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ON THE APPROXIMATION BY URYSOHN-TYPE NONLINEAR INTEGRAL
OPERATORS

Gümrah Uysal1, Pelin Söğüt, and Sevgi Esen Almali

ABSTRACT. In this paper, we prove some approximation theorems for Urysohn-
type nonlinear integral operators at µ−Lebesgue points of integrable functions.
We carry out this examination in two directions such that integration domain
being finite and infinite.

1. INTRODUCTION

For each real parameter ω ∈ Λ, linear integral operators in the following
unified form:

Lω (f ; s) =

∫
D

f (t)Kω (t, s) dt, s ∈ D,

are widely studied throughout years. Here, Kω (t, s) is a kernel function, D is
an integration domain and Λ is a non-empty index set. Some prominent studies
on this subject can be given as [9,10,18,20]. The problem of approximation by
nonlinear integral operators has been important for many years. The solution
to this problem was given by Musielak [16] via imposing a strong Lipschitz
condition on the kernel function. Some studies that followed this study can
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be given as [7, 8, 17, 19]. In addition to these studies, approximation results
were also obtained with integral operators involving power nonlinearity using
different methods. [2, 13] can be given as examples of such studies. In some
studies, the relevant kernel was chosen everywhere analytic to eliminate the
nonlinearity of the kernel (see, e.g., [1,12]).

The family of Urysohn-type nonlinear integral operators

(1.1) Lω (v; s) =

∫
R

Kω (s, t, v (t)) dt, s ∈ R,

where Kω : R×R×R → R, ω is a positive real parameter with ω → +∞ and
R stands for the set of all real numbers (see [15, 21]). Gadjiev [11] investi-
gated the convergence of Hammerstein-type integrals by setting Kω (s, t, v (t)) =

Hω (s, t)G (t, v (t)) . Almali [3] studied Urysohn-type nonlinear integral opera-
tors of type (1.1). In this work, the convergence at Lebesgue points of integrable
functions was studied. In the year 2022, Almalı and Kayabaşı [4] generalized
this study by obtaining convergence results for Lω (v; s) at p−Lebesgue points of
integrable functions. Some other related studies may be given as [5,6].

The current study is a generalization of [3]. We first prove an approxima-
tion theorem for Urysohn-type nonlinear integral operators of type (1.1) at
µ−Lebesgue points of integrable functions. µ−Lebesgue points are the natural
generalizations of the Lebesgue points with respect to the function µ (t) whose
characterization was given in [10]. In the current work, for formal definition
whenever we mention µ−Lebesgue point, we refer to [14]. Then, we restrict
the domain of integration to arbitrary bounded interval (a, b) ⊂ R and prove a
second theorem for this case. Since the pointwise convergence is considered on
a set (Fatou-type convergence), our presented theorems are stated in the form
of [10,14,18,20].

2. POINTWISE APPROXIMATION

Let v : R → R and v0 := v (s0) , where s0 ∈ R. For any fixed real number
s0, the following properties, which are imposed on the (kernel) function Kω, are
quoted from [3]:
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i: The function Kω (s, t, v) is an everywhere analytic function with respect
to variable v for every s, t ∈ R and ω > 0.

ii: limω→+∞
∫
R
Kω (s, t, v0) dt = v0 for every s ∈ R.

iii: K(n)
ω (s0, t, v0) is monotonically increasing for t < s0 and monotonically

decreasing for t > s0 as a function of t.
iv: For every s, z ∈ R, K(n)

ω (s, z, v0) ≥ 0 and K(n)
ω (s, z, v0) ≤ α (ω) holds for

n = 1, 2, ..., where α (ω) → 0 as ω → +∞.
v: For every n = 1, 2, ... and z ̸= s0, K(n)

ω (s0, z, v0) ≤ K′
ω (s0, z, v0) holds.

vi: For every n = 1, 2, ...,
∫
R
K(n)

ω (s0, t, v0) dt = An, where the numbers An

may depend only on s0.

vii: For every z ̸= s0, limω→+∞ K′
ω (s0, z, v0) = 0.

viii: For every ξ > 0, limω→+∞
∫

|t−s0|≥ξ

K′
ω (s0, t, v0) dt = 0.

