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STATISTICAL INFERENCE IN THE GENERALIZED EXTREME VALUE
REGRESSION MODEL BASED ON SIMULATION STUDY
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ABSTRACT. Generalized extreme value (GEV) regression model is widely used
when the dependent variable Y represents a rare event. In this case the logistic
regression model shows relevant drawbacks. The quantile function of the GEV
distribution is used as link function to investigate the relationship between the
binary outcome Y and a set of potential predictors X. Maximum likelihood
estimators in this model has been proposed, and their asymptotic properties
recently established. We conduct a detailed simulation study of its numerical
properties. We evaluate its accuracy and the quality of the normal approxima-
tion of its asymptotic distribution. We study the quality of the approximation
for constructing asymptotic Wald-type tests of hypothesis. Several others as-
pects of this model, such as the event probabilities still deserve attention. We
also propose estimator of this quantity and we investigate its properties both
theoretically and via simulations. Based on these results, we provide recom-
mendations about the range of minimum sample size under which a reliable
statistical inference on the event probabilities can be obtained in a GEV regres-
sion model. A real-data example illustrates the proposed estimators.
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1. INTRODUCTION

Generalized extreme value regression model has become a standard tool to
investigate the relationship between a binary response Y which is often present
in medical studies and a set of potential predictors [12]. The binary response
Y may represent the infection status with respect to some disease (Y = 1 if the
individual is infected and Y = 0 otherwise). If Xi = (1, Xi2, . . . , Xip)

′ denotes
the corresponding (p-dimensional, say) predictor (or covariate) for the i-th indi-
vidual, generalized extreme value regression models the conditional probability
of infection π(Xi) = P(Yi = 1|Xi) as

(1.1)
1− [log(1− π(Xi))]

−τ

τ
= β′Xi,

where

(1.2) π(Xi) = 1− exp
(
− [(1− τ(β′Xi))+]

−1/τ
)
= 1− GEV(−β′Xi; τ),

and β = (β1, . . . , βp)
′ ∈ Rp is an unknown regression parameter measuring the

association between potential predictors and the risk of infection (for a suscep-
tible individual) and GEV (x; τ) represents the cumulative probability at X for
the GEV distribution with a location parameter µ = 0, a scale parameter σ = 1,
an unknown shape parameter τ ∈ R. A more detailed discussion on the extreme
value distributions can be found in [6] and [4]. Estimation and testing proce-
dures in model (1.1) are well established (see, e.g., [7], [3]). These procedures
are usually based on the maximum likelihood estimator (MLE) of β, which is
consistent and approximately normally distributed in large samples.

Interpreting the results after estimating and testing the vector parameter β

usually requires the additional estimation of: (i) the relative risk Rj =
π(xj)

π(x̄j)

between the response Y and the predictors xj(j = 2, . . . , p), where x̄ is the
complementary of x (ii) the probabilities P(Y = 1|X = x) of a positive out-
come at x. On the contrary and to the best of our knowledge, estimators of
the odds and event probabilities in the GEV regression model have never been
investigated. The present work aims at filling this gap. We construct estimators
of these quantities and we derive their asymptotic properties and we evaluate
their finite-sample behaviors via simulations. Finally, we illustrate the proposed
estimators on a dataset about stroke.
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The rest of the paper is organized as follows. In Section 2, we recall the
properties of the MLE of the regression parameter in the GEV regression model.
Then, we construct estimators of the odds and probability π(x) of observing the
outcome on a susceptible individual at x, and we obtain their asymptotic distri-
butions. Section 3 describes our simulation study. We examine the finite-sample
behaviors of the proposed estimators. The real data example is treated in Sec-
tion 4. Discussion and some recommendations about the use of GEV regression
model are summarized in Section 5, along with some perspectives for future
work.

