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COMPARATIVE STUDY OF THE LAPLACE-ADOMIAN METHOD AND THE
VARIATIONAL ITERATIONS METHOD FOR DETERMINING THE EXACT

SOLUTIONS OF SOME PARTIAL DIFFERENTIAL EQUATIONS

Yanick Alain Servais Wellot

ABSTRACT. This work is a verification of the effectiveness of Laplace-Adomian
and variational iterations methods for solving partial differential equations. The
coupling of Laplace and Adomian methods has made it possible to exploit Ado-
mian polynomials with Laplace transforms, as well as their inverse, to over-
come the difficulties associated with the non-linearity of the equations. The
variational iteration method, with its correction functional, facilitates the de-
termination of the general Lagrange multiplier, which is essential for the rest of
the solution. These methods have enabled us to obtain the exact solutions.

1. INTRODUCTION

Mathematical modelling of physical systems leads to functional equations (or-
dinary differential equations (ODE), partial differential equations (PDE), inte-
grals and integrals, etc.). Several numerical analysis methods have been devel-
oped to solve these types of equations, such as approximation and analytical
methods [4,17].

In this work, we focus on the partial differential equations. These equations
are omnipresent in science, appearing in mechanics, epidemiology and many
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other fields. They are generally non-linear. And it’s equally difficult, if not im-
possible, to find their exact solutions by conventional methods [9, 11]. This
difficulty, or impossibility, often leads us to settle for approximate solutions. For
this, discretization or linearization methods are used. Nevertheless, in addi-
tion to the classical methods, several other methods have been developed to
solve these types of equations. These include Laplace-Adomian method and
variational iterations method (VIM). These tried-and-tested methods produce
efficient algorithms that converge rapidly to exact solutions when they exist. In
addition, these methods avoid discretization and linearization. They take into
account the initial and boundary conditions of the problems studied. It should
be stressed that the main difficulty with the Adomian method lies in the calcu-
lation of Adomian polynomials, which can be very tedious for certain types of
problem.

On the other hand, Laplace transforms do not allow us to solve non-linear
equations, as there is no Laplace transform of non-linear terms. To get around
this difficulty, or to compensate for the inadequacy of the Laplace transform, a
coupling is made between Laplace transforms and the Adomian decompositional
method. The result is the Laplace-Adomian method. The aim of this work is to
experiment with mathematical methods avoiding linearization and discretiza-
tion of space and time to better solve linear and non-linear partial differential
equation models.

2. DESCRIPTION OF THE METHODS

2.1. The Laplace-Adomian method. The presentation below is shows how the
Laplace-Adomian method works [1, 10–13, 16, 18]. It is the algorithm of the
method.

Consider a functional equation

(2.1) Au = h.

with
A = L+R +N.

The equation (2.1) becomes:

(2.2) Lu+Ru+Nu = h,



COMPARATIVE STUDY OF THE LAPLACE-ADOMIAN METHOD AND THE VIM 157

where u is a unknown function of H (H is a Hilbert space), L and R are linear
operators; and L reversible, with L−1 as reverse. N is a nonlinear operator from
a Hilbert space H into H. h is given function in H.

By applying the transform L of Laplace at the equation (2.2), gives:

(2.3) L (Lu) + L (Ru) + L (Nu) = L (h) .

Let’s set

Lt =
∂

∂t
, Ltt =

∂2

∂t2
, and L−1

tt (.) =

∫ t

0

∫ s

0

(.)dsdt;

with the initial and boundary conditions, we have the following relation:

(2.4) u(x, 0) = f(x) et ut(x, 0) = g(x),

(2.5) L (Lu(x, t)) + L (Ru(x, t)) + L (Nu(x, t)) = L (h(x, t)) .

Finally, with the conditions (2.4) the Laplace transform, into the equation (2.5)
this gives:

(2.6) s2L(Lu(x, t))− su(x, 0)− ut(x, 0) +L(Ru(x, t)) +L(Nu(x, t)) = Lh(x, t).

This gives the expression:

L(u(x, t)) = 1

s
u(x, 0) +

1

s2
ut(x, t) +

1

s2
L(h(x, t))

− 1

s2
L(Ru(x, t))− 1

s2
L(Nu(x, t)).

