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FOUR NEW INTEGRAL THEOREMS INVOLVING STARSHAPED
FUNCTIONS

Christophe Chesneau

ABSTRACT. This article presents four new integral theorems relating to star-
shaped functions. The first theorem establishes a fundamental result concern-
ing the integrability of these functions. The second and third theorems provide
univariate integral inequalities, and the fourth introduces a bivariate Hilbert-
type integral inequality. Detailed proofs are given for each theorem.

1. INTRODUCTION

Studying integral results under convex-type assumptions is essential for ex-
tending the scope of classical inequalities and uncovering new analytical rela-
tionships. Such assumptions allow for greater flexibility in function behavior
while preserving useful structural properties. For further developments in this
area, see [7,8,10].

In this article, we show how convex-type assumptions can be effectively em-
ployed to derive meaningful results in both univariate and bivariate contexts. In
particular, we focus on the notion of starshapedness through the concept of a
starshaped function. A formal definition is given below.
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Definition 1.1. Let a, b ∈ R ∪ {±∞} with b > a, and f : [a, b] → [0,+∞) be
a function. Then f is said to be starshaped if and only if, for any τ ∈ [0, 1] and
x ∈ [a, b], we have

f(τx) ≤ τf(x).

We refer the reader to [3, 4] for further background. If we take a = 0 and
b = +∞, typical examples of functions satisfying the desired properties include
f(x) = xγ with γ > 1, f(x) = exp(x) − 1 and f(x) =

√
x2 + 1 − 1. If we take

a = 0 and b = 1, examples are f(x) = 1 − cos((π/2)x), f(x) = tan((π/4)x) and
f(x) = − log(1− x) (excluding the value x = 1), to name a few.

The starshapedness assumption is one of the most fundamental convex-type
assumptions. It is often viewed as a special case of the broader m-convexity
framework, specifically corresponding to the case m = 0. Within this setting, a
wide range of integral inequalities, particularly of the Hermite-Hadamard type
and Jensen type, have been established in the literature. See [1,2,5,6,9,11]. Fo-
cusing exclusively on the starshapedness assumption, this article presents a col-
lection of simple yet previously unpublished univariate integral results, as well
as a new bivariate Hilbert-type integral inequality. These findings are structured
into four theorems, each supported by a complete and self-contained proof.

The remainder of the article is organized as follows: Section 2 presents the
main theorems along with their detailed proofs. Section 3 offers concluding
remarks and perspectives for future research.

2. CONTRIBUTIONS

2.1. First theorem. The result below is an univariate integrability result for
starshaped functions. The proof is based on reasoning by contradiction using a
change of variables technique.

Theorem 2.1. Let f : [0,+∞) → [0,+∞) be a starshaped function. Then it is not
integrable on [0,+∞), i.e., ∫ +∞

0

f(x)dx = +∞.

Proof. A contradiction reasoning is used. Let us assume that f is integrable on
[0,+∞) and consider τ ∈ [0, 1). Performing the change of variables x = τy, and
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using the fact that f is starshaped, i.e., f(τy) ≤ τf(y), we have∫ +∞

0

f(x)dx =

∫ +∞

0

f(τy)τdy

≤
∫ +∞

0

τf(y)τdy = τ 2
∫ +∞

0

f(y)dy = τ 2
∫ +∞

0

f(x)dx.

We simplify the integral of f on both sides, which is possible because of its
supposed convergence, and get

τ 2 ≥ 1.

This contradicts τ ∈ [0, 1). As a result, f cannot be integrable on [0,+∞). The
proof ends. □

This result shows that caution must be exercised when working with integrals
involving starshaped functions, as there is a risk of encountering an integrability
problem when integrating over the interval [0,+∞).

2.2. Second theorem. The result below is an univariate integral inequality in-
volving the power of a starshaped function. The proof is based on a change of
variables technique and standard power integral calculus.

Theorem 2.2. Let α > 0 and f : [0, α] → [0,+∞) be a starshaped function. Then,
for any ϵ ≥ 0, we have ∫ α

0

f ϵ(x)dx ≤ α

ϵ+ 1
f ϵ(α).

