APPLICATIONS OF SUMUDU TRANSFORM OF TWO VARIABLE FUNCTIONS WITH HERMITE POLYNOMIAL TO PARTIAL DIFFERENTIAL EQUATIONS

S. B. KIWNÉ AND SANDIP M. SONAWANE

ABSTRACT. The present article gives the review on development of Sumudu transform and its applications. Theorems on Sumudu transform of two variables are proved in this paper. The theorem on Double Sumudu transform for any n using Hermite polynomial is proved. Using these theorems one can find Sumudu transform of homogeneous and non homogeneous functions of order n. Partial differential equations like, one dimensional heat equation, Poisson equation, second order hyperbolic equations are solved using these theorems.

1. INTRODUCTION

Sumudu transform and showed applications of Sumudu transform to Abel’s integral equations and Integro-differential equation. Watugula [7] in 2002, defined Sumudu transform for function of two variables and showed new direction to the mathematicians to work on Sumudu transform. Asiru [8] solve discrete dynamic systems using Sumudu transform in 2003, he obtained solution of first, second and third order dynamic systems. The detail properties like scale-preserving property, shifting and limit properties with analytical investigations of Sumudu transform, its existence for positive and negative of t are given by Belgacem and Karaballi [9]. The complex inversion formula for sumudu transform is proved and applied to solution of linear as well as partial differential equation by Belgacem and Karaballi [10]. H. Eltayeb and A Kalicman with H. Gadain, A. Atan [11–14] made the major work on Sumudu transform of Single and double variables. In their papers, authors have given the applications, properties as well as convolution theorem of Sumudu transform. In 2010, the relationship between Laplace transform and Sumudu transform is unidirectional that means $S_2(f(t)) \Rightarrow L_2(f(t))$ this was proved with example by H. Eltayeb and Kilicman [15]. Eltayeb and Kilicman [16] used locally integrable concept and found Sumudu transform of higher order derivative and solved differential equations involving Heaviside function and Dirac delta function. J Tchuenche and N Mbare [17] gave applications of Double Sumudu transforms in 2007 and derived relation between double Sumudu and double Laplace transform. The validity of double Sumudu transform was checked by applying it to Kermack-Mackendrich Von Foerster type model. The concept of Laplace transform and Double Laplace transform with properties and applications was gave by L. Debnath [18]. Kiwane and S Sonawane [21] solved the same example given by H. Eltayeb and Kilicman with small change in boundary conditions and proved that Sumudu transform exists for same problem.

In this article author has proved theorems on Sumudu transform of two variables. This theorems help to find Sumudu transform of homogenous and non homogenous function of any order and used it for solution of partial differential equations. In the first section, Sumudu transform of one variable and useful results are proved. Sumudu transform of two variables, theorems on Sumudu transform and applications to partial differential equations are given
in the second and last section respectively. Let us consider the set A as,

$$A = \left\{ y : |y(t)| < Me^{\frac{|t|}{M}}, t \in (-1)^{j} \times [0, \infty), j = 1, 2; M, \alpha_1, \alpha_2 > 0 \right\}$$

The constant M is finite number and α_1, α_2 are finite or may be infinite numbers.

Definition 1.1. (Sumudu transform [1]) Let $y(t) \in A$, then the Sumudu transform is:

$$S[y(t)] = \int_{0}^{\infty} e^{-vt} y(t) \, dt = \frac{1}{v} \int_{0}^{\infty} e^{-\frac{t}{v}} y(t) \, dt = Y(v), \alpha_1 < v < \alpha_2,$$

and inverse Sumudu transform [4] is:

$$y(t) = \frac{1}{2\pi i} \int_{\gamma-i\infty}^{\gamma+i\infty} e^{vt} Y\left(\frac{1}{v}\right) \frac{dv}{v}; \gamma \geq 0.$$

Now we will prove some results on Sumudu transform required for next section.

