CARTESIAN COMPOSITIONS IN FOUR DIMENSIONAL SPACE WITH AFFINE CONNECTIONS, WITHOUT TORSION AND ADDITIONS

MUSA AJEJI1 AND MUHARREM BUNJAKU

ABSTRACT. The affine connection space A_4, product spaces, product affinor (a^a, b^a, c^a) with symmetrical and additional connections (asymmetric P^a_{ab}) where affine of structures continue to be transformed in parallel way along the lines in space; see [16].

1. Introduction

Let us take affine product on the four-dimensional space all along with symmetrical connections and addition A_4 which have been studied, see [1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 16]. Let us take A_4, the affine symmetric space. In A_4 there have already been defined the products $X_3 \times X_2$, $Y_2 \times Y_2$, $Z_2 \times Z_2$, and $X_3 \times X_1$, (addition) in such a way that each of them has a multiple base on A_4, and they have been analyzed in [1, 4, 6, 8, 14]. We have already discussed the space A_4 with the additional structure on the space of independent vectors in [4, 11, 12, 13, 14, 15].

2. Preliminaries

Let A_4 be the space with affine symmetric connection. This will be presented with the formula $\Gamma_{\alpha\beta}^\gamma$ where the connection coefficients will be denoted $(\alpha, \beta, \gamma = 1, 2, 3, 4)$. In A_4 we consider the product $X_n \times X_m$ where $(n + m = 4)$. Both multipliers have differential bases. Let us take two transformation positions of $P(X_n)$ and $P(X_m)$, or $(P(X_n)$ and $P(X_n))$ of the multipliers at any point A_4, see [4, 6, 7, 9]. It is known that the product

1corresponding author
2010 Mathematics Subject Classification. 53A15.
Key words and phrases. The affine connected space, the space composition, affine of compositions, additional structures.
is in general defined based on affinors fields:

\[
\begin{align*}
\alpha^b = V^b_1 V^1_\alpha + V^b_2 V^2_\alpha - V^b_3 V^3_\alpha - V^b_4 V^4_\alpha \\
\beta^b = V^b_1 V^1_\alpha + V^b_3 V^3_\alpha + V^b_4 V^4_\alpha.
\end{align*}
\]

(2.1)

Also

\[
\begin{align*}
P^b_\alpha = V^b_1 V^1_\alpha - V^b_3 V^3_\alpha
\end{align*}
\]

(2.2)

and with affinor (2.2) we present the additional structure. Affinors (2.1) and affine (2.2) are called product affinors. We take them as affinors connected with the space \(A_4 \) in an integral structure of product. According to [1, 2, 3, 4, 9] and [8] the integral condition of structure is characterized with the equation:

\[
\begin{align*}
\nabla_\sigma a^\beta_\alpha = 0.
\end{align*}
\]

(2.3)

Using [16] there is differential of the equation (2.3) for the field of vectors \(V = (V^1_1, V^1_2, V^3_3, V^4_4) \) and the result is:

\[
\begin{align*}
\nabla_\sigma V^\beta_\alpha = T^\sigma_\alpha V^\beta, \quad \nabla_\sigma V^\beta_\beta = -T^\sigma_\sigma V^\beta_\beta.
\end{align*}
\]

(2.4)

With \(\{V_\alpha\} \) we mark the net of vectors. Let us take an independent vector in their field \(V^\beta_\alpha \). If we take \(\{V_\alpha\} \) the widen net of the coordinates where we have affine, projected affinors \(a^\beta_\alpha \) and \(a^\alpha_\alpha \) are defined by equation:

\[
\begin{align*}
a^\beta_\alpha = \frac{1}{2}(\delta^\beta_\alpha + a^\beta_\alpha), \quad a^\alpha_\alpha = \frac{1}{2}(\delta^\alpha_\alpha - a^\alpha_\alpha).
\end{align*}
\]

This equations meets the conditions:

\[
\begin{align*}
a^\beta_\alpha a^\alpha_\alpha = a^\beta_\beta, \quad a^\alpha_\alpha a^\beta_\beta = a^\beta_\alpha, \\
\alpha^\beta_\alpha a^\beta_\alpha = \delta^\beta_\alpha, \quad \alpha^\beta_\alpha a^\alpha_\beta = a^\alpha_\beta,
\end{align*}
\]

see [1, 2, 5, 6, 8].

