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A NOTE ON A GENERALIZED OLECH-OPIAL INTEGRAL INEQUALITY

Christophe Chesneau

ABSTRACT. This note presents a new, generalized version of the Olech-Opial
integral inequality, which is characterized by the inclusion of an intermediate
convex function. Notably, this framework relaxes the standard initial condi-
tion on the primary function. Several examples are presented to illustrate and
validate the theory.

1. INTRODUCTION

The mathematical literature contains numerous integral inequalities, each ad-
dressing a specific objective. One such result is the Olech-Opial integral inequal-
ity established in [8]. It provides an elegant bound relating a differentiable func-
tion and its derivative in integral form. This is stated formally in the theorem
below.

Theorem 1.1. Let α > 0 and f : [0, α] → R be a differentiable function such that
f(0) = 0. Then we have∫ α

0

|f(x)f ′(x)|dx ≤ α

2

∫ α

0

[f ′(x)]2dx.

This result has inspired numerous advances in the field of theory of differen-
tial and integral equations. See [1–7].
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In this note, we present a new generalization based on a convex approach.
This approach is inspired by the proof methodology developed in [6] and [2,
Theorem 2.3]. Specifically, we introduce an auxiliary convex function with no
initial condition that can be adapted to various mathematical contexts. Our
method also relaxes the traditional requirement of f(0) = 0, thereby extend-
ing the scope of the original result. We provide several examples of different
convex functions, including power, exponential, logarithmic and trigonometric
functions. These lead to new integral inequalities.

The main contribution is presented in Section 2. Section 3 offers concluding
remarks and potential directions for future research.

2. MAIN RESULT WITH PROOF

First of all, we recall that a function φ : [0,+∞) → R is said to be convex if,
for any x, y ∈ [0,+∞) and any θ ∈ [0, 1], the following inequality holds:

φ(θx+ (1− θ)y) ≤ θφ(x) + (1− θ)φ(y).

If φ is twice differentiable, this is equivalent to φ′′(x) ≥ 0 for all x ∈ [0,+∞).
An important integral inequality associated with the concept of convexity is the
Jensen integral inequality, which will play a key role in our study. Further details
can be found in [9].

Based on this mathematical foundation, we state the main theorem below. We
emphasize the importance of allowing f(0) to be arbitrary, as well as the role
of the introduced convex function φ, including its value at the origin, φ(0). The
proof and examples of this result are presented immediately after the statement.

Theorem 2.1. Let α > 0, f : [0, α] → R be a differentiable function and φ :

[0,+∞) → R be a twice differentiable convex function. Then we have∫ α

0

φ′(|f(x)− f(0)|)|f ′(x)|dx ≤ 1

α

∫ α

0

φ (α|f ′(x)|) dx− φ(0).

Proof. We adopt the proof methodology developed in [6] and [2, Theorem 2.3],
making significant changes where the function φ, φ(0) and f(0) are involved.
Let us set

Φ(x) =

∫ x

0

|f ′(t)|dt.
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By the definition of a primitive, we get

Φ′(x) = |f ′(x)|.(2.1)

Applying the triangle inequality, we obtain

|f(x)− f(0)| =
∣∣∣∣∫ x

0

f ′(t)dt

∣∣∣∣ ≤ ∫ x

0

|f ′(t)|dt = Φ(x).(2.2)

Since φ is twice differentiable and convex, φ′ is non-decreasing. This and Equa-
tion (2.2) give

φ′(|f(x)− f(0)|) ≤ φ′(Φ(x)).(2.3)

It follows from equations (2.1) and (2.3) that∫ α

0

φ′(|f(x)− f(0)|)|f ′(x)|dx =

∫ α

0

φ′(|f(x)− f(0)|)Φ′(x)dx

≤
∫ α

0

φ′(Φ(x))Φ′(x)dx.(2.4)

Based on this last integral, using the primitive rule for composition, we have∫ α

0

φ′(Φ(x))Φ′(x)dx = [φ(Φ(x))]x=α
x=0 = φ(Φ(α))− φ(Φ(0))

= φ

(∫ α

0

|f ′(x)|dx
)
− φ

(∫ 0

0

|f ′(x)|dx
)

