ON UNIQUENESS OF L-SHARING OF DIFFERENTIAL POLYNOMIALS OF MEROMORPHIC FUNCTIONS

NINTU MANDAL\(^1\) AND ABHIJIT SHAW

ABSTRACT. In this paper, we shall study the uniqueness problems of differential polynomials of meromorphic functions sharing 1 value. Here we prove two uniqueness theorems which extend and improve recent results of H.P. Waghmore and N.H. Sannappala [10].

1. INTRODUCTION

Throughout the article we study the uniqueness of differential polynomials of \(f \) and \(g \), where \(f \) and \(g \) are non-constant meromorphic functions in whole complex plane. Here we use the standard definitions, theorems and notations of Nevanlinna's value distribution theory (see [3]). The Nevanlinna characteristic function is denoted by \(T(r, f) \) and \(S(r, f) \) is small quantity define by \(o(T(r, f)) = S(r, f) \), as \(r \to \infty \) and \(r \notin E \) where \(E \subseteq \mathbb{R}^+ \) and measure of \(E \) is finite. The greatest common divisor of positive real number shall be denoted by \(GCD(q_1, q_2, \ldots, q_p) \) where \(q_1, q_2, \ldots, q_p \) are positive integers. Let \(a \in \mathbb{C} \setminus \{0\} \) and we say that \(f \) and \(g \) share value \(a \) CM(Counting Multiplicities) if \(f - a \) and \(g - a \) have same zeros with same multiplicities. We say that \(f \) and \(g \) share \(a \) IM (Ignoring Multiplicities) if \(f - a \) and \(g - a \) have the same zeros. Now we define, \(\Theta(a, f) = 1 - \lim_{r \to \infty} sup \frac{N(r, a; f)}{T(r, f)} \). where \(a \in \mathbb{C} \cup \{\infty\} \). \(E_l(a, f) \) is the set of all \(a \)-points of \(f \) where an \(a \)-point with multiplicities \(m \) is counted \(m \) times if

\(^{1}\)corresponding author

2010 Mathematics Subject Classification. 30D35.

Key words and phrases. Non-constant meromorphic function, l-Sharing, Uniqueness.
Let \(f \) be a nonconstant meromorphic function and \(a \in \mathbb{C} \cup \{\infty\} \), the counting function of \(a \)-points of \(f \) with multiplicities at least \(p (\in \mathbb{Z}^+) \) is denoted by \(N(r,a;f \mid \geq p) \) and \(\overline{N}(r,a;f \mid \geq p) \) is the corresponding reduced counting function. Similarly, we can define \(N(r,a;f \mid \leq p) \) and \(\overline{N}(r,a;f \mid \leq p) \).

Definition 1.2. [4] The counting function of \(a \)-points of \(f \), where an \(a \)-point of multiplicities \(m \) is counted \(m \) times if \(m \leq p \) and \(p \) times if \(m > p \), where \(p \) is an integer.

Definition 1.3. [4] Let \(f \) and \(g \) be two nonconstant meromorphic functions those share the value \(1 \) IM. Let \(z_0 \) be a 1-point of \(f \) and \(g \) with multiplicity \(p \) and \(q \) respectively. The counting function of those 1-points of \(f \) and \(g \), where \(p > q \) is denoted by \(\overline{N}_L(r,1;f) \), and the counting function of those 1-points of \(f \) and \(g \), where \(p = q \geq k \) is denoted by \(\overline{N}_E^{(k)}(r,1;f) \) (\(k \geq 2 \) is an integer), where each point in those counting functions is counted only once. Similarly, we can define \(\overline{N}_L(r,1;g) \) and \(\overline{N}_E^{(k)}(r,1;g) \).

Definition 1.4. [4] Let \(f \) and \(g \) be two nonconstant meromorphic functions those share the value \(a \) IM. The reduced counting function of those \(a \)-points of \(f \) whose multiplicities differ from the multiplicities of corresponding \(a \)-points of \(g \) is denoted by \(\overline{N}_s(r,a;f,g) \). So we claim that \(\overline{N}_s(r,a;f,g) = \overline{N}_s(r,a;g,f) \) and \(\overline{N}_s(r,a;f,g) = \overline{N}_L(r,a;f) + \overline{N}_L(r,a;g) \).

In 2001, Fang and Hong [2] deduce the following theorem,

Theorem 1.1. [2] Let \(f \) and \(g \) be two transcendental entire functions and \(n (\geq 11) \) be an integer. If \(f^n(f-1) f' \) and \(g^n(g-1) g' \) share 1 CM then \(f \equiv g \).

