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FROM EUCLID TO ARTIFICIAL INTELLIGENCE

Hamid Kulosman1 and Alica Miller

ABSTRACT. We give 19 proofs of the famous Angle Bisector Theorem from Eu-
clid’s Elements. The first proof is the Euclid’s original proof, the remaining proofs
use the methods of Euclidean Geometry, Trigonometry, Analytic Geometry, Com-
plex Numbers, and Gröbner Bases. The Gröbner Bases proof is in the area of Au-
tomatic Proving and Artificial Intelligence, so that the proofs in a way symbolise
the development of mathematics from 300 BC (the Euclid’s time) to modern days.
We discuss what the proofs illustrate and why they are important for Math Edu-
cation. All the proofs, except the first one, are original.

1. INTRODUCTION

This article, we hope, will have certain pedagogical value for Math Education.
According to [3], curriculum changes of the mathematics education in secondary
schools (since nineteen seventies on) have added to the curriculum: elementary
set theory, a wider use of various algebraic notions, earlier introduction of basic
concepts of calculus. At the same time, the topics that were excluded are mainly
from the area of traditional Euclidean Geometry. The process of emphasizing al-
gebra at the expense of geometry is even more widespread in university teaching.
We would like to argue by this article that traditional Euclidean Geometry should
1corresponding author
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not be excluded from the curriculum. One cannot deny the efficiency and practi-
cality of algebra in solving various problems, however purely algebraic solutions
are often mechanical, without any insight and without any intuitive justification
as why would the fact in question hold. Descartes invented Analytic Geometry
with the idea to reduce geometry to algebra, however, we show in our article
that the Analytic Geometry solution of the problem which we are considering
is more complicated than several traditional Euclidean geometry solutions and,
even more, that the Analytic Geometry solution has to use elements of the tradi-
tional Euclidean Geometry in some form. Further, we illustrate in our article that
the best approach is combining the traditional Euclidean Geometry with modern
tools, like Analytic Geometry, Trigonometry, Complex Numbers, Gröbner Bases.
Thus there has to be place for both approaches, modern and traditional, side by
side.

The article offers 19 proofs of the well-known Angle Bisector Theorem, which
is (one direction of) Proposition 3 in the Book 6 of Euclid’s Elements (please read
articles [4, 5]). Euclid himself states the theorem in the following way (see [2]):

“If an angle of a triangle is cut in half, and the straight- line cutting the angle also cuts
the base, then the segments of the base will have the same ratio as the remaining sides of
the triangle."

At the beginning of his proof he gives another formulation, namely:

“Let ABC be a triangle. And let the angle BAC have been cut in half by the straight-line
AD. I say that as BD is to CD, so BA [is] to AC."

Our formulation of the theorem is basically this second Euclid’s formulation.
We will use the notation from our formulation, and from Figure 0 below, in the
rest of the paper.

The Angle Bisector Theorem. Let △ABC be a triangle. Let D be a point in the
segment BC such that ∠BAD = ∠DAC. Then

BD : CD = AB : AC.

If we denote b = AC, c = AB,m = BD,n = CD, the proportion has the form

m : n = c : b.
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(See Figure 0.)

We would like to say that we did not collect the proofs from the literature (ex-
cept for the first proof, which is the proof from the Elements), but we invented all
of them.
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Figure 0

Let us give some historical comments.

The proofs 1-11 are in the spirit of Euclid’s Elements’ Book 6 “Similar Figures"
(in which the theory of proportions is applied to plane geometry). Proofs 12 and
13 involve respectively the formula for the area of triangle and addition of propor-
tions, things that Euclid did not use in his Elements, but other Greek mathemati-
cians immediately after Euclid’s time did (see [6]). The proofs 14, 15 and 16 in-
volve trigonometric functions (the level of Greek mathematics of the third century
BC). The proof 17 uses the method of coordinates, invented by René Descartes (la-
tinized name Cartesius) in the 17th century (see [6]). The proof 18 uses complex
numbers (in combination with coordinates). (The theory of complex numbers
was for the first time developed in the 16th century by Rafael Bombelli (see [6]).
Finally, the proof 19 uses Gröbner bases and computer algebra. It belongs to the
area of automatic proving of geometric theorems (whose development started in
late 1980’s), which is one of the subjects in Artificial Intelligence. We constructed
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the proof using the technique explained in [6]. The proof can be verified using
any computer algebra system, like, for example, Macaulay 2.