Lemma 1.1. Let $S[y(t)] = Y(v)$ and $y(t) = \frac{1}{\sqrt{\pi}} e^{-w^2/4t}$, $w > 0$ then

$$Y(\sqrt{v}) = \frac{t^{-3/2}}{2\sqrt{\pi}} S\left[\int_{0}^{\infty} e^{-\frac{w^2}{4t}} y(w) \, dw \right].$$

Proof. Using Sumudu transform table [10] one will get,

$$S\left[\frac{w}{\sqrt{\pi}} e^{-w^2/4t} \right] = \frac{1}{v} e^{-w/\sqrt{v}}.$$

Multiply both sides by $y(w)$ and integrating with limits 0 to ∞. One will get,

$$\frac{t^{-3/2}}{2\sqrt{\pi}} S\left[\int_{0}^{\infty} e^{-\frac{w^2}{4t}} y(w) \, dw \right] = \frac{1}{v} \int_{0}^{\infty} e^{-w/\sqrt{v}} y(w) \, dw = Y(\sqrt{v}). \quad \Box$$

Lemma 1.2. Let $S[y(t)] = Y(v)$ and $y(t) = \frac{1}{\sqrt{\pi} t^{1/2}} e^{-w^2/4t}$, $w > 0$ then

$$Y(\sqrt{v}) = \frac{t^{-1/2}}{\sqrt{\pi}} S\left[\int_{0}^{\infty} e^{-\frac{w^2}{4t}} y(w) \, dw \right].$$

Proof. Using Sumudu transform table [10] one will get,

$$S\left[\frac{1}{\sqrt{\pi} t^{1/2}} e^{-w^2/4t} \right] = \frac{1}{\sqrt{v}} e^{-w/\sqrt{v}}.$$

Multiply both sides by $y(w)$ and integrating with limits 0 to ∞. One will get,

$$\frac{t^{-1/2}}{\sqrt{\pi}} S\left[\int_{0}^{\infty} e^{-\frac{w^2}{4t}} y(w) \, dw \right] = \frac{1}{\sqrt{v}} \int_{0}^{\infty} e^{-w/\sqrt{v}} y(w) \, dw = Y(\sqrt{v}).$$
Sumudu transform exists for continuous, exponentially ordered and absolutely integrable functions, so we consider all such functions in this article.

Consider the definition of Double Sumudu transform given by J. Tchuenche and N Mbare [17], let \(u(x, t) \) be a function of two variables in the first quadrant of the \(XOY \) plane. Then Sumudu transform of two variables is given by a following equation.

\[
S_2 [u(x, t)] = \frac{1}{v_1 v_2} \int_0^\infty \int_0^\infty e^{-\left(\frac{x}{v_1} + \frac{t}{v_2}\right)} u(x, t) \, dx \, dt = U(v_1, v_2).
\]

Some of the properties of Double Sumudu transform are the following:

1. \(S_2 \left[\frac{\partial u(x, t)}{\partial x} \right] = \frac{1}{v_1} Y(v_1, v_2) - \frac{1}{v_1} S[u(0, t)] \);
2. \(S_2 \left[\frac{\partial u(x, t)}{\partial t} \right] = \frac{1}{v_2} Y(v_1, v_2) - \frac{1}{v_2} S[u(x, 0)] \);
3. \(S_2 \left[\frac{\partial^2 u(x, t)}{\partial x^2} \right] = \frac{1}{v_1^2} Y(v_1, v_2) - \frac{1}{v_1^2} Y(0, v_2) - \frac{1}{v_1^2} S[u_x(x, 0)] \);
4. \(S_2 \left[\frac{\partial^2 u(x, t)}{\partial t^2} \right] = \frac{1}{v_2^2} Y(v_1, v_2) - \frac{1}{v_2^2} Y(0, v_2) - \frac{1}{v_2^2} S[u_t(x, 0)] \);
5. \(S_2 \left[\frac{\partial^2 u(x, t)}{\partial x \partial t} \right] = \frac{1}{v_1 v_2} Y(v_1, v_2) - \frac{1}{v_1 v_2} S[u(x, 0)] - \frac{1}{v_1 v_2} S[u(0, t)] + \frac{1}{v_1 v_2} u(0, 0) \).