Proof. Performing the change of variables x = αy, and using the fact that f is
starshaped, i.e., f(αy) ≤ yf(α) with y ∈ [0, 1], and standard power integral
calculus, we have∫ α

0

f ϵ(x)dx =

∫ 1

0

f ϵ(αy)αdy ≤
∫ 1

0

[yf(α)]ϵ αdy = αf ϵ(α)

∫ 1

0

yϵdy =
α

ϵ+ 1
f ϵ(α).

This concludes the proof. □

In particular, for ϵ = 1, we have∫ α

0

f(x)dx ≤ α

2
f(α).

This corresponds to [4, Lemma 4]. In a sense, this also completes Theorem
2.1, demonstrating how the truncated integral of f can be bounded from above.
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Incorporating the adjustable parameter ϵ adds a new degree of flexibility to this
established result.

2.3. Third theorem. The result below can be presented as an univariate inte-
gral inequality involving a starshaped function. The proof is based on a change
of variables technique and the Chasles integral relation.

Theorem 2.3. Let α > 0 and f : [0,+∞) → [0,+∞) be a starshaped function.
Then, for any τ ∈ [0, 1), we have∫ α/τ

0

f(x)dx ≤ 1

1− τ 2

∫ α/τ

α

f(x)dx

Proof. Performing the change of variables x = τy, and using the fact that f is
starshaped, i.e., f(τy) ≤ τf(y) with τ ∈ [0, 1), we have∫ α

0

f(x)dx =

∫ α/τ

0

f(τy)τdy ≤
∫ α/τ

0

τf(y)τdy = τ 2
∫ α/τ

0

f(y)dy

= τ 2
∫ α/τ

0

f(x)dx.

Using the Chasles integral relation, τ ∈ [0, 1) so that α/τ > α, and the inequality
above, we get∫ α/τ

0

f(x)dx =

∫ α

0

f(x)dx+

∫ α/τ

α

f(x)dx ≤ τ 2
∫ α/τ

0

f(x)dx+

∫ α/τ

α

f(x)dx.

This implies that

(1− τ 2)

∫ α/τ

0

f(x)dx ≤
∫ α/τ

α

f(x)dx.

Since τ ∈ [0, 1), we can divided both sides by 1− τ 2 > 0, and we derive∫ α/τ

0

f(x)dx ≤ 1

1− τ 2

∫ α/τ

α

f(x)dx.

This concludes the proof. □

Thanks to this result, the following inequalities hold:∫ α/τ

α

f(x)dx ≤
∫ α/τ

0

f(x)dx ≤ 1

1− τ 2

∫ α/τ

α

f(x)dx.
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The first inequality follows immediately from the non-negativity of f . This gives
us control over the second integral depending on α and τ , adding a new result
to the theory of integral dealing with starshaped functions.

2.4. Fourth theorem. Hilbert-type integral inequalities are well-known results
in analysis, with many applications in operator theory. Comprehensive treat-
ments can be found in the books [12,13].

The result below presents a bivariate Hilbert-type integral inequality involving
starshaped functions. The proof is based on multiple change of variables tech-
niques, including the polar change of variables, and standard integral calculus
techniques.

Theorem 2.4. Let α > 0 and β > 0 such that 2α ≥ β, and f, g : [0,max(α, β)] →
[0,+∞) be two starshaped functions. Then we have∫∫

{(x,y)∈[0,α]2; x+y≤β}

1

x+ y
f(x)g(y)dxdy ≤ 1

6

∫ β

0

f(x)g(x)dx.

Proof. Performing the change of variables x = u2 and y = v2, we obtain∫∫
{(x,y)∈[0,α]2; x+y≤β}

1

x+ y
f(x)g(y)dxdy

=

∫∫
{(u,v)∈[0,

√
α]2; u2+v2≤β}

1

u2 + v2
f(u2)g(v2)(4uvdudv)

=4

∫∫
{(u,v)∈[0,

√
α]2; u2+v2≤β}

uv

u2 + v2
f(u2)g(v2)dudv.(2.1)

Performing the polar change of variables (u, v) = (ρ cos(θ), ρ sin(θ)) having the
absolute value of the Jacobian equals to ρ, and taking into account that u, v ≥ 0

which implies ρ ≥ 0 and θ ∈ [0, π/2], and

u2 + v2 ≤ β ⇔ ρ2 cos2(θ) + ρ2 sin2(θ) ≤ β ⇔ ρ2 ∈ [0, β] ⇔ |ρ| ∈ [0,
√

β],

so that ρ ∈ [0,
√
β], we obtain

4

∫∫
{(u,v)∈[0,

√
α]2; u2+v2≤β}

uv

u2 + v2
f(u2)g(v2)dudv

= 4

∫ √
β

0

∫ π/2

0

ρ cos(θ)ρ sin(θ)