(2.7)

Or again
(2.8)

L(u(x, t)) = 1

s
f(x) +

1

s2
g(x) +

1

s2
L(h(x, t))− 1

s2
L(Ru(x, t))− 1

s2
L(Nu(x, t)).

The solution u of the equation (2.1), when it exists, is sought in the form of the
série:

(2.9) u(x, t) =
∞∑
n=0

un(x, t).

The non-linear part is also expressed as a series of polynomials:

(2.10) N(u(x, t)) =
∞∑
n=0

An(x, t),
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where An are Adomian polynomials defined by the formula. Substituting (2.9)
and (2.10) in (2.8) gives the expression:

∞∑
n=0

L(un(x, t)) =
1

s
f(x) +

1

s2
g(x) +

1

s2
L(h(x, t))

−
∞∑
n=0

(
1

s2
L(Run(x, t)) +

1

s2
L(An(x, t))

)
.

(2.11)

This leads to the following Laplace-Adomian algorithm:

(2.12)


L (u0(x, t)) =

1

s
f(x) +

1

s2
g(x) +

1

s2
L (h(x, t))

L (un+1(x, t)) = −
(

1

s2
L(Run(x, t)) +

1
s2
L(An(x, t))

)
, n ≥ 0.

By applying the inverse of the Laplace transform into the expressions of u0(x, t)

and un+1(x, t) are established:
u0(x, t) = L−1

(
f(x)

s
+

g(x)

s2
+

1

s2
L[h(x, t)]

)
un+1(x, t) = −L−1

(
1

s2
L[Run(x, t)]−

1

s2
L[An(x, t)]

)
, n ≥ 0.

(2.13)

2.2. The Variational Iterations Method. The variational iteration method
(VIM) was proposed and developed by Chinese mathematician Je-Haun-He in
the early 1990s [7]. It was first proposed to solve problems in mechanics. The
method has been used to solve a wide variety of linear and non-linear problems,
with successive approximations rapidly converging to the exact solution if it ex-
ists. The method is based on the determination of the multiplier optimally via
variational theory [3,8,15].

To illustrate the basic ideas behind this method, consider the following non-
linear differential equation:

(2.14) Lu(x, t) +Nu(x, t) = g(x, t),

with
L: a linear differential operator;
N : a non-linear differential operator;
g: a known function.

According to the following variational iteration method, a functional correction
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can be constructed in the following way:

(2.15) un+1(x, t) = un(x, t) +

∫ t

0

λ(s) (Lun(x, s) +Nũn(x, s)− g(x, s)) ds,

with s ∈ [0; t] where
λ: is a general Lagrange multiplier;
n: is an index which represents the nth approximation;
ũn(x, s): is considered as a restricted variation; This means that δũn(x, t) =

0.
To solve the differential equation (2.14) by the method of variational iterations,
we need to determine the Lagrange multiplier λ, which will be be optimally
identified by integration by parts.

Then the successive approximations un(x, t) of the solution u(x, t) will be ob-
tained by using the Lagrange multiplier λ and a function u0(x, t) well-chosen
(which must at least satisfy the initial conditions). Consequently, the exact so-
lution will be the limit:

(2.16) u(x, t) =
∞∑
n=0

un(x, t).

Though, so L =
∂(.)

∂t
, assuming the correction functional is stationary with re-

spect to un and posing δũn(x, t) = 0, the result will be:

(2.17) δun+1(x, t) = δun(x, t) + δ

∫ t

0

λ(s)

(
∂un(x, s)

∂s
+Nũn(x, s)− g(x, s)

)
ds,

either

(2.18) δun+1(x, t) = δun(x, t) +

∫ t

0

δλ(s)

(
∂un(x, s)

∂s

)
ds = 0.

Integration by parts of the expression
∫ t

0

δλ(s)

(
∂un(x, s)

∂s

)
ds, leads to

(2.19)
∫ t

0

δλ(s)

(
∂un(x, s)

∂s

)
ds = λ(t)δun(x, t)−

∫ t

0

λ
′
δun(x, s)ds.

Substituting the relationship (2.19) into the relationship (2.18) gives:

(2.20) δun+1(x, t) = (1 + λ(t)) δun(x, t)−
∫ t

0

λ
′
(s)δun(x, s)ds = 0.
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Then, from equation (2.20), we derive the following stationarity conditions:

(2.21)

{
δun(x, s)ds : λ

′
(s) = 0

δun(x, s)ds : 1 + λ(t) = 0
,

which gives:

(2.22) λ(t) = −1.