Now, we prove a theorem on the convergence of the family of Urysohn-type
nonlinear integral operators at µ−Lebesgue point of v ∈ L1 (R) .

Theorem 2.1. Let the kernel Kω (s, t, v) satisfy conditions (i)-(viii). Then, at each
µ−Lebesgue point s0 ∈ R of the function v ∈ L1 (R) , which is bounded on R,

there holds that
lim

ω→+∞
Lω (v; s0) = v (s0)

on any set Ω1 on which the function
s0+δ∫

s0−δ

∣∣∣{µ (|s0 − t|)}
′

t

∣∣∣K′

ω (s0, t, v0) dt, 0 < δ < δ1

is bounded as ω → +∞. Here, δ1 is a sufficiently large real number.

Proof. We mainly follow the proof steps of [3] with some additional considera-
tions. In view of condition (i), Taylor expansion of Kω at v = v (s0) can be stated
as

Kω (s, t, v (t)) =
∞∑
n=0

1

n!
K(n)

ω (s, t, v0) [v (t)− v (s0)]
n .
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Under the assumptions, we get

|Lω (v; s0)− v (s0)| ≤
∞∑
n=1

1

n!

∫
R

|v (t)− v (s0)|nK(n)
ω (s0, t, v0) dt

+

∣∣∣∣∣∣
∫
R

Kω (s0, t, v0) dt− v (s0)

∣∣∣∣∣∣ .
Suppose v ̸= 0 on R. Since v is bounded on R, there exists B > 0 for every

t ∈ R such that |v (t)| ≤ B. So, for n = 1, 2, ..., we have

(2.1) |v (t)− v (s0)|n ≤ (2B)n−1 |v (t)− v (s0)| .

We know that s0 is a µ−Lebesgue point of the function v ∈ L1 (R) , therefore
for every ε > 0, there exists δ > 0 such that 0 < h ≤ δ and in view of (2.1), we
have the following inequalities:

(2.2)

s0∫
s0−h

|v (t)− v (s0)|n dt < (2B)(n−1) εµ (h)

and

(2.3)

s0+h∫
s0

|v (t)− v (s0)|n dt < (2B)(n−1) εµ (h) .

Here, the function µ : R → R is an increasing and absolutely continuous
function on [0, δ1] with µ(0) = 0 (see [10,14]).

For above mentioned δ > 0, we split the integral as follows:

|Lω (v; s0)− v (s0)| ≤
∞∑
n=1

1

n!

∫
|t−s0|≤δ

|v (t)− v (s0)|nK(n)
ω (s0, t, v0) dt

+
∞∑
n=1

1

n!

∫
|t−s0|≥δ

|v (t)− v (s0)|nK(n)
ω (s0, t, v0) dt

+

∣∣∣∣∣∣
∫
R

Kω (s0, t, v0) dt− v (s0)

∣∣∣∣∣∣ =:
∞∑
n=1

1

n!
(I1 + I2)+I3.
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We first examine the integral I2. In view of condition (v), we have

I2 ≤
∫

|t−s0|≥δ

(2B)(n−1) |v (t)− v (s0)| K
′

ω (s0, t, v0) dt

and

I2 ≤ (2B)(n−1)

 ∫
|t−s0|≥δ

|v (t)| K′

ω (s0, t, v0) dt+ |v (s0)|
∫

|t−s0|≥δ

K′

ω (s0, t, v0) dt

 .

In view of condition (iii), we obtain

I2 ≤ (2B)(n−1) ∥v∥L1(R)

[
K′

ω (s0, s0 − δ, v0) +K′

ω (s0, s0 + δ, v0)
]

+ (2B)(n−1) |v (s0)|
∫

|t−s0|≥δ

K′

ω (s0, t, v0) dt.

