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REFINEMENT ON AN INEQUALITY INVOLVING π AND E

Christophe Chesneau

ABSTRACT. In this note, we refine the famous inequality πe < eπ by adopting
an integral approach. Using the same approach, we derive another elegant in-
equality involving π and e. The proofs require only basic integral concepts and
standard logarithmic inequalities, and are of pedagogical interest. Additionally,
a double inequality for the logarithmic function is established.

1. INTRODUCTION

One of the most well-known fundamental results involving mathematical con-
stants is

πe < eπ,

where π ≈ 3.141592 and e = exp(1) ≈ 2.718281. This inequality reveals inter-
esting patterns in the behavior of numbers and their exponentials. It shows that
even slight differences between constants such as π and e can result in different
outcomes when raised to their respective powers. This inequality has been the
subject of further discussion and development in [1,3–10].
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In particular, an integral approach is considered in [6]. The first theorem in
this reference can be summarized by the following equivalence:

πe < eπ ⇔ 0 <

∫ π/e−1

0

t

1 + t
dt.

In this note, we refine this approach by introducing a variable x such that x ≥ e

and determining a new function f(x) ∈ (0, 1] satisfying

xe ≤ f(x)ex.

Using f , our aim is to bridge the gap between πe and eπ. In addition to the
integral framework, a key to the proof is a standard logarithmic inequality.

We supplement this result with another elegant and new inequality. For any
x ≥ e, this inequality involves the expression (xe)x+e, as follows:

e4x ≤ (xe)x+e.

The proof is also based on an integral approach and a standard logarithmic
inequality. As an additional contribution, it is possible to derive a new double
inequality for the logarithmic function by combining some parts of the proofs.

The note is organized as follows: The results are stated and proved in Section
2. The conclusion is given in Section 3.

2. RESULTS

Our first theorem is presented below. We emphasize the variable x and the
function f(x).

Theorem 2.1. For any x ≥ e, we have

xe ≤ f(x)ex,

where

f(x) = e−e(ln(x)−1)2/2 ∈ (0, 1].

Proof. It is well known that, for any t ≥ 0, we have ln(1 + t) ≤ t. Consequently,
for any x ≥ e, since the integrand is non-negative, we have

0 ≤
∫ x/e−1

0

t− ln(1 + t)

1 + t
dt.
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Let us now evaluate this integral. Using classical primitive techniques, we obtain∫ x/e−1

0

t− ln(1 + t)

1 + t
dt =

∫ x/e−1

0

(
1− 1

1 + t
− ln(1 + t)

1 + t

)
dt

=

[
t− ln(1 + t)− 1

2
(ln(1 + t))2

]x/e−1

0

=
x

e
− 1− ln

(x
e

)
− 1

2

(
ln
(x
e

))2

=
x

e
− ln(x)− 1

2
(ln(x)− 1)2 .

Using standard manipulations and the definition of f , the following equiva-
lences hold:

0 ≤ x

e
− ln(x)− 1

2
(ln(x)− 1)2

⇔ 0 ≤ x− e ln(x)− e

2
(ln(x)− 1)2

⇔ ln(xe) ≤ x− e

2
(ln(x)− 1)2

⇔ xe ≤ exe−e(ln(x)−1)2/2 = f(x)ex.

In addition, we have −e (ln(x)− 1)2 /2 ≤ 0, implying that f(x) = e−e(ln(x)−1)2/2 ∈
(0, 1], with f(x) = 1 only for x = e. This completes the proof of the theorem. □

Taking x = π > e, Theorem 2.1 gives

πe < f(π)eπ < eπ.

Therefore, thanks to the presence of f(π), we refine the existing inequality.
Let us perform a numerical study to support this claim. We have

πe ≈ 22.45915, eπ ≈ 23.14069, f(π) = e−e(ln(π)−1)2/2 ≈ 0.97193,

so that

πe ≈ 22.45915 < 22.49117 ≈ f(π)eπ < 23.14069 ≈ eπ.

Another remark concerns a part of the proof of Theorem 2.1. For any x ≥ e,
we have established that

0 ≤ x− e ln(x)− e

2
(ln(x)− 1)2 ,
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which is equivalent to

ln(x) ≤
√

2x

e
− 1.(2.1)

As far as the author knows, this is a new logarithmic inequality. It is particularly
sharp for x in the neighbourhood of e.

Our second theorem is presented below. We emphasize the variable x and the
function (xe)x+e.

Theorem 2.2. For any x ≥ e, we have

e4x ≤ (xe)x+e.

Proof. It is well known that, for any t ≥ 0, we have ln(1 + t) ≥ t/(1 + t). Conse-
quently, for any x ≥ e, since the integrand is non-positive, we have∫ x/e−1

0

(
t

1 + t
− ln(1 + t)

)
dt ≤ 0.

Let us now evaluate this integral. Using classical primitive techniques, we obtain∫ x/e−1

0

(
t

1 + t
− ln(1 + t)

)
dt =

∫ x/e−1

0

(
1− 1

1 + t
− ln(1 + t)

)
dt

= [t− ln(1 + t)− ((1 + t) ln(1 + t)− t)]x/e−1
0

= [2t− (2 + t) ln(1 + t)]x/e−1
0

= 2
(x
e
− 1

)
−

(x
e
+ 1

)
ln
(x
e

)
=

3x

e
− 1−

(x
e
+ 1

)
ln(x).

The following equivalences hold:

3x

e
− 1−

(x
e
+ 1

)
ln(x) ≤ 0

⇔ 3x− e− (x+ e) ln(x) ≤ 0

⇔ 3x− e ≤ ln
(
xx+e

)
⇔ e3x−e ≤ xx+e

⇔ e4x ≤ (xe)x+e.

This completes the proof of the theorem. □
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In particular, taking x = π > e, Theorem 2.2 gives

e4π < (πe)π+e.

From a numerical point of view, we have

e4π ≈ 286751.31313 < 287175.24810 ≈ (πe)π+e.

As far as the author knows, this is a new inequality involving e and π.
Another remark concerns a part of the proof of Theorem 2.2. For any x ≥ e,

we have established that
3x

e
− 1−

(x
e
+ 1

)
ln(x) ≤ 0,

which is equivalent to

ln(x) ≥ 3x− e

x+ e
.

As far as the author knows, this is a new logarithmic inequality. It is particularly
sharp for x in the neighbourhood of e. Combined with Equation (2.1), for any
x ≥ e, we arrive at the following elegant double inequality:

3x− e

x+ e
≤ ln(x) ≤

√
2x

e
− 1.

For more information on logarithmic inequalities, we refer to [2] and the refer-
ences cited therein.

3. CONCLUSION

In this note, we contribute to the well-known inequality πe < eπ by proposing
a more general and refined form. This was achieved using an integral approach
and standard logarithmic inequalities. Using a similar method, we derived an-
other elegant inequality. Additionally, we established a double inequality for the
logarithmic function. We hope that these results and their comprehensive proofs
will inspire further exploration of this fascinating mathematical subject.
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