2. ODDS AND EVENT PROBABILITY ESTIMATION IN THE GEV REGRESSION MODEL

Let (Y1,X1), . . . , (Yn,Xn) be independent and identically distributed copies of
the random vector (Y,X) defined on the probability space (Ω,A,P). For every
individual i = 1, . . . , n, Yi is a binary response variable indicating say, the infec-
tion status with respect to some disease (that is, Yi = 1 if the i-th individual is
infected, and Yi = 0 otherwise). Let Xi = (1, Xi2, . . . , Xip)

′ be random vectors of
predictors or covariates.

The likelihood function for the unknown p-dimensional parameter β from the
independent sample (y1,x1), . . . , (yn,xn) is as follows:

(2.1) Ln(β) =
n∏

i=1

[1− GEV(−β′xi; τ)]
yi × [GEV(−β′xi; τ)]

1−yi .

We define the maximum likelihood estimator β̂n as the solution of the p-dimensional
score equation

(2.2)
∂ logLn(β)

∂β
= 0.

The consistency and asymptotic normality of β̂n of β have been established by
[7]. They have proved that the asymptotic covariance matrix

I−1
β =

(
−E

[
∂2 logLn(β)

∂β∂β′

])−1

of β̂n can be consistently estimated by Î−1

β̂n
where Îβ̂n

= − 1
n

[
∂2 logLn(β)

∂β∂β′

]
|β=β̂n

.
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Theorem 2.1 (Existence and consistency ( [7])). The maximum likelihood esti-
mator β̂n exists almost surely as n → ∞ and converges almost surely to β0, if and
only if λn tends to infinity as n → ∞.

Theorem 2.2 (Asymptotic normality ( [7])). Assume that β̂n converges almost
surely to β0. Let Σ̂ = XD(β̂n)X′ and Ip denote the identity matrix of order p. Then

Σ̂
1
2
n (β̂n − β0) converges in distribution to the Gaussian vector N (0, Ip).

These results shown by [7] allow us to construct estimators of the probability
π(x) = P(Y = 1|X = x) of event occurrence for a susceptible individual with
covariate x and of the odds in the GEV regression models (1.1) and (1.2).

The conditional probability and the relative risk are naturaly estimated by

(2.3) π̂n(x) = 1− exp

([
(1− τ̂(β̂′

nx))+

]−1/τ̂
)

and R̂j,n =
π̂n(xj)

π̂n(x̄j)
.

The asymptotic properties of π̂n(x) are are summarized in the following theo-
rem.

Theorem 2.3. As n tends to infinity,
√
n(π̂n(x) − π(x)) converges in distribution

to a zero mean Gaussian with variance

σ2
x = (−τ̂x′)(−1/τ−1) exp

([
(1− τ̂(β̂′

nx))+

]−1/τ̂
)
x′I−1

β̂n
x/τ̂ .

Moreover (−τ̂x′)(−1/τ−1) exp

([
(1− τ̂(β̂′

nx))+

]−1/τ̂
)
x′Î−1

β̂n
x/τ̂ converge in proba-

bility to σ2
x.

Proof. The result follows by applying the delta-method ( [11]) to the transfor-
mation

β̂n 7→ 1− exp

([
(1− τ̂(β̂′

nx))+

]−1/τ̂
)
.

The consistency of the variance estimator follows from the consistency of β̂′
n and

Î−1

β̂n
and the continuous mapping theorem. □

In the next section, we investigate via simulations the asymptotic properties
of the estimators β̂′

n and π̂n(x) by considering various measures of the accuracy
of these estimators.



STATISTICAL INFERENCE IN THE GENERALIZED EXTREME VALUE REGRESSION MODEL 107

3. SIMULATION STUDY

In this section, we investigate the numerical properties of the maximum like-
lihood estimators β̂n and π̂n(x), under various conditions. We compare via sim-
ulations, the performance of three links functions (the real model GEV and the
others models misspecifies the susceptibility probability π(xi): Logit and Trun-
cated normal distribution values in interval (0,1)).