2. **Theorems on Sumudu Transform of Function of Two Variables**

Theorem 2.1. Suppose that:

i) \(S[y(t)] = Y(v) \),

ii) \(S[u(t)] = \frac{Y(\sqrt{v})}{\sqrt{v}} \),

iii) \(S\left[\frac{y(t)}{t} \right] = G(v), \ t \neq 0 \),

iv) \(S[t^n y(t)] = G_n(v), \ n = 1, 2, 3 \)

then:

1. \(S_2 \left[\frac{x^2 y^2}{(x+y)^2} \right] = \frac{\sqrt{\pi}}{\sqrt{v_1} + \sqrt{v_2}} G_1 \left(\frac{\sqrt{v_1} v_2}{\sqrt{v_1} + \sqrt{v_2}} \right) \);
2. \(S_2 \left[\frac{x y u}{(x+y)^2} \right] = \frac{\sqrt{\pi}}{2} \frac{1}{\sqrt{v_1} + \sqrt{v_2}} G_1 \left(\frac{\sqrt{v_1} v_2}{\sqrt{v_1} + \sqrt{v_2}} \right) \);
3. \(S_2 \left[\frac{x^2 y^2 u}{(x+y)^2} \right] = \frac{\sqrt{\pi} \sqrt{v_1 v_2}}{8 \sqrt{v_1} + \sqrt{v_2}} G_1 \left(\frac{\sqrt{v_1} v_2}{\sqrt{v_1} + \sqrt{v_2}} \right) + \left[\sqrt{v_1 v_2} G_1 \left(\frac{\sqrt{v_1} v_2}{\sqrt{v_1} + \sqrt{v_2}} \right) \right] \).
Proof.

(1) Using equation (1.1) and condition (ii) given in the theorem, one can get,

\[u(t) = \frac{1}{2\sqrt{\pi}} \left[\int_0^\infty t^{-\frac{3}{2}} e^{-u^2/4t} w(y) \, dw \right] . \]

Replace \(\frac{1}{t} = \frac{1}{x} + \frac{1}{y} \) and multiplying both sides of equation by \(\frac{1}{v_1 v_2} (xy)^{3/2} e^{-x/y} e^{-y/x} \) and integrating with respect to \(x \) and \(y \) in the interval \((0, \infty)\) and \((0, \infty)\).

\[
\frac{1}{v_1 v_2} \int_0^\infty \int_0^\infty \frac{1}{(xy)^{3/2}} \frac{u \left[\frac{xy}{x+y} \right]}{(1 + \frac{x}{y})^{3/2}} e^{-\frac{t}{v_1} - \frac{w}{v_2}} \, dxdy \\
= \frac{1}{2\sqrt{\pi} v_1 v_2} \int_0^\infty \int_0^\infty \frac{1}{(xy)^{3/2}} e^{-\frac{t}{v_1} - \frac{w}{v_2}} \left[\int_0^\infty e^{-\frac{w^2}{2} (\frac{x}{y} + \frac{y}{x})} wy(w) \, dw \right] dxdy .
\]

Changing the order of integration by using Fubini’s theorem

\[
S_2 \left(\frac{u \left[\frac{xy}{x+y} \right]}{(x+y)^{3/2}} \right) = \frac{4\pi}{2\sqrt{\pi}} \int_0^\infty \left[\frac{1}{v_1 v_2} e^{-\frac{w}{\sqrt{v_1}} - \frac{w}{\sqrt{v_2}}} \right] \frac{y(w)}{w} \, dw \\
= \frac{2\sqrt{\pi}}{\sqrt{v_1 v_2} + \sqrt{v_1 + v_2}} G \left(\frac{\sqrt{v_1 v_2}}{\sqrt{v_1 + v_2}} \right) .
\]

(2) Replace \(\frac{1}{t} = \frac{1}{x} + \frac{1}{y} \) in equation (2.1) and multiplying equation by \(\frac{1}{v_1 v_2} (xy)^{1/2} e^{-x/y} e^{-y/x} \) both sides and integrating with respect to \(x \) and \(y \) in the interval \((0, \infty)\) and \((0, \infty)\).

\[
S_2 \left(x y u \left[\frac{xy}{x+y} \right] \right) = \frac{\pi}{2\sqrt{\pi}} \int_0^\infty \left[\frac{1}{\sqrt{v_1 v_2}} e^{-\frac{w}{\sqrt{v_1}} - \frac{w}{\sqrt{v_2}}} \right] wy(w) \, dw \\
= \frac{\sqrt{\pi}}{2(\sqrt{v_1} + \sqrt{v_2})} G_1 \left(\frac{\sqrt{v_1 v_2}}{\sqrt{v_1} + \sqrt{v_2}} \right) .
\]