One can say that in a way all aspects of plane geometry are covered by these
proofs. In particular, the proofs illustrate:

(a) the beauty of pure euclidean geometry;
(b) the usefulness of introducing the numbers to geometry and associating

them with the geometric figures;
(c) the usefulness of trigonometry in plane geometry;
(d) the practicality and efficiency of the coordinate method;
(e) the usefulness of complex numbers in plane geometry;
(f) the power of the automatic proving method (and Artificial Intelligence)

when applied to plane geometry.

In the pure euclidean geometry proofs 1-11, as well as in the proofs 12 and 13,
one has to introduce some new objects, not initially present in the problem, and
then, by analyzing the relations between those objects, to get the wanted con-
clusion. Introducing the new objects is the creative part of the solution. In the
remaining proofs we do not stay in the realms of pure eculidean geometry and
we use the trigonometry, the coordinates and the complex numbers. The proof
17, which uses the coordinates, is, as expected, efficient and does not contain any
surprises. However, at one moment it uses the proportionality of the lengths of
the sides of similar triangles, in an obvious situation though. Nevertheless, it
illustrates that one can not ignore Euclidean Geometry and use “pure Analytic
Geometry." In fact, the truth is that the method of coordinates is a wonderful new
tool, which in plane geometry is most efficient when we combine it with the tra-
ditional methods, including construction of auxiliary triangles. And becuase of
that we need to keep in our schools serious courses of classical Euclidean Geom-
etry. To further emphasize this conclusion, we note that in the proof 19 (which
belongs to the area of automatic proving of geometric theorems) one first needs
certain Euclidean Geometry reasonnings in order to get the problem ready for the
automatic proving. And, as always, there is an ethical issue if one is willing to ac-
cept the confirmation by computer that certain polynomial belongs to the certain
ideal in a polynomial ring, the fact that cannot be verified without computer and
which does not offer any intuitive hint as whether it is true or not.
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2. PROOFS

First proof.

Method: Introducing new objects, namely the line through B parallel with AD

and a new triangle △CEB. Then using similarity of triangles.

Facts used: the lengths of the sides of similar triangles are proportional.

Proof. Consider the line ℓ1 through B parallel with AD. Let the line ℓ2 through A

and C intersect ℓ1 at E. (See Figure 1.) Since BE ∥ AD, we have ∠BEA = α/2 and
∠ABE = α/2. So △AEB is equilateral and AE = c. Now since △CEB ∼ △CAD,
we have (m+ n) : n = (c+ b) : b, hence m : n = c : b. □
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Figure 1
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Second proof.

Method: Introducing new objects, namely the line through B parallel with AC

and a new triangle △ABE. Then using similarity of triangles.
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Facts used: the lengths of the sides of similar triangles are proportional.

Proof. Consider the line ℓ1 through B parallel with AC. Let the line ℓ2 through A

and D intersect ℓ1 at E. (See Figure 2.) Since BE ∥ AC, we have ∠DBE = γ. Since
∠ADC = ∠BDE, it follows (by considering △ABC and △ABE) that ∠AEB =

α/2. Hence △ABE is equilateral and c = AB = BE. Now since △ADC ∼ BDE,
we have m : n = c : b. □

Third proof.

Method: Introducing new objects, namely the line through D parallel with AC

and a new triangle △EBD. Then using similarity of triangles.

Facts used: the lengths of the sides of similar triangles are proportional.

Proof. Let E be the point on AB such that DE ∥ AC. Then ∠BED = α/2. Hence
∠AED = β + γ and (considering the sum of the angles in △AED) ∠ADE = α/2.
Hence △AED is equilateral. (See Figure 3.) Let p = AE = DE. Since △ABC ∼
△EBD, we have c : (c− p) = b : p = (m+ n) : m. From these proportions we get
p = mb

m+n
and p = bc

b+c
. Hence m+n

mb
= b+c

bc
, which implies m : n = c : b. □
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Fourth proof.

Method: Introducing new objects, namely the line through B making the angle
α/2 with BC. Then using similarity of triangles.

Facts used: the lengths of the sides of similar triangles are proportional.