Thus, the correction functional (2.15) becomes

(2.23) un+1(x, t) = un(x, t)−
∫ t

0

(Lun(x, s) +Nũn(x, s)− g(x, s)) ds.

If L =
∂2(.)

∂t2
, then

(2.24) δun+1(x, t) = δun(x, t) + δ

∫ t

0

λ(s)

(
∂2un(x, s)

∂s2

)
ds = 0.

Double integration by parts of the expression
∫ t

0

δλ(s)

(
∂2un(x, s)

∂s2

)
ds, the fol-

lowing result is obtained∫ t

0

δλ(s)

(
∂2un(x, s)

∂s2

)
ds = λ(t)δ

∂un(x, t)

∂t
− λ

′
δun(x, t)

+

∫ t

0

λ
′′
(s)δun(x, s)ds.

(2.25)

Still proceeding by substitution, from the equation (2.25) in the relation (2.24),
the expression (2.26) below follows

δun+1(x, t) =
(
1− λ

′
(t)

)
δun(x, t) + λ(t)δ

∂un(x, t)

∂t

+

∫ t

0

λ
′′
(s)δun(x, s)ds = 0.

(2.26)

The stationarity conditions are given by the system (2.27) below:

(2.27)


δun(x, s)ds : λ

′′
(s) = 0

δun(x, s)ds : 1− λ
′
(t) = 0

u
′
n(x, t) : λ(t) = 0

,
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which gives:

(2.28)

{
λ

′′
(s) = 0 ⇒ λ

′
(s) = 1 ⇒ λ(s) = s+ b

1− λ
′
(t) = 0 ⇒ λ

′
(t) = 1

.

So, {
λ(t) = 0 ⇒ t+ b = 0 ⇒ b = −t,

λ(s) = s− t.
.

Thus, the correction functional (2.15) becomes:

(2.29) un+1(x, t) = un(x, t) +

∫ t

0

(s− t) (Lun(x, s) +Nũn(x, s)− g(x, s)) ds.

If L =
∂3

∂t3
, which gives:

(2.30) δun+1(x, t) = δun(x, t) + δ

∫ t

0

λ(s)

(
∂3un(x, s)

∂s3

)
ds = 0.

After triple integration by parts of the expression
∫ t

0

δλ(s)

(
∂3un(x, s)

∂s3

)
ds, this

results in:

δun+1(x, t) = (1 + λ
′′
(t))δun(x, t) + λ(t)δ

∂2un(x, t)

∂t2
− λ

′
(t)δ

∂un(x, t)

∂t

−
∫ t

0

δλ
′′′
(s)un(x, s)ds = 0.

(2.31)

Consequently, the stationarity conditions are expressed by the system (2.32)
below:

(2.32)


δun(x, s)ds : 1 + λ

′′
(s) = 0

δu
′′
n(x, s)ds : λ

′
(t) = 0

δu
′
n(x, t) : λ

′
(t) = 0

δun(x, s) : λ
′′′
(s) = 0.

So,

(2.33)


λ

′′′
(s) = 0 ⇒ λ

′′
(s) = a ⇒ λ

′
(s) = as+ b

⇒ λ(s) = 1
2
as2 + bs+ c

1 + λ
′′
(s) = 0 ⇒ λ

′′
(s) = −1 ⇒ a = −1.

.
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So,

(2.34)

{
λ

′
(t) = 0 ⇒ at+ b = 0 ⇒ b = t

λ(t) = 0 ⇒ −1
2
t2 + t2 + c = 0 ⇒ c = −1

2
t2.

.

The Lagrange multiplier in this case is therefore given by the following expres-
sion (2.35):

(2.35) λ(s) =
(−1)3

2!
(s− t)2.

Thus, the correction functional (2.15) becomes:
(2.36)

un+1(x, t) = un(x, t) +

∫ t

0

(−1)3

2!
(s− t)2 (Lun(x, s) +Nũn(x, s)− g(x, s)) ds.

In a global sense, L =
∂m(.)

∂tm
, then the result will be

(2.37) λ(s) =
(−1)m

(m− 1)!
(s− t)m−1.

