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THE GENERALIZED BIVARIATE POISSON DISTRIBUTION ACCORDING TO
BERKHOUT AND PLUG.

R.F. Mizelé Kitoti1, P.C. Batsindila Nganga, E. Nguessolta, R. Bidounga, and D. Mizere

ABSTRACT. In this article, we will construct a new bivariate Poisson distribution
through the bivariate law of probabilities of causes highlighted by Bidounga et
al. in [2]. This law generalise the bivariate Poisson distribution according to
Berkhout and Plug [1].And finally we simulated the data.

1. INTRODUCTION

Several bivariate Poisson laws have been constructed, notably that of Holgate
[3], Lakshminarayana [4] and Berkhout Plug [1].

The new bivariate Poisson law that we will construct in this paper through the
bivariate law of the probabilities of causes, highlighted by Bidounga et al. [2].
It generalizes the bivariate Poisson law according to Berkhout and Plug [1].

In section 1, we will review the bivariate Poisson distribution according to
Berkhout and Plug [1] and the bivariate distribution using the probabilities of
causes (Bidounga et al. [2]).

In section 2, we will define the new law and in section 3, we will present a
simulation of this model.
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2. A REVIEW OF DISTRIBUTION

2.1. Bivariate Poisson distribution according to Berkhout and Plug [1]. Let
Yi (i = 1, n) a random variable which follows the unvariate Poisson distribu-
tion with parameters λi (i = 1, 2). The vector (Y1, Y2) follows the bivariate
Poisson distribution according to Berkhout and Plug [1] if its mass function de-
noted fBP is equal to.

(2.1) fBP (y1, y2, λ1, λ2) =

(
λy1
1 e−λ1

y1!

)(
λy2
2 e−λ2

y2!

)
, yi ∈ N, λi ∈ R∗

+(i = 1, 2).

under the conditions,

(2.2) lnλ1 = x′ρ1

and

(2.3) lnλ2 = x′ρ2 + ηy1.

The bivariate Poisson distribution according to Berkhout and Plug [1] has the
following characteristics:

(2.4) E(Y1) = V ar(Y1) = λ1,

(2.5) E(Y2) = ex
′ρ2+c2+λ1(eη−1),

where c2 is the intercept of the model 2.3, and

(2.6) V (Y2) = E(Y2) + [E(Y2)]
2[eλ1(eη−1) − 1],

(2.7) Cov(Y1, Y2) = λ1E(Y2)(e
η − 1).

The expression 2.6 shows that the variable Y2 is overdispersed. The expression
2.7 confirms the that the variables Y1 and Y2 are independent if and only if
η = 0. And the covariance is negative, zero and positive depending on whether
η is negative, zero or positive.

2.2. Bivariate distribution using the probabilities of causes (Bidounga and
al. [2]). Let consider the positive integers random variables Y1, Y2 and T. Let
T1, T2, . . . , Tn the sample of size n of the variable T.
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Definition 2.1. The bivariate distribution using the probabilities of causes has a
mass function equal to

P (Y1 = y1, Y2 = y2) =[
n∑
i

piP (Y1 = y1/Ti = ti)]× [P (Y2 = y2/Y1 = y1)](2.8)

with
∑n

i pi = 1.

3. THE GENERALISED BIVARIATE POISSON DISTRIBUTION ACCORDING TO

BERKHOUT AND PLUG [1]

Assume that the variables Y1, Y2 and T follow univariate Poisson distributions
of parameters λ1, λ2 and λ. We have the following conditional probability

P(Y1 = y1/Ti = ti) =
λy1
1

y1!
e−λ1 , i = 1, 2 . . . , n,(3.1)

as we have the model (Mizelé and al.[5]),

λ1 = λ1(ti), i = 1, 2, . . . , n,

and consequently

λ1 = λ1(t1, t2, . . . , t3).(3.2)

In the same vein, we have

P(Y2 = y2/Y1 = y1) =
λy1
2

y2!
e−λ2 ,(3.3)

with the model

λ2 = λ2(y1).(3.4)

We will assume that the model 3.2 and 3.4 are Log-linear defined as follows

(3.5) ln(λ1) = x′ρ1 +
n∑

i=1

αiti,

and

(3.6) ln(λ2) = x′ρ2 + ηy1,
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where ρ1, ρ2, α1, α2, . . ., αn and η are the parameters and x a deterministe
variable or factor. The generalized linear model 3.5 has the response variable Y1

and the model 3.6 has the response variable Y2. We have the following result.

Proposition 3.1. When in the expression 3.1 we replace λ1 by the expression 3.2
then we have

P(Y1 = y1/Ti = ti) = P(Y1 = y1/T1 = t1, . . . , Tn = tn),∀i.(3.7)

Corollary 3.1. The bivariate distribution of the probabilities of the causes is then
equal to

P(Y1 = y1, Y2 = y2) = P(Y1 = y1/T1 = t1, T2 = t2, . . . , Tn = tn)

× P(Y2 = y2/Y1 = y1).(3.8)

Definition 3.1. Let Y1, Y2 and T the random variables which follows the univariate
Poisson distribution of parameters λ1, λ2 and λ. Let T1, T2, . . . , Tn the sample of size
n of the variable T. The vector (Y1, Y2) follows the generalised bivariate Poisson
distribution according to Berkhout and Plug [1], if its mass function is equal to (cf.
expression 3.8):

P (Y1 = y1, Y2 = y2) = P(Y1 = y1/T1 = t1, T2 = t2, . . . , Tn = tn)

× P(Y2 = y2/Y1 = y1).(3.9)

Under the condition 3.5 and 3.6. We have the following properties.