Proof. Let ℓ be the line through B making the angle α/2 with BC (see Figure 4).
Since ∠BDE = ∠ADC + α/2 + β, we have ∠BED = γ. From the similarity of
△ADC and △BDE we have b : BE = AD : m. From the similarity of △ABE

and △ADC we have c : AD = BE : n. Hence bm = cn, i.e., m : n = c : b. □

Fifth proof.

Method: Introducing new objects, namely the circumscribed circle of △ABC and
the quadrilateral ABEC. Then using similarity of triangles.

Facts used: (a) the angles inscribed in the same arc are equal; (b) the lengths of the
sides of similar triangles are proportional.

Proof. Let k be the circumscribed circle of △ABC. Let AD be extended to meet
k at E. Since the angles inscribed in the same arc are equal, we have ∠AEB =

γ, ∠AEC = β and ∠CBE = ∠BCE = α/2. (See Figure 5.) Hence △BCE is
equilateral. Let p = BE = CE. Since △ABD ∼ △DEC, we have c : m = p : DE.
Since △ADC ∼ △BED, we have b : n = p : DE. Hence c : m = b : n, i.e.,
m : n = c : b. □
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Sixth proof.

Method: Introducing new objects, namely the circumscribed circle of △ADC and
(in one of the cases) the quadrilateral AEDC. Then using similarity of triangles.

Facts used: (a) the angles inscribed in the same arc are equal; (b) the lengths of the
sides of similar triangles are proportional; (c) the central angle subtended by two
points on a circle is twice the inscribed angle subtended by those points.

Proof. Let k be the circumscribed circle of △ADC. Let ℓ be the line thorugh A and
B. We will first consider the case when the point E of intersection of k and ℓ is
inside the segment AB. (See figure 6.) Since the angles inscribed in the same arc
are equal we have that ∠ECD = ∠EAD = α/2. Hence △CED is equilateral and
DE = n. Also ∠AEC = ∠ADC = α/2 + β. Hence ∠DEC = γ and ∠EDB = α.
Thus △ABC ∼ △EDB. Hence c : m = b : n, i.e., m : n = c : b.

The case when the point E of intersection of k and ℓ is outside of the segment
AB is similar. In the remaining case suppose that A is the only point of inter-
section of k and ℓ. Let S be the center of k. (See Figure 6a.) Since the central
angle subtended by two points on a circle is twice the inscribed angle subtended
by those points, we have ∠SAD = 90◦ − γ (since △ASD is equilateral) and also
∠CAS = 90◦−β−α/2. Hence α/2 = 90◦−γ+90◦−β−α/2 and so γ = α/2. Hence
△ADC is equilateral and AD = n. Also ∠ADC = α. Hence △ABC ∼ △ABD. It
follows that c : m = b : n, i.e., m : n = c : b. □

Seventh proof.

Method: Introducing new objects, namely two segments starting at D and parallel
with AB and AC respectively. Then using similarity of triangles.

Facts used: the lengths of the sides of similar triangles are proportional.

Proof. Let ℓ1 be the line through D parallel with AC and ℓ2 the line through D

parallel with AB. Let E be the intersection of ℓ1 and AB and F the intersection of
ℓ2 and AC. (See Figure 7.) Then AEDF is a rhombus. Denote p = AE = ED =

DF = FA. Since △ABC ∼ △EBD, we have c : (c − p) = (m + n) : m. Hence
p = cn

m+n
. Since △FDC ∼ △EBD, we have n : (b − p) = m : p. Hence p = bm

m+n
.

Thus cn
m+n

= bm
m+n

and so m : n = c : b. □
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Eighth proof.

Method: Introducing new objects, namely two segments starting at D and making
the angle α/2 with DB and DC respectively. Then using similarity of triangles.

Facts used: (a) the lengths of the sides of similar triangles are proportional; (b)
properties of inscribed quadrilaterals.
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Proof. Let E be the point on AB such that ∠BDE = α/2 and let F be the point
on AC such that ∠CDF = α/2. Then ∠ADE = γ and ∠ADF = β. Note that
AEDF is an inscribed quadrilateral since ∠FAE + ∠EDF = 180◦. Hence ED =

DF since these chords subtend equal angles. Since △ADC ∼ △AED, we have
b : n = AD : DE. Also △ABD ∼ △ADF , so c : m = AD : DF = AD : DE.
Hence b : n = c : m, i.e., m : n = c : b. □

Nineth proof.