Hence,
∞∑
n=1

1

n!
I2 ≤

∞∑
n=1

1

n!
(2B)(n−1) ∥v∥L1(R)

[
K′

ω (s0, s0 − δ, v0) +K′

ω (s0, s0 + δ, v0)
]

+
∞∑
n=1

1

n!
(2B)(n−1) |v (s0)|

∫
|t−s0|≥δ

K′

ω (s0, t, v0) dt.

Under the conditions (vii) and (viii),
∑∞

n=1
1
n!
I2 → 0 as ω → +∞. Also, by

condition (ii), I3 → 0 as ω → +∞.

Now, we consider I1. We write

I1 =

s0∫
s0−δ

|v (t)− v (s0)|n K(n)
ω (s0, t, v0) dt+

s0+δ∫
s0

|v (t)− v (s0)|nK(n)
ω (s0, t, v0) dt

= : I11+I12.

We now evaluate I11. To do this, we define auxiliary function G (t) as

G (t) :=

s0∫
t

|v (u)− v (s0)|n du.

Then, in view of (2.2), the inequality

(2.4) |G (t)| ≤ (2B)(n−1) εµ (s0 − t)
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holds. Applying (2.4) and two times integration by parts method to I11, we get

(2.5) |I11| ≤ (2B)(n−1) ε

s0∫
s0−δ

∣∣∣{µ (t− s0)}
′

t

∣∣∣K′

ω (s0, t, v0) dt.

Making similar operations as in I11, we obtain the following inequality for I12

(2.6) |I12| ≤ (2B)(n−1) ε

s0+δ∫
s0

∣∣∣{µ (s0 − t)}
′

t

∣∣∣K′

ω (s0, t, v0) dt.

Combining (2.5) and (2.6), we get

|I11|+ |I12| ≤ (2B)(n−1) ε

s0+δ∫
s0−δ

∣∣∣{µ (|s0 − t|)}
′

t

∣∣∣K′

ω (s0, t, v0) dt.

Under the hypothesis, we see that
∑∞

n=1
1
n!

I1 → 0 as ω → +∞. Thus, the proof
is completed. □

Now, we consider the following Urysohn-type integral operators:

Tω (v; s) =

b∫
a

Kω (s, t, v (t)) dt, s ∈ (a, b) ,

where Kω : R×R×R → R, (a, b) is an arbitrary bounded interval in R and ω

is a positive real parameter with ω → +∞.

Theorem 2.2. Let the kernel Kω (s, t, v) satisfy conditions (i)-(vii). Then, at each
µ−Lebesgue point s0 ∈ (a, b) of the function v ∈ L1 (a, b) with v : R → R which is
bounded on (a, b), there holds that

lim
ω→+∞

Tω (v; s0) = v (s0)

on any set Ω2 on which the function
s0+δ∫

s0−δ

∣∣∣{µ (|s0 − t|)}
′

t

∣∣∣K′

ω (s0, t, v0) dt, 0 < δ < δ2

is bounded as ω → +∞. Here, δ2 is a sufficiently large real number such that
(s0 − δ, s0 + δ) ⊆ (a, b).
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Proof. We define the extension function g by

g(t) :=

{
v(t), t ∈ (a, b),

0, t ∈ R\(a, b).

In view of condition (i), Taylor expansion of Kω at v = v (s0) can be stated as

Kω (s, t, v (t)) =
∞∑
n=0

1

n!
K(n)

ω (s, t, v0) [v (t)− v (s0)]
n .

We write

Tω (v; s0) =
∞∑
n=0

1

n!

b∫
a

[v (t)− v (s0)]
nK(n)

ω (s0, t, v0) dt

=
∞∑
n=0

1

n!

∞∫
−∞

[g (t)− v (s0)]
nK(n)

ω (s0, t, v0) dt.

Under the assumptions, we get

|Tω (v; s0)− v (s0)| ≤
∞∑
n=1

1

n!

b∫
a

|v (t)− v (s0)|nK(n)
ω (s0, t, v0) dt

+

∣∣∣∣∣∣
∫
R

Kω (s0, t, v0) dt− v (s0)

∣∣∣∣∣∣ .
Suppose v ̸= 0 on (a, b). Since v is bounded on (a, b), there exists D > 0 for every
t ∈ (a, b) such that |v (t)| ≤ D. So, for n = 1, 2, ..., we have

(2.7) |v (t)− v (s0)|n ≤ (2D)n−1 |v (t)− v (s0)| .