3.1. Simulation-based study of β̂n. The simulation setting is as follows. We
first consider the following models

- GEV link function

(3.1) P(Yi = 1|Xi) = 1−GEV (β1Xi1 + β2Xi2 + β3Xi3 + β4Xi4 + β5Xi5; τ)

- Logit link function

(3.2) log

(
P(Yi = 1|Xi)

1− P(Yi = 1|Xi)

)
= β1Xi1 + β2Xi2 + β3Xi3 + β4Xi4 + β5Xi5

- Truncated normal distribution values in interval (0,1) link function

(3.3) P(Yi = 1|Xi) = F (β1Xi1 + β2Xi2 + β3Xi3 + β4Xi4 + β5Xi5;µ, σ)

where µ = 0, σ = 1 and F (x;µ, σ) = 1 − 1−Φ(x−µ
σ

)

Φ(µ
σ
)

, x > 0 and Φ is the
cumulative distribution function of the standard normal distribution.

Here Xi1 = 1 for each individual i (i = 1, . . . , n). The covariates Xi2, Xi3,
Xi4 and Xi5 are independently drawn from normal N (0, 1), exponential E(1),
P(2) and N (1, 1) respectively. The true parameter β is set such that the pro-
portion of 1’s in the simulated data sets is around 15% (considered as Model
M1: β = (1.5,−1.2, 0,−2.5,−0.3)′) and 30% (considered as Model M2, β =

(−1.3, 0, 2.5)′).
An i.i.d. sample of size n ≥ 1 of the vector (Y,X) is generated from the model

(1.1-1.2), and for each individual i, we get a realization (yi,xi). A maximum
likelihood estimator β̂n of β = (β1, β2, β3)

′ is obtained from this dataset by solv-
ing the score equation (2.2), using the optim function of the software R. An
estimate is also obtained for τ , but it is not the primary parameter of interest
hence we only focus on the simulation results for β̂n. The finite-sample behavior
of the maximum likelihood estimator β̂n was assessed for several sample sizes
(n = 200, 500, 1000).
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For each configuration (sample size, proportion of 1’s) of the design param-
eters, N = 1000 samples were obtained. Based on these N = 1000 replicates,
we obtain averaged values for the estimates of the parameters βj, j = 1, . . . , 3,
which are calculated as N−1

∑N
k=1 β̂

(k)
j,n , where β̂

(k)
j,n is the estimate obtained from

the k-th simulated sample. The quality of estimates is evaluated by using the
Bias and the Root Mean Square Error (RMSE) defined as, for j = 1, 2, 3:

Bias(β̂n,j) = E(β̂n,j − β) ≈ 1

N

N∑
k=1

(
β̂
(k)
j,n − β

)
,

RMSE(β̂n,j) =

√
E
[
(β̂n,j − β)2

]
≈

√√√√ 1

N

N∑
k=1

(
β̂
(k)
j,n − β

)2

.

The results from the models (3.1)-(3.2)-(3.3) are summarized in Tables 1 and
2.