Properties 3.1. Under the null hypothesis

(1) H0 : αi = 0 ∀i, the variable Y1 is independent of the variables T1,

T2, . . . , Tn, then this law is identically equal to the bivariate Poisson dis-
tribution according to Berkhout and Plug [1].

(2) H0 : η = 0, the variables Y2 and Y1 are independent.

We have the following characteristics.

Proposition 3.2.

(3.10) E(Y1) = ex
′ρ1

∏
i

eλ(e
αi−1)

(3.11) V (Y1) = E(Y1) + e2x
′ρ1 [

∏
i

eλ(e
2αi−1) −

∏
i

e2λ(e
αi−1)]
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(3.12) E(Y2) = ex
′ρ2eλ1(eη−1)

(3.13) V (Y2) = E(Y2) + e2x
′ρ2 [eλ1(e2η−1) − e2λ1(eη−1)]

(3.14) Cov(Y1, Y2) = ex
′ρ2eλ1(eη−1)[λ1e

η − ex
′ρ1

∏
i

eλ(e
αi−1)]

Proof. The moment generating function of the variable Y1 is equal to

MY1(z) = E(ezY1) = eλ1(ez−1).

E(Y1) = E[E(Y1/T1, . . . , Tn)]

= E[λ1(T1, . . . , Tn)]

= E[ex′ρ1e
∑

i αiTi ]

= ex
′ρ1E

(
e
∑

i αiTi
)

= ex
′ρ1E

(∏
i e

αiTi
)

= ex
′ρ1

∏
i E

(
eαiTi

)
= ex

′ρ1
∏

i e
λ(eαi−1)

E(Y 2
1 ) = E[E(Y 2

1 /T1, . . . , Tn)]

= E[V ar(Y1/T1, . . . , Tn)] + E
{
[E(Y1/T1, . . . , Tn)]

2
}

= E[λ1(T1, . . . , Tn)] + E(λ1(T1, . . . , Tn))
2

= E(Y1) + E

[
(ex

′ρ1
∏
i

eαiT )2

]
= E(Y1) + e2x

′ρ1E(
∏
i

e2αiT ])

= E(Y1) + e2x
′ρ1

∏
i

E(e2αiT )

= E(Y1) + e2x
′ρ1

∏
i

eλ(e
2αi−1)
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V(Y1) = E(Y 2
1 )− [E(Y1)]

2

= E(Y1) + e2x
′ρ1

∏
i

eλ(e
2αi−1) − e2x

′ρ1
∏
i

e2λ(e
αi−1)

= E(Y1) + e2x
′ρ1 [

∏
i

eλ(e
2αi−1) −

∏
i

e2λ(e
αi−1)]

E(Y2) = E[E(Y2/Y1)]

= E[E(λ2(Y1)]

= E[ex′ρ2eηY1 ]

= ex
′ρ2E[eηY1 ]

= ex
′ρ2eλ1(eη−1)

V(Y2) = E(Y 2
2 )− [E(Y2)]

2

E(Y 2
2 ) = E[E(Y 2

2 /Y1)]

= E[V ar(Y2/Y1) + E(Y2/Y1)
2]

= E[V ar(Y2/Y1)] + E[E(Y2/Y1)
2]

= E[λ2(Y1)] + E[λ2
2(Y1)]

= E(Y2) + E[e2x′ρ2+2ηY1 ]

= E(Y2) + e2x
′ρ2E(e2ηY1)

= E(Y2) + e2x
′ρ2eλ1(e2η−1)

So,

V(Y2) = E(Y2) + e2x
′ρ2eλ1(e2η−1) − e2x

′ρ2e2λ1(eη−1)

= E(Y2) + e2x
′ρ2 [eλ1(e2η−1) − e2λ1(eη−1)]
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E(Y1Y2) = E[E(Y1Y2/Y1)]

= E(Y1E(Y2/Y1)

= E[Y1e
x′ρ2eηY1 ]

= ex
′ρ2E[Y1e

ηY1 ]

= ex
′ρ2E

[
d

dη
eηY1

]
= ex

′ρ2
d

dη
E[eηY1 ]

= ex
′ρ2

d

dη
eλ1(eη−1)

= λ1e
ηex

′ρ2eλ1(eη−1)

Cov(Y1Y2) = E(Y1Y2)− E(Y1)E(Y2)

= λ1e
ηex

′ρ2eλ1(eη−1) − ex
′ρ1

∏
i

eλ(e
αi−1)ex

′ρ2eλ1(eη−1)

= ex
′ρ2eλ1(eη−1)[λ1e

η − ex
′ρ1

∏
i

eλ(e
αi−1)]

□

Properties 3.2. Under the alternative hypothesis (cf. properties 1) H1 : ∃i0 such
as αi0 ̸= 0, and H1 : η ̸= 0, the expressions 3.11 and 3.13 shows that the marginal
variables Y1 and Y2 are overdispersed.