Method: Introducing new objects, namely two segment CE such that ∠ACE = β

and the triangles resulting from that.

Facts used: the lengths of the sides of similar triangles are proportional.

Proof. If β = γ, then b = c and m = n, so the statement is true. Without loss
of generality we can assume that γ > β. Let E be the point on AB such that
∠ACE = β. Let S be the intersection of AD and CE. (See Figure 9.) We have
∠CSD = ∠CDS, hence CS = n. Now from △ASC ∼ △ABD we have b : n = c :

m. Hence m : n = c : b. □

Tenth proof.

Method: Introducing new objects, namely two segment AE of length b, the seg-
ment EF parallel with AD and the triangles resulting from that.



12 H. Kulosman and A. Miller

Facts used: the lengths of the sides of similar triangles are proportional.

Proof. If b = c, then m = n, so the statement is true. Without loss of generality
we can assume that c > b. Let E be the point on AB such that AE = b. Since
△AED ∼= △ADC, DE = n and ∠AED = γ. [Note that ∠DEB = α + β and
since ∠DEB > ∠EBD, we have m > n.] Let F be the point on BD such that
EF ∥ AD. (See Figure 10.) Then ∠DEF = 180◦ − γ − α/2 = β + α/2 and
∠DFE = ∠CDA = β + α/2. Hence DF = n and BF = m − n. Now from
△ABD ∼ △EBF we have (c− b) : c = (m− n) : m, hence m : n = c : b. □
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Eleventh proof.

Method: Introducing new objects, namely the segments CE and BF orthogonal
to the line through A and D, and triangles resulting from that.

Facts used: the lengths of the sides of similar triangles are proportional.

Proof. If BC is orthogonal to AD, then b = c and m = n, so the statement is true.
Suppose that BC and AD are not orthogonal. Let ℓ be the line through A and D.
Let E be the point on ℓ such that CE is orthogonal on ℓ and let F be the point on
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ℓ such that BF is orthogonal on ℓ. (See Figure 11.) From △EDC ∼ △FDB we
get c : b = BF : CE. From △AEC ∼ △AFB we get m : n = BF : CE. Hence
m : n = c : b. □

Twelveth proof.

Method: Introducing new objects, namely the center S of the inscribed circle of
△ABC, and triangles resulting from that.

Facts used: (a) the bisectors intersect at a common point, which is the center of the
inscribed circle; (b) the ratio of the areas of the triangles with the altitudes of the
same length is the same as the ratio of the lengths of the sides corresponding to
those altitudes.

Proof. Let E be the point on AC such that BE is the bisector of β and let F be the
point on AB such that CF is the bisector of γ. Let S be the point of intersection
of the three bisectors. Then S is the center of the inscribed circle of △ABC. (See
Figure 12.) Let r be the radius of that circle. Hence r is the length of the alti-
tude of △BSD corresponding to BD and r is the length of the altitude of △DSC

corresponding to DC. Hence Area(△BSD) : Area(△DSC) = m : n. Since the tri-
angles △ABD and △ACD have the same length altitudes corresponding to BD

and CD respectively, we have Area(△ABD) : Area(△ADC) = m : n. It follows
that [Area(△ABD) − Area(△BSD)] : [Area(△ADC) − Area(△DSC)] = m : n,
i.e., Area(△ASB) : Area(△ASC) = m : n. However, the length of the altitude of
△ASB corresponding to AB is the length of the altitude of △ASC correspond-
ing to AC are both equal to r, so Area(△ASB) : Area(△ASC) = c : b. Thus
m : n = c : b. □

Thirteenth proof.

Method: Introducing new objects, namely the segment AE of length b, the line
through E and D and its intersection F with the line through A and C, the seg-
ment BF and its intersection G with the line through A and D, and triangles
resulting from all that.