TABLE 1. Simulation results for the estimator Model M1

n = 200 n = 500 n = 1000

Paramater Model MLE BIAS RMSE MLE BIAS RMSE MLE BIAS RMSE

β̂1,n Logit 2.417 0.917 0.982 2.414 0.914 0.932 2.419 0.919 0.919

Truncnorm 2.005 0.506 0.677 1.995 0.495 0.593 1.884 0.384 0.420

Gev 1.702 0.202 0.485 1.646 0.146 0.421 1.570 0.070 0.268

β̂2,n Logit -1.924 -0.724 0.756 -1.864 -0.664 0.672 -1.784 -0.584 0.587

Truncnorm -1.585 -0.385 0.667 -1.401 -0.201 0.296 -1.375 -0.175 0.225

Gev -1.291 -0.091 0.355 -1.251 -0.051 0.256 -1.228 -0.028 0.168

β̂3,n Logit -0.038 -0.038 0.449 -0.012 -0.012 0.235 0.001 0.001 0.167

Truncnorm -0.012 -0.012 0.276 -0.007 -0.007 0.130 0.001 0.001 0.092

Gev -0.006 -0.006 0.244 -0.006 -0.006 0.115 -0.001 -0.001 0.081

β̂4,n Logit -4.002 -1.502 1.530 -3.995 -1.495 1.499 -3.939 -1.439 1.434

Truncnorm -3.293 -0.793 1.347 -2.914 -0.414 0.565 -2.854 -0.354 0.434

Gev -2.708 -0.208 0.650 -2.617 -0.117 0.480 -2.563 -0.063 0.318

β̂5,n Logit -0.783 -0.483 0.693 -0.620 -0.320 0.412 -0.612 -0.312 0.349

Trunnorm -0.411 -0.111 0.314 -0.345 -0.045 0.150 -0.336 -0.036 0.088

Gev -0.370 -0.070 0.302 -0.310 -0.010 0.139 -0.309 -0.009 0.085
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TABLE 2. Simulation results for the estimator Model M2

n = 200 n = 500 n = 1000

Paramater Model MLE BIAS RMSE MLE BIAS RMSE MLE BIAS RMSE

β̂1,n Logit -0.551 -0.051 1.034 -0.485 0.015 0.508 -0.513 -0.013 0.262

Truncnorm -0.548 -0.048 0.392 -0.458 0.042 0.181 -0.461 0.039 0.110

Gev -0.536 -0.036 0.192 -0.512 -0.012 0.177 -0.510 -0.010 0.096

β̂2,n Logit -0.014 -0.014 0.463 0.014 0.014 0.236 0.007 0.007 0.157

Truncnorm -0.007 -0.007 0.248 0.007 0.007 0.130 0.004 0.004 0.086

Gev -0.006 -0.006 0.192 0.004 0.004 0.115 0.003 0.003 0.076

β̂3,n Logit -2.987 -0.987 1.006 -2.868 -0.868 0.872 -2.717 -0.717 0.743

Truncnorm -2.408 -0.408 0.615 -2.326 -0.326 0.474 -2.244 -0.244 0.329

Gev -2.178 -0.178 0.441 -2.124 -0.124 0.349 -2.056 -0.056 0.234

β̂4,n Logit 2.475 0.975 0.991 2.383 0.883 0.889 2.315 0.815 0.821

Truncnorm 1.967 0.467 0.701 1.728 0.228 0.315 1.683 0.183 0.234

Gev 1.677 0.177 0.360 1.595 0.095 0.264 1.540 0.040 0.167

β̂5,n Logit -4.686 -1.686 1.702 -4.383 -1.383 1.383 -4.382 -1.382 1.381

Truncnorm -3.623 -0.623 0.865 -3.364 -0.364 0.483 -3.355 -0.355 0.438

Gev -3.157 -0.157 0.462 -3.124 -0.124 0.407 -3.075 -0.075 0.303

From the Tables 1 and 2, it appears that the proposed maximum likelihood
estimator β̂n given by the model (3.1) with GEV link function provides a reason-
able approximation of the true parameter value better than those provided by
the others link functions (3.2-3.3), even when the sample size is less than 200
with a poor percentage of 1’s in the model (that is, when the GEV link function
is used to generate the data, the estimates in the GEV model are of good qual-
ity). On the other hand, the quality of the estimates may be quite poor when the
sample size is less than 100. Finally, these results indicate that a reliable statis-
tical inference on the regression effects and event probabilities in the regression
model for binary data with a GEV link function should be based on a sample
having, at least, a moderately large size (n ≥ 500, say).

Now, we investigate the quality of the normal approximation of the asymptotic
distribution of β̂j,n. For each configuration of the design parameters, we obtain
the histograms of the β̂

(k)
j,n , k = 1, . . . , N and the corresponding density plots.

Figures 1 display the graphs for j = 1, . . . , 5 (the graphs for the model M2 are
similar and are thus not given).
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Figure 1: Histograms and Density plots for β̂j,n, in model M1.
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FIGURE 1. Histograms and Density plots for β̂j,n, in model M1.