(3) Replace \(\frac{1}{t} = \frac{1}{x} + \frac{1}{y} \) in equation (2.1) and multiplying both sides of equation by \(\frac{1}{v_1 v_2} (xy)^{1/2} e^{-x/y} e^{-y/x} \) and integrating with respect to \(x \) and \(y \) in the interval \((0, \infty)\) and \((0, \infty)\).

\[
S_2 \left(x^2 y^2 u \left[\frac{xy}{x+y} \right] \right) = \frac{\pi}{8\sqrt{\pi}} \int_0^\infty \left[\sqrt{v_1 + w} \right] \left[\sqrt{v_2 + w} \right] e^{-\frac{w}{\sqrt{v_1}} - \frac{w}{\sqrt{v_2}}} wy(w) \, dw .
\]
Simple calculation give the required result.

\[\Box \]

Theorem 2.2. Suppose that

i) \(S[y(t)] = Y(v) \),

ii) \(S[u(\frac{1}{t})] = Y(\sqrt{v}) \),

iii) \(S[\frac{v(t)}{t^2}] = H_2(v), \ t \neq 0 \),

iv) \(S[t^n y(t)] = G_n(v), \ n = 1, 2, \)

then:

1. \[
S_2 \left(\frac{u(x+y)}{(x+y)^{1/2}} \right) = \frac{\sqrt{\pi}}{\sqrt{v_1+v_2}} Y \left(\frac{\sqrt{v_1v_2}}{\sqrt{v_1}+\sqrt{v_2}} \right); \\
\]

2. \[
S_2 \left(\frac{xy(x+y)}{(x+y)^{1/2}} \right) = \frac{4\sqrt{\pi}}{\sqrt{v_1v_2}} \frac{1}{\sqrt{v_1}+\sqrt{v_2}} H_2 \left(\frac{\sqrt{v_1v_2}}{\sqrt{v_1}+\sqrt{v_2}} \right); \\
\]

3. \[
S_2 \left(\frac{xyu(x+y)}{(x+y)^{1/2}} \right) = \frac{\sqrt{\pi}}{4(\sqrt{v_1}+\sqrt{v_2})} \int_0^\infty e^{-\frac{w^2}{v_1}} Y\left(\frac{\sqrt{v_1v_2}}{\sqrt{v_1}+\sqrt{v_2}} \right) dw. \\
\]

Proof. i) Using equation (1.2) and condition (ii) given in the theorem, one can get,

\[
u \left(\frac{1}{t} \right) = \frac{1}{\sqrt{\pi}} \left[\int_0^\infty t^{-\frac{1}{2}} e^{-w^2/4t} y(w) dw \right].
\]

Replace \(\frac{1}{t} = \frac{1}{x} + \frac{1}{y} \) and multiplying equation by \(\frac{1}{v_1v_2} \frac{1}{(xy)^{1/2}} e^{-\frac{x}{v_1}} e^{-\frac{y}{v_2}} \) both sides and integrating with respect to \(x \) and \(y \) in the interval \((0, \infty)\) and \((0, \infty)\).

\[
\frac{1}{v_1v_2} \int_0^\infty \int_0^\infty \frac{1}{(xy)^{1/2}} e^{-\frac{x}{v_1}} e^{-\frac{y}{v_2}} dxdy \\
= \frac{1}{\sqrt{\pi}} \frac{1}{v_1v_2} \int_0^\infty \int_0^\infty e^{-\frac{w^2}{v_1}} e^{-\frac{w^2}{v_2}} \int_0^\infty e^{-\frac{w^2}{v_1}} e^{-\frac{w^2}{v_2}} y(w) dw \] dxdy.

Changing the order of integration by using Fubini’s theorem

\[
S_2 \left(\frac{u(x+y)}{(x+y)^{1/2}} \right) = \frac{\pi}{\sqrt{\pi}} \int_0^\infty \left[\frac{1}{\sqrt{v_1v_2}} e^{-\frac{w^2}{v_1}} e^{-\frac{w^2}{v_2}} \right] y(w) dw \\
= \frac{\sqrt{\pi}}{\sqrt{v_1}+\sqrt{v_2}} Y \left(\frac{\sqrt{v_1v_2}}{\sqrt{v_1}+\sqrt{v_2}} \right).
\]
Simiral as we proved in theorem 2.1, follows the proof of (ii) and (iii).