Once the Lagrangian multiplier lambda is identified, then, by choosing an initial
approximation u0(x, t) of the problem solution (2.14), the other successive ap-
proximations ui(x, t), i ≥ 1 are easily obtained using the correction functional
(2.15). Subsequently, the exact solution u(x, t) is given by:

(2.38) u(x, t) = lim
n→+∞

un(x, t).

The concept of convergence of the variational iteration method has been stud-
ied and demonstrated by several authors [5, 14] for the solution of functional
equations. Important theorems have been given involving the necessary and
sufficient conditions for convergence [14].

3. APPLICATION OF THE LAPLACE-ADOMIAN METHOD

3.1. Problem 1. Consider the following equation [6]

(3.1)


∂u(x, t)

∂t
=

∂2u(x, t)

∂x2
− bu3(x, t)

u(x, 0) =

√
2

b

(
2x

x2 + 1

) .
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Let’s solve this equation using the Laplace-Adomian method. Let:

(3.2)
∂u(x, t)

∂t
=

∂2u(x, t)

∂x2
− bu3(x, t).

Applying the Laplace transform to equation (3.2), the result is

(3.3) L
(
∂u(x, t)

∂t

)
= L

(
∂2u(x, t)

∂x2

)
− bL

(
u3(x, t)

)
.

(3.4) sLu(x, t) = u(x, 0) + L
(
∂2u(x, t)

∂x2

)
− bL

(
u3(x, t)

)
,

either

(3.5) Lu(x, t) = 1

s
u(x, 0) +

1

s
L
(
∂2u(x, t)

∂x2

)
− 1

s
bL(u3(x, t)).

Applying the inverse Laplace transform to the relationship (3.5) gives:

(3.6) u(x, t) =

√
2

b

(
2x

x2 + 1

)
+ L−1

(
1

s
L(∂

2u(x, t)

∂x2
)

)
− bL−1

(
1

s
L(u3(x, t))

)
,

(3.7) u(x, t) =
∞∑
n=0

un(x, t),

and

(3.8) Nu(x, t) =
∞∑
n=0

An(x, t).

This gives us the following algorithm:

(3.9)


u0(x, t) =

√
2

b

(
2x

x2 + 1

)
un+1(x, t) = L−1

(
1

s
L(∂

2un(x, t)

∂x2
)

)
− bL−1

(
1

s
L(An(x, t))

) .

Calculating A0(x, t) and u1(x, t) gives:

(3.10) A0(x, t) = u3
0(x, t) =

2

b

√
2

b

(
2x

x2 + 1

)3

,

(3.11) u1(x, t) = L−1

(
1

s
L(∂

2u0(x, t)

∂x2
)

)
− bL−1

(
1

s
L(A0(x, t))

)
,
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(3.12) u1(x, t) =

√
2

b

(
4x3 − 12x

(x2 + 1)3
− 16x3

(x2 + 1)3

)
L−1

(
1

s2

)
.

Now,

L−1

(
1

s2

)
= t.

Thus

(3.13) u1(x, t) =

√
2

b

(
−12xt

(x2 + 1)3

)
.

Therefore:

(3.14) u1(x, t) = u0(x, t)

(
−6t

x2 + 1

)
.

Let’s calculate A1(x, t) et u2(x, t):

(3.15) A1(x, t) = 3u2
0(x, t)u1(x, t) = −1

b

√
2

b

(
288x3t

(x2 + 1)4

)
,

(3.16) u2(x, t) = L−1

(
1

s
L(∂

2u1(x, t)

∂x2
)

)
− bL−1

(
1

s
L(A1(x, t))

)
.

Such

(3.17) u2(x, t) =

√
2

b

(
−144x3 + 144x

(x2 + 1)4
+

288x3

(x2 + 1)4

)
L−1

(
1

s3

)
,

knowing that

L−1

(
1

s3

)
=

t2

2!
.

Therefore,

(3.18) u2(x, t) =
1

2

√
2

b

(
72xt2

(x2 + 1)3

)
,

either

(3.19) u2(x, t) = u0(x, t)

(
36t2

(x2 + 1)2

)
.