Facts used: (a) the lengths of the sides of similar triangles are proportional; (b) Van
Obel’s theorem.
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Proof. If b = c, then m = n, so the statement is true. Without loss of generality we
can assume that c > b. Let E be the point on AB such that AE = b. It is easy to see
that the line through E and D is not parallel with AC. Let F be the intersection of
that line with the line through A and C. Let G be the intersection of the segment
BF with the line through A and D. (See Figure 13.) We have ∠AFE = β (since
the other two angles of △AEF are α and γ). Hence △CDF ∼= △BDE and so
CF = c − b and AF = c = AB. Hence BG = GF . Now by Van Obel’s theorem
(see Appendix) we have: m

n
= c−b

b
+ BG

GF
, i.e., m

n
= c−b

b
+ 1 = c

b
. □
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Fourteenth proof.

Method: Multiple application of a formula for the area of the triangle and some
calculations with the results.

Facts used: the area of a triangle is the half of the product of the lengths of two
sides and the sine of the angle between them.

Proof. Using the notation on Figure 0 we have: Area(△ABD) = 1
2
c·AD·sin(α/2) =

1
2
m · AD · sin(∠ADB), hence c

m
= sin(∠ADB)

sin(α/2)
. Also Area(△ADC) = 1

2
b · AD ·

sin(α/2) = 1
2
n·AD·sin(∠ADC), hence b

n
= sin(∠ADC)

sin(α/2)
. Since ∠ADC = 180◦−∠ADB,

we get c
m

= b
n

, i.e., m : n = c : b. □
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Fifteenth proof.

Method: Application of the Sine Theorem to two triangles and a calculation with
the results.

Facts used: the Sine Theorem.

Proof. We will use the notation on Figure 0. Applying the Sine Theorem to △ABD

we get m
sin(α/2)

= c
sin(∠ADB)

. Applying the same theorem to △ADC we get n
sin(α/2)

=
b

sin(∠ADC)
. From these two relations we get c

m
= b

n
, i.e., m : n = c : b. □

Sixteenth proof.

Method: Application of the Cosine Theorem to two triangles and a calculation
with the results. In the calculation an auxiliary result about bisectors is used.
To establish the auxiliary result, new objects are introduced, namely the circum-
scribed circle of △ABC and the quadrilateral ABEC. Then similarity of triangles
is used.
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Facts used: (a) the angles inscribed in the same arc are equal; (b) the lengths of the
sides of similar triangles are proportional; (c) the Cosine Theorem.

Proof. Denote d = DE. We will first show that d2 = bc − mn (∗). Let k be the
circumscribed circle of △ABC. Let AD be extended to meet k at E. Denote e =

DE. Since the angles inscribed in the same arc are equal, we have ∠BCE = α/2.
(See Figure 5.) Hence △ABD ∼ △AEC and this implies b

d+e
= d

c
. Hence bc =

d2 + ed. Since △ADC ∼ △BDE implies d : n = m : e, i.e., ed = mn, we get
bc = d2 +mn, i.e., (∗) holds.

Now we apply the Cosine Theorem to △ADC and △ABD. We get

cos(α/2) =
d2 + c2 −m2

2dc
=

d2 + b2 − n2

2db
.

Hence b(d2 + c2 −m2) = c(d2 + b2 − n2). Hence (using (∗)) b(bc−mn+ c2 −m2) =

c(bc−mn+ b2 − n2). After multiplying and cancelling, this implies cn = bm, i.e.,
m : n = c : b. □

Seventeenth proof.

Method: Using Analytic Geometry.

Facts used: (a) some trigonometric formulas; (b) the lengths of the sides of similar
triangles are proportional.

Proof. Consider △ABC in the xOy coordinate system, assuming that A is at (0, 0)
and B is on the x-axis, B = (p, 0). Let C = (r, s) and D = (xD, yD). (See Figure 14.)
Let E = (r, 0) (respectively F = (xD, 0)) be the projection of C (respectively D) on

the x-axis. We have cosα = r/
√
r2 + s2, hence tanα/2 =

√
1−cosα
1+cosα

= s√
r2+s2+r

. The
line through A and D has the equation y = tanα/2 = s√

r2+s2+r
x. The line through

B and C has the equation y = s
r−p

(x−p). Since D is the intersection of these lines,
we get

s√
r2 + s2 + r

xD =
s

r − p
(xD − p).

Hence

xD =
p(r +

√
r2 + s2)

p+
√
r2 + s2

.
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We now have:

m : n = BF : FE

= (p− xD) : (xD − r)

= (p− p(r +
√
r2 + s2)

p+
√
r2 + s2

) : (
p(r +

√
r2 + s2)

p+
√
r2 + s2

− r)

= p :
√
r2 + s2

= AB : AC

= c : b.