For each vector \(V^\alpha \in A_4 \), in \((X_2 \times \overline{X}_2), (Y_2 \times \overline{Y}_2), (Z_2 \times \overline{Z}_2), (X_2 \times Y_2), (X_2 \times Z_2), (Y_2 \times \overline{X}_2), (Z_2 \times \overline{Z}_2)\), and \((X_2 \times X_1)\), we have:

\[
V^\alpha = a^\beta_\alpha V^\beta + a^\alpha_\beta V^\beta = V^\alpha + V^\beta.
\]

and the following equations hold:

\[
\begin{align*}
\nabla V^\alpha = a^\beta_\alpha V^\beta \in P(X_2), \quad V^\alpha = a^\alpha_\beta V^\beta \in P(\overline{X}_2).
\end{align*}
\]

These products have been studied in [1, 2, 3, 6, 5, 8].
The product \((C, C)\) (Cartesian, Cartesian) is called of type Cartesian if the positions of \(P(X_2)\) and \(P(X_3)\) are put parallel along the lines of \(A_4\) and are characterized with \((2.3)\). Let us see the vectors:

\[
W^\alpha_i = V^\alpha_i \\
W^\alpha_i = \frac{1}{\sqrt{2}} \left(V^\alpha_{i-4} + V^\alpha_i \right).
\]

From \((2.5)\) and the condition

\[
\overset{\alpha}{W_\beta} V^\sigma = \delta^\alpha_\beta \iff \overset{\sigma}{W_\alpha} W^\alpha = \delta^\alpha_\beta,
\]

we have that

\[
W^\alpha = V^\alpha - \sqrt{2} V^\alpha_i, \quad W^\alpha_i = \sqrt{2} V^\alpha_i,
\]

where

\[
\alpha, \beta, \sigma = (1, 2, 3, 4), \quad i = 1, 2, \quad \bar{i} = 3, 4.
\]

Let us see affine

\[
a^\beta_\alpha = W^\beta_i \overset{\alpha}{W^i} - \overset{\bar{i}}{W^i} \overset{\alpha}{W^\bar{i}}.
\]

From \((2.6)\) and \((2.8)\) we have \(a^\beta_\alpha a^\alpha_\delta = \delta^\beta_\delta\) and we say that affine \(a^\beta_\alpha\) satisfies the condition of production.

Theorem 2.1. The product \(X_2 \times X_2\) is of the type \((C, C)\) (Cartesian, Cartesian) if it satisfies the condition \(\nabla_\sigma \overset{\bar{i}}{a} = 0\).

Proof. Let us consider the condition

\[
\nabla_\sigma a^\beta_\alpha = 0, \quad \nabla_\sigma \delta^\beta_\alpha = 0.
\]

Based on \((2.3)\) and \((2.9)\) the condition for the product \(X_2 \times X_2\) is satisfied, and the product is of the type \((C, C)\). Further, based on the relations \((2.7)\) and \((2.8)\) we have that:

\[
\nabla_\sigma a^\beta_\alpha = 0, \quad \nabla_\sigma \overset{\bar{i}}{a} = 0,
\]

where

\[
d^\beta_\alpha = V^\beta_i \overset{\alpha}{V^i}, \quad d^\beta_\alpha = V^\beta_i \overset{\bar{i}}{V^\alpha}.
\]

Affine \(d^\beta_\alpha\) and \(d^\beta_\alpha\) are nilpotent because

\[
d^\beta_\alpha d^\sigma_\beta = 0 \quad \text{and} \quad d^\beta_\alpha d^\sigma_\alpha = 0.
\]

Finally, according to \((2.11)\) and \((2.10)\) even the products \((Y_2 \times Y_2), (Z_2 \times Z_2)\) are of the type \((C, C)\) by using relation \((2.1)\). So, according to \((2.9)\), \((2.10)\) and \((2.11)\) it holds \(\nabla_\sigma d^\beta_\alpha = 0\).

Theorem 2.2. If the products \(X_2 \times X_2, X_2 \times Y_2, X_2 \times Z_2, Y_2 \times X_2, \text{ and } Z_2 \times X_2,\) are of the type \((C, C)\), then the space \(A_4\) is affine.
Proof. According to the theorem 2.1 the products \(X_2 \times X_2, X_2 \times Y_2, X_2 \times Z_2, Y_2 \times X_2, \) and \(Z_2 \times X_2 \) are of the type \((C, C)\) if the condition (2.9) hold. Based on equation (2.8) and (2.11), equation (2.9) will be as the following:

\[
\nabla_\alpha \left(V^i_\beta \dot{V}_\alpha - V^j_\beta \dot{V}_\alpha \right) = 0
\]

\[
\nabla_\alpha \left(V^n_\beta \dot{V}_\alpha \right) = 0,
\]

\(i, j = 1, 2, \quad i, j = 3, 4, \quad n = 2. \)