Calculating A2(x, t) and u3(x, t) gives:

(3.20) A2(x, t) = 3u2
0u2 + 3u2

1u0 =
1

b

√
2

b

(
3456x3t2

(x2 + 1)5

)
,
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(3.21) u3(x, t) = L−1

(
1

s
L(∂

2u2(x, t)

∂x2
)

)
− bL−1

(
1

s
L(A2(x, t))

)
,

either

(3.22) u3(x, t) = 2

√
2

b

(
2160x3 − 1296x

(x2 + 1)5
− 3456x3

(x2 + 1)5

)
L−1

(
1

s4

)
,

knowing that:

(3.23) L−1

(
1

s4

)
=

t3

3!
.

Thus

(3.24) u3(x, t) =
1

3

√
2

b

(
−432xt3

(x2 + 1)4

)
,

either

(3.25) u2(x, t) = u0(x, t)

(
−216t3

(x2 + 1)3

)
.

The solution being in the form:

(3.26) u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + u3(x, t) + · · · ,

such that

u(x, t) = u0(x, t) + u0(x, t)

(
−6t

x2 + 1

)
+ u0(x, t)

(
36t2

(x2 + 1)2

)
+ u0(x, t)

(
−216t3

(x2 + 1)3

)
+ . . . .

(3.27)

The transformation of the terms gives:

u(x, t) = u0(x, t)

[
1 +

(
−6t

x2 + 1

)
+

(
−6t

x2 + 1

)2

+

(
−6t

x2 + 1

)3

y

+

(
−6t

x2 + 1

)4

...+

(
−6t

x2 + 1

)n

+ · · ·

]
.

(3.28)

This expression is in geometric progression. Consider the n terms of the geo-

metric sequence with first term u0 and reason q =

(
−6t

x2 + 1

)
, u(x, t) converges
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if |q| < 1,

(3.29) u(x, t) = lim
n→+∞

un(x, t),

(3.30) u(x, t) =

√
2

b

(
2x

x2 + 6t+ 1

)
.

Applying the Laplace-Adomian method to our problem led us to its exact solu-
tion.

3.2. Problem 2. Consider the following equation [7]

(3.31)


∂u(x, t)

∂t
=

(
u(x, t)

∂u(x, t)

∂x

)
x

+ 3

(
u(x, t)

∂u](x, t)

∂x

)
+2 (u(x, t)− u2(x, t))

u(x, 0) = 2
√
ex − e−4x

,

either

∂u(x, t)

∂t
=

(
u(x, t)

∂u(x, t)

∂x

)
x

+ 3

(
u(x, t)

∂u(x, t)

∂x

)
+ 2

(
u(x, t)− u2(x, t)

)
.

(3.32)

Assuming that the non-linear part is

Nu(x, t) =
∂u(x, t)

∂t
=

(
u(x, t)

∂u(x, t)

∂x

)
x

+ 3

(
u(x, t)

∂u(x, t)

∂x

)
− 2u2(x, t),

(3.33)

either

(3.34)
∂u(x, t)

∂t
= Nu(x, t) + 2u(x, t).

Applying the Laplace transform to the relationship (3.34) gives

(3.35) L
(
∂u(x, t)

∂t

)
= L (Nu(x, t)) + 2L(u(x, t)),

(3.36) sL(u(x, t))− 2L(u(x, t)) = u(x, 0) + L (Nu(x, t)) ,

and after transforming the writing, the result is
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(3.37) L(u(x, t)) = 1

s− 2
u(x, 0) +

1

s− 2
L (Nu(x, t)) .

Applying the inverse Laplace transform yields the following (3.38) result:

(3.38) u(x, t) = L−1(
1

s− 2
u(x, 0)) + L−1(

1

s− 2
L (Nu(x, t))).

Let’s look for the solution of u(x, t) in the form (3.39) below:

(3.39) u(x, t) =
∞∑
n=0

un(x, t),

and

(3.40) Nu(x, t) =
∞∑
n=0

An(x, t).

The following algorithm is derived from this:

(3.41)

 u0(x, t) = 2e2t
√
ex − e−4x

un+1(x, t) = L−1(
1

s− 2
L(An((x, t))

,

(3.42)

 u0(x, t) = 2e2t
√
ex − e−4x

un+1(x, t) = L−1(
1

s− 2
L(An((x, t))

,

with:

(3.43) A0(x, t) =

(
u0(x, t)

∂u0(x, t)

∂x

)
x

+ 3

(
u0(x, t)

∂u0(x, t)

∂x

)
− 2u2

0(x, t),

and

A1(x, t) =

(
u0

∂u1(x, t)

∂x
+ u1(x, t)

∂u0(x, t)

∂x

)
x

+ 3

(
u0(x, t)

∂u1(x, t)

∂x
+ u1

∂u0(x, t)

∂x

)
− 4u0u1(x, t).