It appears from these graphs that the normal approximation is reasonably
satisfied when the sample size is large enough (n ≥ 500 say). The quality of the
approximation is poor when the sample size is less than 100. All these graphs
corroborate the conclusions we drew from Table 1. We now investigate the
properties of the estimator π̂n(x).

3.2. Simulation-based study of π̂n(x). The simulation setting is as follows. We
consider the same following model

(3.4)
1− [log(1− π(Xi))]

−τ

τ
= β1β2Xi1 + β2Xi2 + β3Xi3 + β4Xi4 + β5Xi5,
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where the covariates Xi2, Xi3, Xi4 and Xi5 are independently drawn from nor-
mal N (0, 1), exponential E(1), P(2) and N (1, 1) respectively. The true parameter
β is set such that the proportion of 1’s in the simulated data sets is around 15%

(considered as Model M1: β = (1.5,−1.2, 0,−2.5,−.3)′) and 30% (considered
as Model M2, β = (−.5, 0,−2, 1.5,−3)′).
We consider the problem of estimating one value of π(x) for each model M1

and M2, for a given x. As an example, we wish to estimate the event probabil-
ity for an individual (labeled h) having xh,1 = 1, xh,2 = 0.5, xh,3 = 1, xh,4 = 0.5,
xh,5 = −2 and τ = −0.45. Using these values, the probability π(xh) to be esti-
mated is:

- in the model M1: π(xh) = 1− exp
(
−

[
(1 + 0.45(1.5− 1.2× 0.5 + 0× 1

− 2.5× 0.5 + 0.3× 2))+
]1/0.45) ≈ 0.718.

- in the model M2: π(xh) = 1 − exp
(
−

[
(1 + 0.45(−.5 + 0 × 0.5 − 2 × 1

+ 1.5× .5 + 3× 2))+
]1/0.45) ≈ 0.999.

The results from the model (3.4)are summarized in Table 3.

TABLE 3. Simulation results for the predicted probability π(xh)

Model M1 Model M2

n MLE BIAS RMSE MLE BIAS RMSE

200 0.722 0.004 0.208 0.998 0.001 0.001

500 0.720 0.002 0.123 0.998 0.001 0.001

1000 0.717 -0.001 0.014 0.999 0.000 0.001

From 3, it appears that π̂n(xh) provides a reasonable estimate of π(xh) when the
proportion of 1’s is moderate (namely, 15%) or large (namely, 30%), even for
n = 200.

Now, we investigate the quality of the normal approximation of the asymp-
totic distribution of π̂n(xh). For each configuration of the design parameters,
we obtain the histograms of the π̂

(k)
n (xh), k = 1, . . . , N and the corresponding

density plots (for the model M1 only; the results for the model M2 yield similar
observations and are thus omitted). The graphs are displayed in Figure 2. From
these figures, the normal approximation is reasonably when the sample size is
is sufficiently large (n ≥ 500, say). The distribution of π̂n(xh) can be highly
skewed otherwise. These findings are coherent with our previous observations
for β̂j,n especially when the sample size is small (n around 500, say).
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Overall, our results indicate that a reliable statistical inference on the param-
eters and event probabilities in the GEV regression model can be obtained in
samples having at least a moderately large size (n ≥ 500, say), when the pro-
portion of 1’s is low (≤ 15%) to moderately large (30% say). When the sample
size is small (n around 200, say), the results should be considered very carefully,
considering the increase in the variability of the estimators and the skewness of
their distributions.
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Figure 2: Histograms and Density plots for the predicted probabilitiy, in model M1.
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FIGURE 2. Histograms and Density plots for the predicted proba-
bilitiy, in model M1.

4. REAL DATA APPLICATION

In this setion, we consider an application on Stroke data in central Senegal.
Stroke is a sudden neurological deficit of vascular origin caused by an infarct or
haemorrhage in the brain (see [2], [1] for more details). We consider here a
database of size n = 162. The data was collected in the context of a prospective
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and analytical study, carried out on a period of 8 months from april 5 to novem-
ber 30, 2016 at Medical Imagery Service of both Matlaboul Fawzeini Hospital in
Touba and Elhadj Ibrahima Niass regional hospital in Kaolack located in central
Senegal. In Senegal, stroke is the most frequent neurological disease. Known for
their high mortality and morbidity rates, they account for more than 30% of hos-
pital admissions and nearly two-thirds of the loss of human life (see [9], [10]).