□

A = (0, 0) B = (p, 0)

C = (r, s)

D = (xD, yD)

E = (r, 0) F = (xD, 0)

m

n

b

α/2

α/2

Figure 14

Eighteenth proof.

Method: Using Complex Numbers.

Facts used: properties of the complex numbers, in particular the complex number
condition for a point to belong to the line through two given points.

Proof. We will consider all the points as points in the complex plane. We will
denote the complex number corresponding to a point by the same letter which
denotes the point itself. Without loss of generality we may assume that A, B,



FROM EUCLID TO ARTIFICIAL INTELLIGENCE 19

C belong to the unit circle. Moreover, without loss of generality we may also
assume that B and C are conjugate numbers. (See Figure 15.) We will use the
well-known fact that a complex number Z belongs to the line through the com-
plex numbers W1 and W2 if and only if Z +W1W2Z = W1 +W2 (∗). Note that the
bisector of ∠BAC passes through the midpoint of the arc BC, i.e., through the
point 1. Hence by (∗) we have

D + AD = A+ 1. (2.1)

Note also that
D +D = B +B. (2.2)

We will show that bm
cn

= 1, i.e., that
∣∣∣ (A−C)(B−D)
(A−B)(C−D)

∣∣∣ = 1, i.e., that
∣∣∣ (A−B)(B−D)

(A−B)(B−D)

∣∣∣ = 1.
We have:

(A−B)(B −D) = AB −BB − AD +BD

= AB − 1− AD +BD

= AB + AB − AB +BD − 1− AD

= A(B +B)− AB +BD − 1− AD

= A(D +D)− AB +BD − 1− AD by (2)

= AD − AB +BD − 1

= A−D − AB +BD by (1)

= (A−D)(1−B).

In an analogous way we get

(A−B)(B −D) = (A−D)(1−B).

From these two relations we get
∣∣∣ (A−B)(B−D)

(A−B)(B−D)

∣∣∣ = ∣∣∣ (A−D)(1−B)
(A−D)(1−B)

∣∣∣ = ∣∣∣1−B
1−B

∣∣∣ = 1. Thus
bm
cn

= 1, i.e., m : n = c : b. □
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Nineteenth proof.

Method: Using Gröbner Bases.

Facts used: (Hilbert Nullstellensatz [1]) Let K be a field, L an algebraically closed
extension field of K, and f, g1, . . . , gm ∈ K[X1, . . . , Xn]. Then the following are
equivalent:

(i) For all z ∈ Ln, g1(z) = · · · = gm(z) = 0 implies f(z) = 0.
(ii) f ∈ rad(ideal(g1, . . . , gm)).

We will use this theorem with K = Q and L = C.

Proof. Consider A,B,C as points in the coordinate plane with coordinates A =

(0, 0), B = (b1, 0), C = (c1, c2). Let the coordinates of D be D = (d1, d2). Let E be a
point colinear with A and C, such that AB = AE and either C is between A and
E, or E is between A and C (including the possibility E = C). Let E = (e1, e2)

and let F = (f1, f2) be the midpoint of the segment BE. (See Figure 16.) Consider
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the following conditions:

b21 − e21 − e22 = 0, (2.3)

c1e2 − c2e1 = 0, (2.4)

2f1 − e1 − b1 = 0, (2.5)

2f2 − e2 = 0, (2.6)

d1f2 − d2f1 = 0, (2.7)

c2(d1 − b1)− d2(c1 − b1) = 0, (2.8)

b1 ̸= 0, (2.9)

c2 ̸= 0, (2.10)

b21((d1 − c1)
2 + (d2 − c2)

2)− (c21 + c22)((d1 − b1)
2 + d22) = 0. (2.11)

The condition (2.3) means that AB = AE; the condition (2.4) that A,C,E are
colinear; the conditions (2.5) and (2.6) together that F is the midpoint of BE,
which in turn means that AD is the bisector of the angle ∠BAC; the condition
(2.7) that A,D, F are colinear; the condition (2.8) that B,D,C are colinear; the
conditions (2.9) and (2.10) that A,B,C are not colinear; the condition (2.11) that
AB

AC
=

BD

CD
.