This has been studied in [3, 4, 6, 7, 8]. From equation (2.4) we have:

\[
\begin{align*}
\frac{v^\beta}{T_\beta} u_i v_\alpha - \frac{v^\beta}{T_\beta} u_i v_\alpha - \frac{v^i}{T_\beta} u^\beta v_\alpha + \frac{v^i}{T_\beta} u^\beta v_\alpha &= 0 \\
\frac{v^\beta}{T_\beta} n_{i+i} - \frac{n^i}{T_\beta} \beta v_\alpha &= 0.
\end{align*}
\]

(2.12)

From the equation (2.12) we have the following:

\[
\begin{align*}
\frac{v^\beta}{T_\beta} - \frac{v^\beta}{T_\beta} &= 0, \\
\frac{v^\beta}{T_\beta} - \frac{v^\beta}{T_\beta} &= 0, \\
\frac{v^\beta}{T_\beta} - \frac{v^\beta}{T_\beta} &= 0.
\end{align*}
\]

If we work with independent vectors \(\left\{ V^\beta_\alpha \right\} \) we will get the equation:

\[
\begin{align*}
\frac{v^\beta}{T_\beta} &= 0, \\
\frac{i^\beta}{T_\beta} &= 0, \\
\frac{i^\beta}{T_\beta} - \frac{v^\beta}{T_\beta} &= 0.
\end{align*}
\]

(2.13)

If we use the net \(\left\{ V_\alpha \right\} \) of coordinate \(\left(V^\alpha_1, V^\alpha_2, V^\alpha_3, V^\alpha_4 \right) \) then the equation (2.13) would appear like the following:

\[
\begin{align*}
\Gamma_{\alpha i}^{\beta} &= 0, \\
\Gamma_{\alpha i}^{\beta} &= 0, \\
\Gamma_{\alpha i}^{\beta} - \Gamma_{\alpha i}^{2+i} &= 0.
\end{align*}
\]

Then \(\Gamma_{i\alpha}^{\beta} = 0 \) and we have that \(A_4 \) is affine. \(\square \)

3. Cartesian products with additional structure

Let \(P_\alpha^\beta \) be the affine in the relation (2.2). Then it is called paracontact affine and it holds:

\[
\begin{align*}
P_\alpha^\beta &= V^\beta_\alpha - V^i_\beta \dot{V}_\alpha.
\end{align*}
\]

We know that:

\[
\begin{align*}
V^\alpha_1 i &\delta_{\alpha}^\beta \\ \Rightarrow \quad DSP_\alpha^\beta &= \delta_{\sigma}^\alpha
\end{align*}
\]
From (3.1) and (3.2) we get that \(P^\beta_\alpha = \delta^\beta_\alpha - V^\beta_\alpha \). The affine (3.1) defines the paracontact structure in the space \(A_4 \), see [12, 13, 14, 16]. Using (3.2) and equations
\[V^\alpha(1, 0, 0, 0), V^\alpha(0, 1, 0, 0), V^\alpha(0, 0, 1, 0), V^\alpha(0, 0, 0, 4), \]
\[V^\alpha(1, 0, 0, 0), V^\alpha(0, 1, 0, 0), V^\alpha(0, 0, 1, 0), V^\alpha(0, 0, 0, 1), \]
with parameters of coordinated net \(\{ V_\alpha \} \) the matrix \(P^\beta_\alpha \) would look like the following:
\[
P^\beta_\alpha = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}.
\]

Theorem 3.1. The equality \(\nabla_\sigma P^\beta_\alpha = 0 \) is fulfilled if and only if it holds
\[
(3.3) \quad \begin{array}{ccc}
T^1_i = T^3_3 = T^4_3 = 0.
\end{array}
\]

Proof. From relations (2.4) and (3.1) we can write the equation
\[
(3.4) \quad \nabla_\sigma P^\beta_\alpha = 0
\]
like:
\[
(3.5) \quad T^i_\sigma V^\beta_\sigma - T^i_\sigma V^\beta_\sigma - T^3_\sigma V^3_\sigma + T^3_\sigma V^3_\sigma = 0.
\]

Using simple operation the equation (3.5) with \(V^\alpha \) and \(V^\alpha \), and reading independence of vector fields \(V^\beta_\alpha \) we get that the equation (3.3) and (3.4) are equivalent, proving the theorem. \(\square \)

Next, using theorem 3.1 and equation
\[
\Gamma^\sigma_\alpha_\beta = T^\sigma_\alpha_\beta,
\]
we can write the tensor of the curve \(R^\alpha_\beta_\gamma_\sigma \) in the space \(A_4 \) like the following:
\[
(3.6) \quad R^\alpha_\beta_\gamma_\sigma = \partial_\alpha \Gamma^\alpha_\beta_\gamma - \partial_\beta \Gamma^\alpha_\gamma_\sigma + \Gamma^\alpha_\gamma_\delta \Gamma^\delta_\beta_\sigma - \Gamma^\alpha_\delta_\gamma \Gamma^\delta_\beta_\sigma.
\]