ρ2 cos2(θ) + ρ2 sin2(θ)
f(ρ2 cos2(θ))g(ρ2 sin2(θ))(ρdθdρ)(2.2)
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= 4

∫ √
β

0

∫ π/2

0

ρ cos(θ) sin(θ)f(ρ2 cos2(θ))g(ρ2 sin2(θ))dθdρ.

Using the facts that f and g are starshaped, since τ1 = cos2(θ) ∈ [0, 1] and
τ2 = sin2(θ) ∈ [0, 1], we have

f(ρ2 cos2(θ)) = f(τ1ρ
2) ≤ τ1f(ρ

2) = cos2(θ)f(ρ2)

and

g(ρ2 sin2(θ)) = g(τ2ρ
2) ≤ τ2g(ρ

2) = sin2(θ)g(ρ2).

These inequalities give

4

∫ √
β

0

∫ π/2

0

ρ cos(θ) sin(θ)f(ρ2 cos2(θ))g(ρ2 sin2(θ))dθdρ

≤ 4

∫ √
β

0

∫ π/2

0

ρ cos(θ) sin(θ) cos2(θ)f(ρ2) sin2(θ)g(ρ2)dθdρ

= 4

∫ √
β

0

∫ π/2

0

cos3(θ) sin3(θ)ρf(ρ2)g(ρ2)dθdρ

= 2

[∫ π/2

0

cos3(θ) sin3(θ)dθ

][∫ √
β

0

f(ρ2)g(ρ2)(2ρdρ)

]

= 2

[∫ π/2

0

cos(θ)[1− sin2(θ)] sin3(θ)dθ

][∫ √
β

0

f(ρ2)g(ρ2)(2ρdρ)

]
.(2.3)

Performing the changes of variables η = sin(θ) for the first integral, and ω = ρ2

for the second integral, and using standard power integral calculus, we find that

2

[∫ π/2

0

cos(θ)[1− sin2(θ)] sin3(θ)dθ

][∫ √
β

0

f(ρ2)g(ρ2)(2ρdρ)

]

= 2

[∫ 1

0

(1− η2)η3dη

] [∫ β

0

f(ω)g(ω)dω

]
= 2

[∫ 1

0

η3dη −
∫ 1

0

η5dη

] [∫ β

0

f(ω)g(ω)dω

]
=

1

6

∫ β

0

f(ω)g(ω)dω =
1

6

∫ β

0

f(x)g(x)dx.(2.4)
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Joining Equations (2.1), (2.2), (2.3) and (2.4), we finally obtain∫∫
{(x,y)∈[0,α]2; x+y≤β}

1

x+ y
f(x)g(y)dxdy ≤ 1

6

∫ β

0

f(x)g(x)dx.

This concludes the proof. □

In particular, if we take f = g, we have∫∫
{(x,y)∈[0,α]2; x+y≤β}

1

x+ y
f(x)f(y)dxdy ≤ 1

6

∫ β

0

f 2(x)dx.

The upper bound thus relies on the L2 integral norm of f .
More generally, note that the case β → +∞ is not of interest, as the upper

bound diverges; the product fg remains starshaped, and its integral is infinite by
Theorem 2.1. This highlights the importance of considering a bounded domain
of integration.

In the upper bound, note also that the constant factor 1/6 is independent of π,
and that the expression involves the integral of both fg, which contrasts with the
structure of the classical Hilbert-type integral inequalities. See [12, 13]. To the
best of our knowledge, Theorem 2.4 is a new result in the literature and one of
the few bivariate inequalities established under the starshapedness assumption.

3. CONCLUSION

In conclusion, this article introduces four new integral theorems under the
starshapedness assumption. The univariate and bivariate inequalities presented
here provide a basis for further generalizations, including extensions to other
convex-type assumptions, such as the (α,m)-convexity. Future work may also
explore multidimensional analogues, applications to fractional integrals, or re-
finements under additional regularity conditions.
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