Hermite Polynomial [19] is defined as:

$$H_n(t) = t^n \sum_{k=0}^{\left\lfloor \frac{n}{2} \right\rfloor} \frac{(-1)^k n!}{K! (n - 2k)!} \frac{1}{2^{k+2k}},$$

where $$\left\lfloor \frac{n}{2} \right\rfloor = \begin{cases} \frac{n}{2}, & \text{if } n \text{ even} \\ \frac{n-1}{2}, & \text{if } n \text{ odd} \end{cases}$$

and its Sumudu transform, one may write using the duality relation with Laplace transform [6] and Laplace transform of Hermite polynomial [20].

$$S_2 \left(\frac{1}{x^{(n+1)} y^{(m+1)}} e^{-\frac{w^2}{2}} (\frac{1}{x} + \frac{1}{y}) H_n \left(\sqrt{\frac{w}{x}} \right) H_m \left(\sqrt{\frac{w}{y}} \right) \right)$$

$$= \frac{2^{(n+m)\pi}}{v_1^{(n+1)/2} v_2^{(m+1)/2}} e^{-\sqrt{2w} \left(\frac{1}{\sqrt{v_1}} + \frac{1}{\sqrt{v_2}} \right)}.$$

Theorem 2.3. Suppose that

i) $$S[y(t)] = Y(v),$$

ii) $$S[tu \left(\frac{\xi}{2} \right)] = Y(v),$$

then:

$$S_2 \left(\frac{1}{x^{(n+1)} y^{(m+1)}} \int_0^\infty e^{-\frac{w^2}{2}} (\frac{1}{x} + \frac{1}{y}) H_n \left(\sqrt{\frac{w}{x}} \right) H_m \left(\sqrt{\frac{w}{y}} \right) y(w) dw \right)$$

$$= \frac{2^{(n+m)\pi}}{v_1^{(n+1)/2} v_2^{(m+1)/2}} \sqrt{v_1 v_2} \frac{\sqrt{v_1 v_2}}{\sqrt{v_1} + \sqrt{v_2}} Y \left(\frac{\sqrt{v_1 v_2}}{\sqrt{v_1} + \sqrt{v_2}} \right).$$

Proof. Consider equation (2.2), multiply it by $$y(w)$$ and integrate it with respect to $$w$$ in $$(0, \infty)$$, one can get

$$S_2 \left(\frac{1}{x^{(n+1)} y^{(m+1)}} \int_0^\infty e^{-\frac{w^2}{2}} (\frac{1}{x} + \frac{1}{y}) H_n \left(\sqrt{\frac{w}{x}} \right) H_m \left(\sqrt{\frac{w}{y}} \right) y(w) dw \right)$$

$$= \frac{2^{(n+m)\pi}}{v_1^{(n+1)/2} v_2^{(m+1)/2}} \int_0^\infty e^{-\sqrt{2w} \left(\frac{1}{\sqrt{v_1}} + \frac{1}{\sqrt{v_2}} \right)} y(w) dw$$

$$= \frac{2^{(n+m)\pi}}{v_1^{(n+1)/2} v_2^{(m+1)/2}} \sqrt{v_1 v_2} \frac{\sqrt{v_1 v_2}}{\sqrt{v_1} + \sqrt{v_2}} Y \left(\frac{\sqrt{v_1 v_2}}{\sqrt{v_1} + \sqrt{v_2}} \right).$$
After using Substitution $2w = t^2$ and using the condition (ii), we have the result.

