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ON THE APPROXIMATION BY URYSOHN-TYPE NONLINEAR INTEGRAL
OPERATORS

Giimrah Uysal', Pelin S6giit, and Sevgi Esen Almali

ABSTRACT. In this paper, we prove some approximation theorems for Urysohn-
type nonlinear integral operators at u—Lebesgue points of integrable functions.
We carry out this examination in two directions such that integration domain
being finite and infinite.

1. INTRODUCTION

For each real parameter w € A, linear integral operators in the following
unified form:

Lw(f;s):/f(t)le(t,s)dt, seD,

are widely studied throughout years. Here, K, (¢, s) is a kernel function, D is
an integration domain and A is a non-empty index set. Some prominent studies
on this subject can be given as [9,10,/18,20]. The problem of approximation by
nonlinear integral operators has been important for many years. The solution
to this problem was given by Musielak [16] via imposing a strong Lipschitz
condition on the kernel function. Some studies that followed this study can
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be given as [7,8,17,19]. In addition to these studies, approximation results
were also obtained with integral operators involving power nonlinearity using
different methods. [2,13] can be given as examples of such studies. In some
studies, the relevant kernel was chosen everywhere analytic to eliminate the
nonlinearity of the kernel (see, e.g., [1,[12]).

The family of Urysohn-type nonlinear integral operators

(1.1) L, (v;s) = /ICW (s,t,v(t))dt, seR,
R

where K, : R Xx R x R — R, w is a positive real parameter with w — 400 and
R stands for the set of all real numbers (see [15,21]]). Gadjiev [11] investi-
gated the convergence of Hammerstein-type integrals by setting /C,, (s,t,v (t)) =
He (s,t)G (t,v (t)). Almali [3] studied Urysohn-type nonlinear integral opera-
tors of type (1.I). In this work, the convergence at Lebesgue points of integrable
functions was studied. In the year 2022, Almali and Kayabasi [[4] generalized
this study by obtaining convergence results for £, (v; s) at p—Lebesgue points of
integrable functions. Some other related studies may be given as [5,6].

The current study is a generalization of [3]. We first prove an approxima-
tion theorem for Urysohn-type nonlinear integral operators of type at
iu—Lebesgue points of integrable functions. p—Lebesgue points are the natural
generalizations of the Lebesgue points with respect to the function p () whose
characterization was given in [10]. In the current work, for formal definition
whenever we mention y—Lebesgue point, we refer to [[14]. Then, we restrict
the domain of integration to arbitrary bounded interval (a,b) C R and prove a
second theorem for this case. Since the pointwise convergence is considered on
a set (Fatou-type convergence), our presented theorems are stated in the form
of [10}/14,18,20].

2. POINTWISE APPROXIMATION

Letv : R - R and vy := v (sg), where so € R. For any fixed real number
S0, the following properties, which are imposed on the (kernel) function I, are
quoted from [3]]:



URYSOHN-TYPE INTEGRAL OPERATORS 3

iz The function K, (s, ¢, v) is an everywhere analytic function with respect
to variable v for every s,t € R and w > 0.

ii: limy, 40 [ Ko (5,8, 00) dt = vy for every s € R.
R

jii: (Y (s0,t,v0) is monotonically increasing for ¢t < s, and monotonically
decreasing for t > sy as a function of ¢.
iv: For every s, z € R, K" (s, 2,v0) = 0 and KU (s, z,v0) < a (w) holds for
n=1,2, ..., where a (w) — 0 as w — +oc.
v: For every n = 1,2, ... and z # so, K (50, 2, v0) < K, (50, 2, v0) holds.
vi: For every n = 1,2, ..., fICSJ") (s0,t,v9) dt = A,, where the numbers A,
R

may depend only on s.
vii: For every z # s, limy_ o K., (50, 2,19) = 0.

viii: For every ¢ > 0, lim,, ... [ K, (S0,t,v0)dt = 0.
|t 80|>§

Now, we prove a theorem on the convergence of the family of Urysohn-type
nonlinear integral operators at y—Lebesgue point of v € L; (R) .