In 2006, Lahiri and Pal proved the following result:

Theorem 1.2. [6] Let \(f \) and \(g \) be two nonconstant meromorphic functions and \(n (\geq 14) \) be an integer. Let \(f^{\alpha} = f^n(f^3-1) f' \) and \(G^{\alpha} = g^n(g^3-1) g' \). If \(E_3(1, F^{\alpha}) = E_3(1, G^{\alpha}) \) then \(f \equiv g \).
In 2015, Chao Meng established the following result:

Theorem 1.3. [7] Let f and g be two non-constant meromorphic functions, $n \geq 12$ a positive integer. If $E_2(1, f^n(f^3 - 1)f') = E_2(1, g^n(g^3 - 1)g')$ and f and g share ∞ IM, then $f \equiv g$.

Let $Q(z) = \sum_{i=0}^{p} a_i z^i$, where $a_0(\neq 0), a_1, a_2, ..., a_{p-1}, a_p(\neq 0)$ are complex constants and $i \in \mathbb{Z}^+$.

We assume that $F = [f^nQ(f)]^{(k)}$ and $G = [g^nQ(g)]^{(k)}$.

In 2018, H.P. Waghamore and N.H. Sannappala [10] proved the results:

Theorem 1.4. [10] Let f and g be two non-constant meromorphic functions whose zeros and poles are multiplicities at least m and $n > p + k + \frac{1}{m}(3k + 4)$, where m, n, p are positive integers, and $\Theta(\infty, f) + \Theta(\infty, g) > \frac{4}{n}$. If F and G share $(1,2)$ and f and g share ∞ IM, then one of the following two cases holds:

i) $f = tg$ for a constant t such that $t^{\chi} = 1$, where $\chi = GCD(n + p, ..., n + p - i, ..., n + 1, n)$ and $a_{p-i} \neq 0$ for some $i = 0, 1, ..., p$.

ii) f and g satisfy the algebraic equation $R(f, g) \equiv 0$, where $R(f, g) = f^nQ(f) - g^nQ(g)$.

Theorem 1.5. [10] Let f and g be two non-constant meromorphic functions whose zeros and poles are multiplicities at least m and $n > p + k + \frac{1}{m}(3k + 4)$, where m, n, p are positive integers. If $f^nQ(f)f'$ and $g^nQ(g)g'$ share $(1,2)$ and f and g share ∞ IM, then one of the following two cases holds:

i) $f = tg$ for a constant t such that $f^{\chi} = 1$, where $\chi = GCD(n + p, ..., n + p - i, ..., n + 1, n)$ and $a_{p-i} \neq 0$ for some $i = 0, 1, ..., p$.

ii) f and g satisfy the algebraic equation $R(f, g) \equiv 0$, where $R(f, g) = f^{n+1} \sum_{i=0}^{p} a_{p-i}f^{m-1} - g^{n+1} \sum_{i=0}^{p} a_{p-i}g^{m-1}$.

In their paper [10], the authors posed the open problems that:

i) n can be still reduced, and

ii) $(1,2)$ sharing can be replaced by $(1,l),(l \geq 0)$ sharing?

The solution of this problems is given in the section Main results, theorem 3.1 and theorem 3.2.
2. LEMMAS

To prove our results following lemmas will be needed. Let \(F_1 \) and \(G_1 \) be two non-constant meromorphic functions defined in \(\mathbb{C} \). We denote by \(H_1 \) the function as follows:

\[
H_1 = \left(\frac{F''_1}{F'_1} - 2F'_1 \right) - \left(\frac{G''_1}{G'_1} - \frac{2G'_1}{G_1 - 1} \right).
\]

Lemma 2.1. [12] Let \(f \) be a non-constant meromorphic function, where \(a_0, a_1, a_2, ..., a_n(\neq 0) \) are complex constants and \(i \in \mathbb{Z}^+ \). Then

\[
T(r, \sum_{i=0}^{n} a_i f^i) = nT(r, f) + S(r, f).
\]

Lemma 2.2. [13] Let \(f \) be a non-constant meromorphic function, and \(p, k \in \mathbb{Z}^+ \). Then:

\[
N(r, 0; f^{(k)}) \leq k\overline{N}(r, \infty; f) + N(r, 0; f) + S(r, f).
\]

Lemma 2.3. [14] Let \(f \) be a nonconstant meromorphic function, and \(p, k \in \mathbb{Z}^+ \). Then,

\[
N(r, 0; f^{(k)|p}) \leq k\overline{N}(r, \infty; f) + N(r, 0; f|p + k) + S(r, f).
\]

Lemma 2.4. [1] Let \(F_1 \) and \(G_1 \) be two non-constant meromorphic functions sharing \((1, 2), (\infty, 0)\) and \(H_1 \neq 0 \), then,

\[
T(r, F_1) \leq N(r, 0; F_1|2) + N(r, 0; G_1|2) + \overline{N}(r, \infty; F_1) + \overline{N}(r, \infty; G_1) + \overline{N}(r, \infty; F_1; G_1) - N_1^* \left(r, 1; F_1 \right) - \overline{N}_L(r, 1; G_1) + S(r, F_1) + S(r, G_1).
\]

We can deduce same result for \(T(r, G) \).