Corollary 3.1. In parameters of coordinative net \(\{ V \} \) and equation (3.3) we get the following equation
\[
(3.7) \quad \Gamma^i_\sigma_\gamma = \Gamma^i_\gamma_\sigma = \Gamma^i_\sigma_\gamma = \Gamma^i_\gamma_\sigma = 0.
\]

Based on continuity and the relation (3.6), see [4, 13, 14] we have the following:

Corollary 3.2. If affine \(P^\beta_\alpha \) satisfies the condition \(\nabla_\sigma P^\beta_\alpha = 0 \), then the product \(X_2 \times X_3 \) and \(X_3 \times X_1 \) are of the type (C, C) (Cartesian, Cartesian).
Proof. If we take in the space A_4 with additional paracontact structure P^β_α with a new asymmetric connection, we will get

\[(3.8) \quad 1^1 \Gamma^\mu_{\alpha\beta} = \Gamma^\mu_{\alpha\beta} + 1^1 A^\mu_{\alpha\beta} \]

Where $1^1 A^\mu_{[\alpha,\beta]}$ is torsion tensor with a new connection, written with $1^1 \nabla$ and $1^1 R^\mu_{\alpha\beta\sigma}$ is the co-variation of derivation and the tensor of curve in relation to the $1^1 \Gamma^\mu_{\alpha\beta}$, see [7, 8, 9, 14].

Theorem 3.2. If $\nabla_\sigma P^\beta_\alpha = 0$ and $1^1 \nabla_\sigma P^\beta_\alpha = 0$ then the tensor $1^1 A^\mu_{\alpha\beta}$ satisfy the condition

\[(3.9) \quad 1^1 A^\alpha_{\mu\beta} - 1^1 A^\beta_{\mu\alpha} = 1^1 A^\alpha_{\alpha\beta} = 1^1 A^\beta_{\alpha\alpha} = 0. \]

Also, in the contracting net V_α the parameters are replaced.

Proof. The equation $1^1 \nabla_\sigma P^\beta_\alpha = 0$, holds. Based on (3.4) and (3.8) the line of the curve is $1^1 \nabla_\sigma P^\beta_\alpha = L^\beta_\alpha$. Then

\[(3.10) \quad L^\beta_\alpha = 1^1 A^\mu_{\alpha\beta} P^\mu_\alpha - 1^1 A^\mu_{\alpha\sigma} P^\mu_\sigma. \]

Now it follows that (3.4) and (3.10) are equivalent.

Next, let us take the net V_α as a single coordinate L^β_α which is changeable from zero. We introduce the following:

\[(3.11) \quad L^\alpha_{\alpha\beta} = \eta \cdot 1^1 A^\alpha_{\beta\gamma}, \quad L^\alpha_{\gamma\beta} = \chi \cdot 1^1 A^\alpha_{\gamma\beta}, \]

and

\[L^3_{\alpha\beta} = \pi \cdot 1^3 A^3_{\alpha\beta}, \quad L^3_{\alpha\gamma} = \mu \cdot 1^3 A^3_{\alpha\gamma} \quad \text{for} \quad \eta, \chi, \pi, \mu = \pm 1 \pm 2 \pm ... \]

Now, from (3.11) we have (3.9).

According to equations (3.7), (3.8) and (3.9) we have that:

\[(3.12) \quad 1^1 \Gamma^i_{\alpha\beta} = 1^1 \Gamma^i_{\alpha\beta} = 0, \quad 1^1 \Gamma^i_{\gamma\beta} = 1^1 \Gamma^i_{\gamma\alpha} = 0, \quad 1^1 \Gamma^i_{\gamma\gamma} = 1^1 \Gamma^i_{\gamma\gamma} = 0. \]

Finally from equations (3.6), (3.9) and (3.12) we get the components of the tensor $R^\mu_{\alpha\beta\sigma}$ and $1^1 R^\mu_{\alpha\beta\sigma}$:

\[1^1 R^i_{\alpha\beta\sigma} = R^i_{\alpha\beta\sigma} = 1^1 R^i_{\alpha\beta\sigma} = 0. \]

\[\square \]

References

DEPARTMENT OF MATHEMATICS
STATE UNIVERSITY OF TETTOVO
REPUBLIC OF MACEDONIA
E-mail address: m-ajeti@hotmail.com

UNIVERSITY "KADRI ZEKA"
GZLAN
E-mail address: miharrenbunjak@hotmail.com