3. Applications to Partial Differential Equations

Example 1. Let us solve Poisson equation with function $u(x,t)$, $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial t^2} = f(x,t)$; $x > 0, t > 0$ with the conditions,

$$u(0,t) = 0 = u(x,0), u_x(0,t) = 0 = u_t(x,0).$$

Let $S_2[u(x,t)] = U(v_1,v_2)$ and $S_2[f(x,t)] = F(v_1,v_2)$. Applying Double Sumudu transform with given conditions, we will get:

$$U(v_1,v_2) = \left[\frac{v_1^2 v_2^2}{v_1^2 + v_2^2}\right] F(v_1,v_2).$$

Let $f(x,t) = \frac{(x^2 + t^2)^2 - 6xt(x^2 + t^2)}{\sqrt{xt}(x^2 + t^2)^3}$. Consider $y(t) = t$, and $n = 4, m = 0$ and $n = 0, m = 4$, in equation (2.2):

$$S_2 \left[\frac{8t^{7/2}}{x^{1/2}(x+t)^4} - \frac{8t^{5/2}}{x^{1/2}(x+t)^3} + \frac{t^{3/2}}{x^{1/2}(x+t)^2}\right] = \frac{\pi(v_1v_2)^{3/2}}{v_1^2(\sqrt{v_1} + \sqrt{v_2})^4},$$

(3.1)

$$S_2 \left[\frac{8x^{7/2}}{t^{1/2}(x+t)^4} - \frac{8x^{5/2}}{t^{1/2}(x+t)^3} + \frac{x^{3/2}}{t^{1/2}(x+t)^2}\right] = \frac{\pi(v_1v_2)^{3/2}}{v_2^2(\sqrt{v_1} + \sqrt{v_2})^4},$$

(3.2)

Adding equations (3.1) and equations (3.2)

$$S_2 \left[\frac{(x^2 + t^2)^2 - 6xt(x^2 + t^2)}{\sqrt{xt}(x+t)^4}\right] = F(v_1,v_2) = \left[\frac{v_1^2 + v_2^2}{v_1^2 v_2^2}\right] \frac{\pi(v_1v_2)^{3/2}}{(\sqrt{v_1} + \sqrt{v_2})^4}.$$

From this one will get, $U(v_1,v_2) = \left[\frac{v_1^2 v_2^2}{v_1^2 + v_2^2}\right], F(v_1,v_2) = \frac{\pi(v_1v_2)^{3/2}}{(\sqrt{v_1} + \sqrt{v_2})^4}$, so $u(x,t) = \frac{4(xt)^{3/2}}{3(x+t)}$, by using theorem 2.1 and $y(t) = t^2$.

Example 2. Consider second order hyperbolic differential equation

$$\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial t^2} = f(x,t); x > 0, t > 0$$

with the conditions,

$$u(0,t) = f(t), u(x,0) = 0, u_x(0,t) = 0 = u_t(x,0).$$
Let \(S_2 [u (x, t)] = U(v_1, v_2) \), \(S [u (0, t)] = F(v_2) \) and \(S_2 [f (x, t)] = F(v_1, v_2) \). Applying Double Sumudu transform with given conditions, we have:

\[
U (v_1, v_2) = \left[\frac{v_1^2 v_2^2}{v_1^2 - v_2^2} \right] F (v_1, v_2) + \left[\frac{v_2^2}{v_1^2 - v_2^2} \right] F(v_2).
\]

Let \(f (x, t) = \frac{8 (t^4 - x^4) + 12 (x + t) (x^3 - t^3) + 3(t - x)(x + t)^3}{2x^{3/2}t^{3/2}(x + t)^3} \) and \(f(t) = 1 \).

Let \(y(t) = 1 \), and \(n = 5, m = 0 \) and \(n = 0, m = 5 \) in equation (2.2):

\[
\begin{align*}
S_2 & \left[\frac{4t^{5/2}}{x^{3/2}(x + t)^3} - \frac{6t^{3/2}}{x^{3/2}(x + t)^2} + \frac{3t^{1/2}}{2x^{3/2}t^{3/2}(x + t)} \right] = \frac{\pi (v_1 v_2)^{3/2}}{v_1^2 (\sqrt{v_1} + \sqrt{v_2})^4} \\
S_2 & \left[\frac{4x^{5/2}}{t^{3/2}(x + t)^3} - \frac{6x^{3/2}}{t^{3/2}(x + t)^2} + \frac{3x^{1/2}}{2t^{3/2}(x + t)} \right] = \frac{\pi (v_1 v_2)^{3/2}}{v_2^2 (\sqrt{v_1} + \sqrt{v_2})^4}
\end{align*}
\]

subtracting equation (3.3) and (3.4)