= φ

(∫ α

0

|f ′(x)|dx
)
− φ(0).(2.5)

We continue the proof by bounding the first term using the convexity of φ. It
follows from the Jensen integral inequality applied to the convex function φ and
the measure (1/α)dx with x ∈ [0, α] that

φ

(∫ α

0

|f ′(x)|dx
)

= φ

(∫ α

0

α|f ′(x)|
(
1

α
dx

))
≤
∫ α

0

φ (α|f ′(x)|)
(
1

α
dx

)
=

1

α

∫ α

0

φ (α|f ′(x)|) dx.(2.6)

Joining Equations (2.4), (2.5) and (2.6), we get∫ α

0

φ′(|f(x)− f(0)|)|f ′(x)|dx ≤ 1

α

∫ α

0

φ (α|f ′(x)|) dx− φ(0).

This ends the proof. □
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This theorem is of particular interest due to its simplicity and the flexibility in
the choice of f and φ, with no specific initial conditions required. In a sense, it
combines the qualities in [6] and [2, Theorem 2.3] to produce a simpler, more
general and more accessible inequality.

Some examples of application of this theorem are below.

Example 1. If we set φ(x) = x2, which is twice differentiable and convex, then
Theorem 2.1 gives∫ α

0

2|f(x)− f(0)||f ′(x)|dx ≤ 1

α

∫ α

0

(α|f ′(x)|)2 dx− 0,

so ∫ α

0

|f(x)− f(0)||f ′(x)|dx ≤ α

2

∫ α

0

[f ′(x)]2dx.

If we further set f(0) = 0, we get the Olech-Opial integral inequality as presented
in Theorem 1.1. Our theorem is therefore a valuable generalization.

Example 2. More generally, if we set φ(x) = xβ with β > 1, which is twice
differentiable and convex, then Theorem 2.1 gives∫ α

0

β|f(x)− f(0)|β−1|f ′(x)|dx ≤ 1

α

∫ α

0

(α|f ′(x)|)β dx− 0,

so ∫ α

0

|f(x)− f(0)|β−1|f ′(x)|dx ≤ αβ−1

β

∫ α

0

|f ′(x)|βdx.

This inequality generalizes that in the previous example, corresponding to the case
where β = 2.

Example 3. If we set φ(x) = eλx with λ ∈ R, which is twice differentiable and
convex, then Theorem 2.1 gives∫ α

0

λeλ|f(x)−f(0)||f ′(x)|dx ≤ 1

α

∫ α

0

eλα|f
′(x)|dx− 1.

Example 4. If we set φ(x) = log(1 + eλx) with λ ∈ R, which is twice differentiable
and convex, then Theorem 2.1 gives∫ α

0

λeλ|f(x)−f(0)|

1 + eλ|f(x)−f(0)| |f
′(x)|dx ≤ 1

α

∫ α

0

log
(
1 + eλα|f

′(x)|
)
dx− log(2).
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Example 5. If we set φ(x) = cosh(λx) with λ ∈ R, which is twice differentiable
and convex, then Theorem 2.1 gives∫ α

0

λ sinh [λ|f(x)− f(0)|] |f ′(x)|dx ≤ 1

α

∫ α

0

cosh [λα|f ′(x)|] dx− 1.

Example 6. If we set φ(x) = x2+sin2(x), which is twice differentiable and convex,
then Theorem 2.1 gives∫ α

0

2 {|f(x)− f(0)|+ sin [|f(x)− f(0)|] cos [|f(x)− f(0)|]} |f ′(x)|dx

≤ 1

α

∫ α

0

{
α2[f ′(x)]2 + sin2 [α|f ′(x)|]

}
dx.

Many more examples leading to new integral inequalities in the literature can
be presented in a similar way.

3. CONCLUSION

This note demonstrates how the scope of the classical Olech-Opial integral
inequality can be extended using a convex approach. It is based on the proof
methodology developed in [6] and [2, Theorem 2.3]. By introducing an ad-
justable convex function and removing the initial value restriction, a flexible
theorem is provided that can be adapted for use in many areas of analysis. We
anticipate that this generalization will inspire further advances and new appli-
cations in the theory of integral and differential inequalities.
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