(3.44)

The calculations give
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(3.45)



A0(x, t) = 0, u1(x, t) = 0

A1(x, t) = 0, u2(x, t) =

A2(x, t) = 0, u3(x, t) = 0

· · ·
un(x, t) = 0.

.

The exact solution to the problem is:

(3.46) u(x, t) = 2e2t
√
ex − e−4x.

4. APPLICATION OF THE VARIATIONAL ITERATION METHOD

4.1. Problem 3. Consider the following problem [6] that has been approached
using the Laplace-Adomian method as problem 2:

(4.1)


∂u(x, t)

∂t
=

∂2u(x, t)

∂x2
− bu3(x, t)

u(x, 0) =

√
2

b

(
2x

x2 + 1

) ,

either

(4.2)
∂u(x, t)

∂t
=

∂2u(x, t)

∂x2
− bu3(x, t).

The variational iteration correction functional of the relationship (4.2) yields

(4.3) un+1(x, t) = un(x, t) +

∫ t

0

λ(t)

[
∂un

∂t
− ∂2un(x, s)

∂x2
+ bu3

n(x, s)

]
ds.

From the functional (4.3), it follows

(4.4) δun+1(x, t) = δun(x, t) +

∫ t

0

λ(s)δ
∂un(x, s)

∂s
ds = 0.

Integration by parts of the relationship (4.4) gives:

(4.5) δun+1(x, t) = (1 + δ(t))un(x, t)−
∫ t

0

λ
′
(s)δun(x, s)ds = 0.

This leads to stationary conditions:
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(4.6)

{
1 + λ(t) = 0 ⇒ λ(t) = −1

λ
′
(s) = 0

,

either: λ(t) = −1. Consequently, the shape of the variational iterations can be
obtained according to the following process:

(4.7) un+1(x, t) = un(x, t)−
∫ t

0

[
∂un

∂t
− ∂2un(x, s)

∂x2
+ bu3

n(x, s)

]
ds.

By taking

(4.8) u0(x, t) = u(x, 0) =

√
2

b

(
2x

x2 + 1

)
,

the following approximations are generated

(4.9) u1(x, t) = u0(x, t)−
∫ t

0

[
∂u0

∂t
− ∂2u0(x, s)

∂x2
+ bu3

0(x, s)

]
ds,

(4.10) u1(x, t) =

(
1− 6t

x2 + 1

)
u0(x, t),

(4.11) u2(x, t) = u1(x, t)−
∫ t

0

[
∂u1

∂t
− ∂2u0(x, s)

∂x2
+ bu3

1(x, s)

]
ds,

(4.12) u2(x, t) =

(
1− 6t

x2 + 1
+

36t2

(x2 + 1)2

)
u0(x, t),

(4.13) u3(x, t) = u2(x, t)−
∫ t

0

[
∂u2

∂t
− ∂2u2(x, s)

∂x2
+ bu3

2(x, s)

]
ds,

(4.14) u3(x, t) =

(
1− 6t

x2 + 1
+

36t2

(x2 + 1)2
− 216t3

(x2 + 1)3

)
u0(x, t).

Step by step, the result is
(4.15)

un(x, t) =

(
1− 6t

x2 + 1
+

36t2

(x2 + 1)2
− 216t3

(x2 + 1)3
+ ...+

(−6t)n

(x2 + 1)n

)
u0(x, t),
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(4.16) un(x, t) = u0(x, t)

[
1−

( −6t
x2+1

)N
x2 + 6t+ 1

]
.

Here,

(4.17) u(x, t) = lim
N→+∞

un(x, t).

Hence the exact solution:

(4.18) u(x, t) =

√
2

b

(
2x

x2 + 6t+ 1

)
.