Lemma 2.5. [11] Let \(F_1 \) and \(G_1 \) be two non-constant meromorphic functions sharing \((1, 1), (\infty, 0)\) and \(H_1 \neq 0 \), then

\[
T(r, F_1) \leq N(r, 0; F_1|2) + N(r, 0; G_1|2) + \frac{3}{2}N(r, \infty; F_1) + N(r, \infty; G_1) + N_1^*(r, \infty; F_1; G_1) + \frac{1}{2}\overline{N}(r, 0; F_1) + S(r, F_1) + S(r, G_1).
\]

We can deduce same result for \(T(r, G) \).

Lemma 2.6. [11] Let \(F_1 \) and \(G_1 \) be two non-constant meromorphic functions sharing \((1, 0), (\infty, 0)\) and \(H_1 \neq 0 \), then

\[
T(r, F_1) \leq N(r, 0; F_1|2) + N(r, 0; G_1|2) + 3N(r, \infty; F_1) + 2N(r, \infty; G_1) + N_1^*(r, \infty; F_1; G_1) + 2\overline{N}(r, 0; F_1) + \overline{N}(r, 0; G_1) + S(r, F_1) + S(r, G_1).
\]

We can deduce same result for \(T(r, G) \).

Lemma 2.7. [5] Let \(f \) and \(g \) be two non-constant meromorphic functions and \(\Theta(\infty, f) + \Theta(\infty, g) > \frac{4}{n} \) for all integers \(n \geq 3 \). Now if \(f^n(af + b) = g^n(ag + b) \) then \(f = g \), where \(a \) and \(b \) are two finite non-zero complex constants.

Lemma 2.8. [10] Let \(F_1 \) and \(G_1 \) be two non-constant meromorphic functions, whose zeros and poles are of multiplicities at least \(m \), where \(m \) is positive integer. Let \(n, k \in \mathbb{Z}^+ \) and if there exists two non-zero constants \(\alpha \) and \(\beta \) such
that $\overline{N}(r, 0; F_1) = \overline{N}(r, 0; G_1 - \alpha)$ and $\overline{N}(r, 0; G_1) = \overline{N}(r, 0; F_1 - \beta)$ then $n > p + \frac{2}{m}(k + 1)$.

Lemma 2.9. [9] Let f and g be two non-constant meromorphic functions and let $n(\geq 1), k(\geq 1)$, and $m(\geq 1)$ be integers. Then $FG \neq 1$, where F, G are as define above.

Lemma 2.10. [8] Let f and g be two nonconstant meromorphic functions and $n + p \geq 6$ is a positive integer then $f^nQ(f)f'g^nQ(g)g' \neq 1$.

3. Main results

Theorem 3.1. Let f and g be two non-constant meromorphic functions whose zeros and poles are multiplicities at least m, where m, n, p, k are positive integers, and $\Theta(\infty, f) + \Theta(\infty, g) > \frac{4}{n}$. If $E_i(1, F) = E_i(1, G)$ and f and g share ∞ IM. Then for the one of the following conditions:

i) $l \geq 2$; a) $m \geq 2$ and $n > p + k + \frac{1}{m}(3k + 7)$, b) $m = 1$ and $n > p + 4k + 6$;

ii) $l = 1$; a) $m \geq 2$ and $n > \frac{3p}{2} + k + \frac{1}{m}(4k + 8)$, b) $m = 1$ and $n > \frac{3p}{2} + 5k + 7$;

iii) $l = 0$; a) $m \geq 2$ and $n > 4p + k + \frac{1}{m}(9k + 13)$, b) $m = 1$ and $n > 4p + 10k + 12$;

one of the following results hold:

i) $f = tg$ for a constant t such that $t^x = 1$, where $\chi = \text{GCD}(n + p, \ldots, n + p - i, \ldots, n + 1, n)$ and $a_{p-i} \neq 0$ for some $i = 0, 1, \ldots, p$.

ii) f and g satisfy the algebraic equation $R(f, g) \equiv 0$, where $R(f, g) = f^nQ(f) - g^nQ(g)$.