4. ESTIMATION OF THE PARAMETERS

Given that the variables Y1, Y2 and T , follow Poisson distributions, their respec-
tive parameters λ1, λ2 and λ will be estimated by the empirical averages of the
samples taken.

Concerning, the parameters ρ1, ρ2, α1, α2, αn and η it will be enough to solve
the linear models 3.5 and 3.6.
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5. SIMULATION OF THE POISSON REGRESSIONS

Since we are talking about using Poisson data in this work, it seemed to us
opportune to use simulated Poisson data.

We have the following regressions to treat:

(1) ln(λ1) = xTρ1 +
∑n

i=1 αiti.
(2) ln(λ2) = xTρ2 + ηy1.

Tables 1, 2, 3, 4 below represent simulated data of size 82 and average 2 of
the Poisson variables Y1, Y2, T1 and T2. We got the values of the x factor, by
simulated the normal standard law with the same size 82.

TABLE 1. Table of distribution of y1

y1 0 1 2 3 4 5
Eff. observed 10 19 22 18 6 7

TABLE 2. Table of distribution of y2

y2 0 1 2 3 4 5 7
Eff. observed 13 25 21 14 5 3 1

TABLE 3. Table of distribution of t1

t1 0 1 2 3 4 5 6
Eff. observed 17 17 18 10 12 4 4

TABLE 4. Table of distribution of t2

t2 0 1 2 3 4 5 6
Eff. observed 5 27 17 18 8 6 1
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TABLE 5. Table of x

x 0 1 2 3 4
[1] -0.2234274287 -1.6307471735 -2.0365045043 1.7302872565 0.0424844894
[6] -1.7692908059 1.0288525742 0.0007483475 1.5427671012 0.3284908516
[11] -1.8513436668 1.4115969399 2.0357701461 0.4292646764 -1.3270508650
[16] 0.4250898111 1.9588314535 1.2017149653 -0.4754811766 2.3086570508
[21] 1.5614411801 -0.4724178408 -0.9367822196 1.6709703732 0.2493518755
[26] 1.3601494466 1.2887133396 0.2922499219 0.5365834280 -0.3136921186
[31] 1.0294728866 -0.0902694769 0.4830332982 -2.0420793999 0.6096617749
[36] 0.3256575397 0.2340216897 -0.3085852627 0.6435525271 -0.8841832703
[41] -1.5655128770 -0.7719396725 0.0136725487 -0.3170027173 0.6337965468
[46] 2.4052146745 1.1634279755 0.4357291315 -0.1733713775 -0.0660839121
[51] 0.6065929018 0.7459058098 0.5424165314 -0.5778619427 -0.2027294642
[56] -0.5063662545 -0.6029991346 0.7763432964 0.8853166138 0.4386325334
[61] 1.2833044167 1.7612946606 2.3917544084 0.9032137340 1.4822505527
[66] -1.0846848199 -0.3231669389 -0.8289972798 0.5891051748 0.2201731547
[71] 2.4143140831 1.9821262243 -1.0123536855 -0.7008883823 0.8334672265
[76] 0.4995551955 -2.2923028477 0.4581504401 0.9609696613 0.4543416685
[81] 0.8822026461 -2.1588372515

TABLE 6. Coefficients of regressions 1.

Variable parameters Sρ̂ ti P (> |t|)
Intercept 0.94687 0.16853 5.619 < 1.93e-08 ∗ ∗ ∗

x ρ̂1 = -0.02567 0.07067 -0.363 0.716
t1 α̂1 = -0.04521 0.04502 -1.004 0.315
t2 α̂2 = -0.03949 0.05467 -0.722 0.470

AIC= 289.71

TABLE 7. Coefficients of regressions 2.

Variable parameters Sρ̂ ti P (> |t|)
Intercept 0.81896 0.14262 5.742 < 9.34e-09 ∗ ∗ ∗

x ρ̂2 = 0.01929 0.07665 0.252 0.8013
y1 η̂ = -0.10315 0.05965 -1.729 0.0838

AIC= 277.29

It is evident from the table 6, that at the level α = 5% of significance, the
intercept is not null significantly because is p− value is smaller than α. It also
evident from this table that to the same level of significance, the coefficients
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ρ1 α1 and α2 are nulls significantly because their p− value are higher
than α.

It is evident from the table 7, that at the level α = 5% of significance, the
intercept is not null significantly because is p− value is smaller than α. It also
evident from this table that to the same level of significance, the coefficients
ρ2 and η are nulls significantly because their p− value are higher than α.

6. CONCLUSION

This paper allowed us to construct the generalized bivariate Poisson distribution
according to Berkhout and Plug [1] through the bivariate law of the probabili-
ties of causes highlighted by Bidounga and al.[2]. We have also calculate their
characteristics and finally we simulated this model.
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