We will consider the polynomial ring Q[X1, . . . , X9, Y1, Y9] and the following
elements of it (corresponding to the above conditions in the order in which they
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are listed):

h1 = X2
1 −X2

6 −X2
7 ,

h2 = X2X7 −X3X6,

h3 = 2X8 −X6 −X1,

h4 = 2X9 −X7,

h5 = X4X9 −X5X8,

h6 = X3(X4 −X1)−X5(X2 −X1),

h7 = X1Y1 − 1,

h8 = X3Y2 − 1,

h9 = X2
1 ((X4 −X2)

2 + (X5 −X3)
2)− (X2

2 +X2
3 )((X4 −X1)

2 +X2
5 ).

Our goal is to prove that the conditions (2.3)-(2.10) imply the condition (2.11)
for any positive real numbers b1, c1, c2, d1, d2, e1, e2, f1, f2. Hence it is enough to
prove that whenever z ∈ C11 is a zero of the polynomials h1−h8, it is a zero of the
polynomial h9. By the above Hilbert Nullstellensatz, that is equivalent to proving
that h9 belongs to the radical of the ideal generated by the polynomials h1 − h8.
That can be easily verified using the computer algebra systems, like, for example,
Macaulay 2. (Note that the variables Y1, Y2 were introduced to make sure that
no common zero z of the polynomials h1 − h8 has the X1 value nor the X3 value
equal to 0, which secures the condition that A,B,C are not colinear, which in turn
secures that the ideal membership program in computer algebra systems works
properly.) □
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A = (0, 0)
B = (b1, 0)

C = (c1, c2)

D = (d1, d2)

Figure 16

F = (f1, f2)

E = (e1, e2)

3. APPENDIX

Van Obel’s Theorem. In a triangle △ABC let D, E, F be points on BC, CA and
AB respectively, such that the segments AD, BE and CF intersect at a common
point S. Then

CS

SF
=

CE

EA
+

CD

DB
.

Proof. Let ℓ be the line through C parallel with AB. Let G be the intersection of ℓ
with the line through A and D, and H the intersection of ℓ with the line through
B and E. (See Figure 16.) Denote c1 = AF , c2 = FB, b1 = CE, b2 = EA, d1 = CS,
d2 = SF . From △ASF ∼ △CSG we get c1

d2
= CG

d1
, hence CG = c1d1

d2
. Similarly from

△BSF ∼ △CSH we get CH = c2d1
d2

. Hence HG = (c1+c2)d1
d2

(∗). From △ABD ∼
△CDG we have c1+c2

a2
= CG

a1
, hence CG = a1(c1+c2)

a2
. From △ABE ∼ △CEH we

have c1+c2
b2

= CH
b1

, hence CH = b1(c1+c2)
b2

. Hence HG = CG+CH = (a1
a2
+ b1

b2
)(c1+c2)

(∗∗). Now from (∗) and (∗∗) we get d1
d2

= a1
a2

+ b1
b2

. □



24 H. Kulosman and A. Miller

A B

C

D

c1

b1

a2

Figure 17

a1

S

H G

c2

b2

E

F

d1

d2

REFERENCES

[1] T. BECKER, V. WEISPFENNING: Gröbner Bases, Springer-Verlag New York, Inc., 1993.
[2] R. FITZPATRICK: Euclid’s Elements of Geometr, farside.ph.utexas.edu

/euclid/Elements.pdf, 2008.
[3] R. THOM: Modern" Mathematics: An Educational and Philosophic Error?, p. 67-78, in New Di-

rections in the Philosophy of Mathematics, edited by T. Tymoczko, Princeton University Press,
1998.

[4] Article Euclid on en.wikipedia.org.
[5] Article Euclid’s Elements on en.wikipedia.org.
[6] D. WANG: Gröbner Bases Applied to geometric Proving and Discovering, p. 281-301 in Gröbner

Bases and Applications, edited by B. Buchberger and F. Winkler, Cambridge University Press,
1998.

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF LOUISVILLE

2301 S THIRD STREET, LOUISVILLE, KY,
USA.
Email address: hamid.kulosman@louisville.edu

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF LOUISVILLE

2301 S THIRD STREET, LOUISVILLE, KY,
USA.
Email address: alica.miller@louisville.edu


	1. Introduction
	2. Proofs
	3. Appendix
	References