\[
S_2 \left[\frac{8 (t^4 - x^4) + 12 (x + t) (x^3 - t^3) + 3(t - x)(x + t)^3}{2x^{3/2}t^{3/2}(x + t)^3} \right] = \left[\frac{v_1^2 - v_2^2}{v_1^2 v_2^2} \right] \frac{\pi (v_1 v_2)^{1/2}}{(\sqrt{v_1} + \sqrt{v_2})^2} \Rightarrow \left[\frac{v_1^2 v_2^2}{v_1^2 - v_2^2} \right] F (v_1, v_2) = \frac{\pi (v_1 v_2)^{1/2}}{(\sqrt{v_1} + \sqrt{v_2})^2} = S_2 \left[\frac{(xt)^{1/2}}{2(x + t)} \right].
\]

Using theorem 2.2, and \(y(t) = H(t) \), one we have:

\[
u (x, t) = \frac{(xt)^{1/2}}{2(x + t)} - H(t - x).
\]

Example 3. Consider inhomogeneous diffusion problem, \(\frac{\partial u}{\partial t} - \frac{\partial^2 u}{\partial x^2} = q(x, t); x > 0, t > 0 \) with the conditions:

\[
\begin{align*}
u (0, t) &= 0, \quad u (x, 0) = f(x), \quad u_x (0, t) = 0.
\end{align*}
\]

Let \(S_2 [u (x, t)] = U(v_1, v_2) \), \(S [u (x, 0)] = F(v_2) \) and \(S_2 [q (x, t)] = Q(v_1, v_2) \).

Applying Double Sumudu transform with given conditions, we have:

\[
U (v_1, v_2) = \left[\frac{v_1^2 v_2}{v_1^2 - v_2^2} \right] Q (v_1, v_2) + \left[\frac{v_1^2}{v_1^2 - v_2^2} \right] F(v_1).
\]
Let \(q(x, t) = \frac{4(20t^2 + x^3)(x + t) - 3(x + t)^2(2x^2 + 10t)}{x^{3/2} + x^{1/2}(x + t)} \) and \(f(x) = 0 \). Let \(y(t) = 1 \), and \(n = 5, m = 1 \) and \(n = 1, m = 3 \) in equation (2.2)

\[
S_2 \left[\frac{12t^{5/2}}{x^{3/2}(x + t)^4} - \frac{20t^{3/2}}{x^{3/2}(x + t)^3} + \frac{15t^{1/2}}{2x^{3/2}(x + t)^2} \right] = \frac{\pi}{v_1^2 (\sqrt{v_1} + \sqrt{v_2})^2},
\]

(3.5)

\[
S_2 \left[\frac{4x^{3/2}}{t^{1/2}(x + t)^3} - \frac{3x^{1/2}}{t^{1/2}(x + t)^2} \right] = \frac{\pi}{v_2 (\sqrt{v_1} + \sqrt{v_2})^2}.
\]

(3.6)

Subtracting equation (3.5) and (3.6)

\[
S_2 \left[\frac{4(20t^2 + x^3)(x + t) - 3(x + t)^2(2x^2 + 10t) - 48t^2}{4x^{3/2}t^{1/2}(x + t)^4} \right]
= \left[\frac{v_1^2 - v_2}{v_1^2 v_2} \right] \frac{\pi}{(\sqrt{v_1} + \sqrt{v_2})^2}
\]

\[
\Rightarrow \left[\frac{v_1^2 v_2}{v_1^2 - v_2} \right] Q(v_1, v_2) = \frac{\pi}{(\sqrt{v_1} + \sqrt{v_2})^2} = S_2 \left[\frac{2(xt)^{1/2}}{(x + t)^2} \right],
\]

so, \(u(x, t) = \frac{2(xt)^{1/2}}{(x + t)^2} \).

ACKNOWLEDGMENT

The author is very much thankful to Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Savitribai Phule Pune University and Sanjivani College of Engineering, Kopargaon for providing all facilities for this work.

REFERENCES

DEPARTMENT OF MATHEMATICS
DEOGIRI COLLEGE
AURANGABAD, MAHARASHTRA, INDIA
E-mail address: sbkiwne@gmail.com

DEPARTMENT OF MATHEMATICS
SRES’S SANJIVANI COE
KOPARGAON, MAHARASHTRA, INDIA.
E-mail address: smsmathscoe@gmail.com