)× h(x)

g(x) = 1 +
9

n− 1
×

n∑
i=2

xi

h(x) = 1−

√
f1(x)

g(x)
− f1(x)

g(x)
sin(10πf1(x))

x = (x1, x2, . . . , xn) ∈ [0.1]n

30 xi ∈ [0; 1]

T6



minf1(x) = x1

minf2(x) = g(x)×

√
1− f1(x)

g(x)

g(x) = 1 +
9

n− 1
×

n∑
i=2

xi

x = (x1, x2, . . . , xn) ∈ [0.1]n

30 xi ∈ [0; 1]
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3.2.2. Graphical results. The graphical results are presented by the following
graphs:

FIGURE 1. Pareto front of the problem T1 et T2.

FIGURE 2. Pareto front of the problem T3 et T4.

FIGURE 3. Pareto front of the problem T5 et T6.
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3.2.3. Numerical interpretations of simulation results. The study of modified
MOMA-Plus performances focuses on the convergence of obtained solutions to
the analytical front and their distribution on the analytical front. When the
values of these parameters are close to zero, a good performance is obtained.
Performance indexes are defined by the relations below:

(3.7) Υ =

√
N∑
i=1

d2i

N
and Λ =

df + dl +
N−1∑
i=1

|di − d|

df + dl + (N − 1)d
.

In these formulas, N denotes the number of solutions provided by our method.
df and dl define respectively the euclidean distances separating the upper and
lower extremal solutions provided by our method. di is the euclidean distance
between two consecutive solutions, d is the arithmetic average of all the solu-
tions provided by our method. The performance index of the modified MOMA-
plus method are shown in the table 2.

TABLE 2. Performance table

Modified MOMA-Plus T1 T2 T3 T4 T5 T6

Υ 0.0077 0.0011 0.0044 0.0018 0.0029 0.0018
Λ 0.9819 0.9843 0.9823 0.9821 0.9823 0.9819

The coupling of MOMA-plus and exponential penalty function seems to con-
verge quickly on all the multiobjective optimization problems studied. With
regard to the values of the performance index, we have good convergence and
good distribution of the Pareto optimal solutions.

Remember the value of the performance indices on convergences and distri-
bution, provided by original MOMA-plus method [18]:

TABLE 3. Performance table of the MOMA-plus method

MOMA-plus T1 T2 T3 T4 T5 T6

Υ 0.0691 0.0053 0.0046 0.0137 0.0599 0.0046
Λ 1.1833 0.5537 0.9820 0.3483 0.9835 0.9820

According to the performance index we can do the following comparisons on
convergence indices :
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TABLE 4. Comparison on convergence indices

Problems T1 T2 T3 T4 T5 T6

modified MOMA-plus 0.0077 0.0011 0.0044 0.0018 0.0029 0.0018
MOMA-plus 0.0691 0.0053 0.0046 0.0137 0.0599 0.0046

On these six test problems, modified MOMA-Plus version is best than original
version of MOMA-Plus. The distribution indices are defined in the table below:

TABLE 5. Comparison on distribution indices

Problems T1 T2 T3 T4 T5 T6

modified MOMA-plus 0.9819 0.9843 0.9823 0.9821 0.9823 0.9819
MOMA-plus 1.1833 0.5537 0.9820 0.3483 0.9835 0.9820

On these six test problems, modified MOMA-Plus version is best than original
version on tree problems.

4. CONCLUSION

Through this paper, we have demonstrated that it is possible to improve the
performance of the MOMA-Plus method by proposing a new version. We have
proved that by some theorems on the existence of Pareto optimal solutions us-
ing our method. In addition, we have confirmed that with numerical solutions
on six test problems taken in the literature. This coupling of MOMA-Plus and
the exponential penalty function has given solutions which are better than the
original MOMA-plus method on the convergence criterion. But about how solu-
tions are distributed on the Pareto front, the two methods are the same. So, we
can conclude that the modified MOMA-Plus method is the best alternative for
multiobjective optimization problems.

In the future, we intend to investigate the complexity of the MOMA-Plus
method and its variants, as well as explore the possibility of tackling other types
of optimization problems, such as combinational optimization and fuzzy opti-
mization.
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