Patients with CT confirmation of stroke were included in the study. We aim
at investigating, based on this dataset, the factors which may explain an un-
favourable evolution of their health status. In this study, the dependent variable
is the evolution of the health status of stroke patients (vital prognosis). We
denote Y the binary variable defined as follows:

Yi =

1, if the vital prognosis evolves favourably,

0, if the vital prognosis evolves unfavourably.

We consider the following covariates: age, delay (delay between the first symp-
toms and admission to hospital), severity cerebral commitment (displacement of
parts of the nervous structure contained in the cranium through an orifice) and
intraventricular haemorrhages (bleeding into the ventricles of the brain).

We ran a generalized extreme value regression analysis of the model defined
as follows:

P(Yi = 1|x) = 1−GEV (−(β1 + β2 × age + β3 × delay

+ β4 × severity + β5 × intraventricular; τ)).
(4.1)

The final results of these fitting procedure are given in Table 4. We compare
these results with those obtained from the logistic regression model.

TABLE 4. Stroke data analysis

Model GEV Model LOGIT
Variable Estimate Stand. error Estimate Stand. error

Intercept 1.1766 0.1375 -0.9621 0.9452
Age -0.6065 0.0691 -0.6476 0.3277

Delay 0.1469 0.0691 0.9202 0.1801
Severity -0.1521 0.0698 -0.9632 0.5080

Intraventricular -0.1424 0.0687 -2.1483 0.6596

τ -2.0127 0.0002
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All these variables are significant at level 5%. The adjusted probability of vital
prognosis for the i-th individual given by the GEV regression model is defined
as follows:

P(Yi = 1|x) = 1−GEV (−(1.1766− 0.6065× Age0.1469× Delay

− 0.1521× Severity − 0.1424× Intraventricular;−2.0127)).

We observe that the model concludes to the significance of the covariates age,
delay, severity cerebral commitment and intraventricular haemorrhages. We
also find that the estimators of the GEV regression model are more accurate
than those of the logistic regression model. Indeed they have much smaller
standard errors.

Age has a significant influence on the vital prognosis of stroke patients. Older
patients are more at risk than other patents. Indeed, age favours the degra-
dation of functioning of blood vessels. This imbalance is also highlighted by
the chronicity of cardiovascular risk factors, which increases the vulnerability to
stroke ( [13]). The scanner must be performed urgently, at best within the first
six hours after the onset of symptoms. We were also interested in the time be-
tween the first signs of stroke and admission to the health facility and the time
between admission and CT scan. The first was more significant for unfavourable
evolution of the vital prognosis of stroke patients. This explains why this delay
increases the vital prognosis because it reduces the possibilities of functional
rehabilitation. For severity signs, their appearance seriously engages the vital
prognosis.

5. DISCUSSION AND PERSPECTIVES

This article reports the results of a detailed simulation study of maximum like-
lihood based estimators of the event probabilities in a GEV regression model.
From our results, these estimators perform quite well under reasonable condi-
tions regarding the sample size and proportion of 1’s. More precisely, reliable
statistical inferences on the event probabilities and (point estimation, normal
approximation) should be obtained when the sample size is low (n ≤ 100) to
moderately large (n = 500, say). These findings may serve as practical guide-
lines for the analysis of binary datasets for rare events in a variety of settings:
medicine especially.
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Another issue of interest deals with the inference in the GEV regression model
in a high-dimensional setting, when the predictor dimension is much larger than
the sample size (this problem arises, for example, in genetic studies where high-
dimensional data are generated using microarray technologies). Some articles
( [5], [8]) have addressed the estimation in the logistic model for binary data.
Extending these methods to the GEV regression model constitutes another non-
trivial topic for future work.
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