Theorem 2.1. Let the kernel KC,, (s, t,v) satisfy conditions (i)-(viii). Then, at each
pu—Lebesgue point sy € R of the function v € L; (R), which is bounded on R,
there holds that

lim L, (v;s9) = v (so)

w—+00

on any set )y on which the function

So+5

/ ){u(|50 — t|)}; K, (s0,t,v0)dt, 0 <8 <8

is bounded as w — +oo. Here, d; is a sufficiently large real number.

Proof. We mainly follow the proof steps of [|3] with some additional considera-
tions. In view of condition (i), Taylor expansion of IC,, at v = v (s¢) can be stated
as

Ko (s,t,v(t anlC (s,t,00) [0 (t) — v (s0)]" -
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Under the assumptions, we get

Lo (v550) = v (s0)| < ) / ) — v (so)|" K™ (s0,t, v0) dt

n=1 R

3|+—t

+ /’Cw (507 t? UO) dt —v (50) :
R
Suppose v # 0 on R. Since v is bounded on R, there exists B > 0 for every
t € R such that |v (¢)| < B. So, for n = 1,2, ..., we have
2.1 v (t) — v (s0)]" < (2B)" " v (t) — v (s0)] .-

We know that s, is a u—Lebesgue point of the function v € L; (R), therefore
for every ¢ > 0, there exists § > 0 such that 0 < h < ¢ and in view of (2.1), we
have the following inequalities:

(2.2) / v (t) — v (so)["dt < 2B)™ Y eu(h)
so—h

and
so+h

2.3) / v (#) = v (s0)[" dt < (2B)" D epu (h)

S0
Here, the function ;1 : R — R is an increasing and absolutely continuous
function on [0, §;] with 1(0) = 0 (see [10,14]]).
For above mentioned ¢ > 0, we split the integral as follows:

Lo (v 50) — Zn' / (50)[" K (50, £, ) dt
=1 s0l<s

Zl / 0 (o) K (0, £, vo) dt
=t lt—s0|>5

— 1
+ /’Cw So,t UO t—U(SO ZE Il—f—Ig)—f-Ig
R

n=1
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We first examine the integral I,. In view of condition (v), we have
I, < / (2B)" D o (t) — v (s0)| K., (50,1, vo) dt
|t750|25

and

I, < (2B)") / v (B K, (s0, £, v0) dt + v (s0)] / K (50,1, v9) dt

[t—s0|>d [t—s0|>d

In view of condition (iii), we obtain
L < 2B)"7 vl [/c; (50, S0 — 8, v0) + K., (0, 80 + 0, UO)]

+ 2B)" 7V |y (s0)] / K, (s0,t, v0) dt.

[t—s0|>8

]_ n— / /
E (QB)( 1) HUHLl(R) [’Cw (80, So — 5, UU) + ICW (80, So + (5, Uo)]

3
NE

1

n=1 n

+

-(2B)" Y [ (s0)] / K. (so,t, o) dt.

! lt—s0]>5

NE
3|»—

n

Under the conditions (vii) and (viii), Y -, %IQ — 0 as w — +oo. Also, by
condition (ii), Iy — 0 as w — +o0.
Now, we consider I,. We write
s0+6

50
I, = / v (t) — v (sg)lnleJ") (S0, t,v0) dt + / lv(t) —v (50)\"ICL(U”) (s0,t,v0) dt
s0—0 S0

= 111+112.

We now evaluate I;;. To do this, we define auxiliary function G (t) as
S0
G(t) = / v (u) — v (s0)|" du.
t

Then, in view of (2.2)), the inequality
2.4 G ()] < (2B)" Y epu (s —t)
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holds. Applying (2.4) and two times integration by parts method to I;;, we get

(2.5) L] < 2B)" Ve / ‘{,u(t—so)}; K., (s0,t,v0) dt.

s0—0

Making similar operations as in I;;, we obtain the following inequality for I,

s0+96
(2.6) Lo| < (2B)" Ve / ‘{u (50 — O)}| KC., (50, £, v0) dt.
S0
Combining and (2.6), we get
so+90
Tl + [Lal < 2B)" [ [{g(hso = e )| KL (50,1, 0) .
s0—0

o 1
n=1 n!