5. PROBLEM 4

(5.1)


∂u(x, t)

∂t
=

(
u(x, t)

∂u(x, t)

∂x

)
x

+ 3

(
u(x, t)

∂u(x, t)

∂x

)
+2 (u(x, t)− u2(x, t))

u(x, 0) = 2
√
ex − e−4x

,

either:
(5.2)

∂u(x, t)

∂t
=

(
u(x, t)

∂u(x, t)

∂x

)
x

+ 3

(
u(x, t)

∂u(x, t)

∂x

)
+ 2

(
u(x, t)− u2(x, t)

)
.

The correction functional according to the variational iteration method of the
relationship (5.2) gives:

un+1(x, t) = un(x, t) +

∫ t

0

λ(t)

[
∂un

∂t
−
(
un

∂un

∂x

)
x

−3

(
un

∂un)

∂x

)
− 2

(
un − u2

n

)]
ds.

(5.3)

From the relationship (5.3), we have:

(5.4) δun+1(x, t) = δun(x, t) +

∫ t

0

λ(s)δ
∂un(x, s)

∂s
ds = 0.

Integration by parts of the equation (5.4), gives:

(5.5) δun+1(x, t) = (1 + δ(t))un(x, t)−
∫ t

0

λ
′
(s)δun(x, s)ds = 0.
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The above result leads to the following stationary conditions:

(5.6)

{
1 + λ(t) = 0 ⇒ λ(t) = −1

λ
′
(s) = 0

,

which gives λ(t) = −1.
Consequently, the shape of the variational iterations can be obtained using

the following process:

un+1(x, t) = un(x, t)−
∫ t

0

[
∂un

∂t
−

(
un

∂un

∂x

)
x

− 3

(
un

∂un

∂x

)
−2

(
un − u2

n

)]
ds.

(5.7)

By taking u0(x, t) = u(x, 0) = 2
√
ex − e−4x, the following approximations fol-

low:
(5.8)

u1(x, t) = u0(x, t)−
∫ t

0

[
∂u0

∂t
−
(
u0

∂u0

∂x

)
x

− 3

(
u0

∂u0

∂x

)
− 2

(
u0 − u2

0

)]
ds,

(5.9) u1(x, t) = (1 + 2t)(2
√
ex − e−4x),

u2(x, t) = u1(x, t)−
∫ t

0

[
∂u1

∂t
−

(
u1

∂u1

∂x

)
x

− 3

(
u1

∂u1)

∂x

)
−2

(
u1 − u2

1

)]
ds,

(5.10)

(5.11) u2(x, t) = (1 + 2t+ 2t2)(2
√
ex − e−4x),

u3(x, t) = u2(x, t)−
∫ t

0

[
∂u2

∂t
−

(
u2

∂u2

∂x

)
x

− 3

(
u2

∂u2)

∂x

)
−2

(
u2 − u2

2

)]
ds,

(5.12)

(5.13) u3(x, t) = (1 + 2t+ 2t2 +
4

3
t3)(2

√
ex − e−4x),

u4(x, t) = u3(x, t)−
∫ t

0

[
∂u3

∂t
−

(
u3

∂u3

∂x

)
x

− 3

(
u3

∂u3)

∂x

)
−2

(
u3 − u2

3

)]
ds,

(5.14)

(5.15) u4(x, t) = (1 + 2t+ 2t2 +
4

3
t3 +

2

3
t4)(2

√
ex − e−4x).
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One step at a time, the result is

(5.16) un(x, t) =

(
1 + 2t+ 2t2 +

4

3
t3 +

2

3
t4 + ...+

(2t)n

n!
)(2

√
ex − e−4x

)
,

either:

un(x, t) =

(
1 + (2t) +

(2t)2

2!
+

(2t)3

3!
+

(2t)4

4!
+ · · ·+ (2t)n

n!

)
·
(
2
√
ex − e−4x

)
,

(5.17)

u(x, t) = limn→+∞ un(x, t). Hence the exact solution:

(5.18) u(x, t) = 2e2t
√
ex − e−4x.

6. COCLUSION

In this work, we used Laplace-Adomian methods and variational iterations
to solve certain types of partial differential equations. These methods enabled
us to obtain exact solutions. We have demonstrated the effectiveness of the
Laplace technique, combined with the Adomian method, for solving nonlinear
partial differential equations. In addition, the iterative terms of the variational
iteration method have led us to the exact solutions of these equations. Both
methods are effective for these types of problem
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