We know that s0 is a µ−Lebesgue point of the function v ∈ L1(a, b), therefore
for every ε > 0, there exists δ > 0 such that 0 < h ≤ δ and in view of (2.7), we
have the following inequalities:

(2.8)

s0∫
s0−h

|v (t)− v (s0)|n dt < (2D)(n−1) εµ (h)
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and

(2.9)

s0+h∫
s0

|v (t)− v (s0)|n dt < (2D)(n−1) εµ (h) .

Here, the function µ : R → R is an increasing and absolutely continuous
function on [0, δ2] with µ(0) = 0.

For above mentioned δ > 0, we split the integral as follows:

|Tω (v; s0)− v (s0)| ≤
∞∑
n=1

1

n!

∫
(s0−δ,s0+δ)

|v (t)− v (s0)|nK(n)
ω (s0, t, v0) dt

+
∞∑
n=1

1

n!

∫
(a,b)\(s0−δ,s0+δ)

|v (t)− v (s0)|nK(n)
ω (s0, t, v0) dt

+

∣∣∣∣∣∣
∫
R

Kω (s0, t, v0) dt− v (s0)

∣∣∣∣∣∣ =:
∞∑
n=1

1

n!
(II1 + II2)+II3.

We first evaluate the integral II2. By condition (v), we have

II2 ≤
∫

(a,b)\(s0−δ,s0+δ)

(2D)(n−1) |v (t)− v (s0)| K
′

ω (s0, t, v0) dt

and

II2 ≤ (2D)(n−1)

 ∫
(a,b)\(s0−δ,s0+δ)

|v (t)| K′

ω (s0, t, v0) dt

+ |v (s0)|
∫

(a,b)\(s0−δ,s0+δ)

K′

ω (s0, t, v0) dt

 .

In view of condition (iii), we obtain

II2 ≤ (2D)(n−1) ∥v∥L1(a,b)

[
K′

ω (s0, s0 − δ, v0) +K′

ω (s0, s0 + δ, v0)
]

+ (2D)(n−1) |v (s0)| (b− a)
[
K′

ω (s0, s0 − δ, v0) +K′

ω (s0, s0 + δ, v0)
]
.
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Hence,
∞∑
n=1

1

n!
II2 ≤

∞∑
n=1

1

n!
(2D)(n−1) ∥v∥L1(a,b)

[
K′

ω (s0, s0 − δ, v0) +K′

ω (s0, s0 + δ, v0)
]

+
∞∑
n=1

1

n!
(2D)(n−1) |v (s0)| (b− a)

[
K′

ω (s0, s0 − δ, v0)

+ K′

ω (s0, s0 + δ, v0)
]
.

By condition (vii),
∑∞

n=1
1
n!
II2 → 0 as ω → +∞. Also, by condition (ii), II3 →

0 as ω → +∞.

Making similar operations as in previous theorem, we obtain for the integral
II1 :

|II1| ≤ (2D)(n−1) ε

s0+δ∫
s0−δ

∣∣∣{µ (|s0 − t|)}
′

t

∣∣∣K′

ω (s0, t, v0) dt

in view of (2.8) and (2.9). Under the hypothesis, we arrive at
∑∞

n=1
1
n!
II1 → 0

as ω → +∞. Thus, the proof is completed. □

REFERENCES

[1] S.E. ALMALI, A.D. GADJIEV: On approximation properties of certain multidimensional
nonlinear integrals, J. Nonlinear Sci. Appl., 9(5) (2016), 3090-3097.

[2] S.E. ALMALI, G. UYSAL, V.N. MISHRA, O.O. GULLER: On singular integral operators
involving power nonlinearity, Korean J. Math., 25(4) (2017), 483-494.

[3] S.E. ALMALI: On pointwise convergence of the family Urysohn-type integral operators, Math.
Methods Appl. Sci., 42(16) (2019), 5346-5353.
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