Under the hypothesis, we see that >
is completed. O

I, — 0 as w — +oo. Thus, the proof

Now, we consider the following Urysohn-type integral operators:

T (v:5) = /zcw (s.t,0 (1) dt, s € (a,b),

where £, : R x R x R = R, (a,b) is an arbitrary bounded interval in R and w
is a positive real parameter with w — +o0.

Theorem 2.2. Let the kernel K, (s,t,v) satisfy conditions (i)-(vii). Then, at each
u—Lebesgue point sy € (a, b) of the function v € L, (a,b) with v : R — R which is
bounded on (a,b), there holds that

lim T, (v; s0) = v (so)

W—+00
on any set {2, on which the function
so+6
[ o tlso =ty K sty dt, 0.<5 < 5
s0—0
is bounded as w — +oc0. Here, 0 is a sufficiently large real number such that
(so — 0,50+ 9) C (a,b).
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Proof. We define the extension function g by
v(t), te€(a,b),
A KO
0, teR\(a,b).

In view of condition (i), Taylor expansion of K, at v = v (sy) can be stated as

o 1 "
Ko (s, t,v(t Zon— (s,t,v9) [v(t) — v (s0)]".
We write
Totwssn) = 300 [ 100 =0 ol K o o)t
= ZOE IC (So,t Uo) dt.

Under the assumptions, we get

b
— 1
Tatwise) = vlso)l < Y0 [0®) = ()l KL (sost0)
n=1 .a

+ / K. (50,1, v0) dt — v (s0)] .

R

Suppose v # 0 on (a, b). Since v is bounded on (a, b), there exists D > 0 for every
t € (a,b) such that |v (t)] < D. So, forn = 1,2, ..., we have

(2.7) [o () = (s0)]" < (2D)"" |0 (£) = v (o)l

We know that s; is a u—Lebesgue point of the function v € L;(a,b), therefore

for every ¢ > 0, there exists § > 0 such that 0 < h < ¢ and in view of (2.7), we
have the following inequalities:

2.8) / v (#) — v (so)|" dt < (2D)" D 40 (h)
so—h
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and
so+h

(2.9) / v (t) — v (so)|["dt < (2D)™ Vep(h).
S0
Here, the function p : R — R is an increasing and absolutely continuous
function on [0, §5] with 1(0) = 0.
For above mentioned § > 0, we split the integral as follows:

|72 (v 50) — v (o) Zn' / (s0)|" K™ (s0,t, v0) dt

(S() —0 50+5)

3 a [ @ K (ot

n=1 G B\ (s0—5,50-+0)

=1
+ /IC (S0, t,v0) dt — v (s0) ZE (I1; 4 I1,) +11,.
R n=1
We first evaluate the integral IT,. By condition (v), we have
0, < / (2D)V [u () — v (39)| K. (50,1, v9) dit
(a,b)\(s0—0,s0+9)

and

I, < (2D)"™Y / lv (8)| K., (so,t, vo) di

(a,b)\(s0—9,s0+9)

+ v (so)| / K, (s0,t,v0) dt
(a,b)\(s0—0,50+9)

In view of condition (iii), we obtain
L, < (2D)" 7V |[oll,, s {/c; (50, 50 — 8, vo) + K, (S0, 50 + 6, vo)}

£ 2D) o (50)| (b= @) [ICL, (50,50 — 6 00) + KL, (80,50 + 600)]
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Hence,
iiII < ii —I)H,UH [IC/ (S 5 —51))+/C/ (8 8—1—51})
ot n' 2 — n:1n Ll(a,b) w 07 0 ) 0 w 07 0 9 0
o0 1 /
+ 20D fu(s)| (b - a) KL (s0, 50 = 6. v)

n=1

+ K., (s0,50 + 0, Uo)} :

By condition (vii), > °7
0asw — +o0.

LII, — 0 as w — +o0. Also, by condition (ii), IT; —

n=1 n!

Making similar operations as in previous theorem, we obtain for the integral

IIl :
80+5

L)< D) e [ [{(lso = e} €L (st o)t

s0—0
in view of (2.8) and (2.9). Under the hypothesis, we arrive at > | -1 IT; — 0
as w — +o0o. Thus, the proof is completed. O
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