Proof. First we defined two functions $F^* = \sum_{i=0}^{p} \frac{a_{p-i}(n+p-i)!}{(n-k+1+p-i)!} f^{n-k+1+p-i}$ and $G^* = \sum_{i=0}^{p} \frac{a_{p-i}(n+p-i)!}{(n-k+1+p-i)!} g^{n-k+1+p-i}$. Then from lemma 2.1 we have

\begin{equation}
T(r, F^*) = (n - k + 1 + p)T(r, f) + S(r, f).
\end{equation}
Since $(F^*)' = F$, we deduce, $m(r, \frac{1}{F}) = m(r, \frac{1}{F}) + S(r, f)$. By Nevanlinna’s first fundamental theorem, we get

\[
T(r, F^*) \leq \overline{N}(r, \infty; F) + N(r, 0; F^*) - N(r, 0; F) + S(r, f)
\]

\[
\leq T(r, F) + N(r, 0; f) + \sum_{i=0}^{p} N(r, 0; f - \mu_i) - \sum_{i=0}^{p} N(r, 0; f - \nu_i)
\]

\[
(3.2)
\]

where μ_i and ν_i ($i = 1, 2, ..., p$) are roots of algebraic equations

\[
\sum_{i=0}^{p} \frac{a_{p-i}(n+p-i)!}{(n-k+1+p-i)!} z^{p-i} = 0 \quad \text{and} \quad \sum_{i=0}^{p} a_{p-i} z^{p-i} = 0
\]

respectively. Also we use the result for $m(\geq 2), m(= 1)$

\[
(3.3)
\]

\[
\overline{N}_*(r, \infty; f; g) \leq \overline{N}(r, \infty; f),
\]

\[
(3.4)
\]

\[
\overline{N}(r, \infty; f) + \overline{N}(r, \infty; g) + \overline{N}_*(r, \infty; f; g) \leq N(r, \infty; f) + N(r, \infty; g),
\]

respectively. As we assume that zeros and poles of f and g are of multiplicities at least $m(\geq 2)$, then

\[
(3.5)
\]

\[
\overline{N}(r, \infty; f) \leq \frac{1}{m} N(r, \infty; f) \leq \frac{1}{m} T(r, f),
\]

\[
(3.6)
\]

\[
\overline{N}(r, 0; f) \leq \frac{1}{m} N(r, 0; f) \leq \frac{1}{m} T(r, f),
\]

\[
(3.7)
\]

\[
\overline{N}(r, \infty; f) \leq \frac{1}{m} N(r, \infty; f) \leq \frac{1}{m} T(r, f),
\]

\[
(3.8)
\]

\[
\overline{N}(r, 0; f) \leq \frac{1}{m} N(r, 0; f) \leq \frac{1}{m} T(r, f).
\]

Now F and G are transcendental meromorphic functions that share $(1,l)$ and f, g share $(\infty, 0)$. We discuss the following two cases separately.

Case 1. We assume that $H_1 \neq 0$. Now we study the following subcases.

Subcase 1.1 If $l \geq 2$, then, using Lemma 2.4, we obtain

\[
T(r, F) \leq N(r, 0; F|2) + N(r, 0; G|2) + \overline{N}(r, \infty; F) + \overline{N}(r, \infty; G)
\]

\[
+ \overline{N}_*(r, \infty; F; G) + S(r, F) + S(r, G).
\]

\[
(3.9)
\]
Now from equation (3.2) and (3.9) we have:

\[
T(r, F^*) \leq N(r, 0; F|2) + N(r, 0; G|2) + N_*(r, \infty; F) + N(r, \infty; G) \\
+ N_*(r, \infty; F; G) + N(r, 0; f) + \sum_{i=1}^{p} N(r, 0; f - \mu_i) \\
- \sum_{i=1}^{p} N(r, 0; f - \nu_i) - kN(r, \infty; f) + S(r, f) + S(r, g) \\
\leq N(r, 0; [f^nQ(f)]^{(k)}|2) + N(r, 0; [g^nQ(g)]^{(k)}|2) + N(r, \infty; f) \\
+ N(r, \infty; g) + N_*(r, \infty; f; g) + N(r, 0; f) + \sum_{i=1}^{p} N(r, 0; f - \mu_i) \\
- \sum_{i=1}^{p} N(r, 0; f - \nu_i) - kN(r, \infty; f) + S(r, f) + S(r, g) \\
\leq (k + 2)N(r, 0; f) + kN(r, \infty; g) + (k + 2)N(r, 0; g) \\
+ \sum_{i=1}^{p} N(r, 0; g - \nu_i) + N(r, \infty; f) + N(r, \infty; g) + N_*(r, \infty; f; g) \\
+ N(r, 0; f) + \sum_{i=1}^{p} N(r, 0; f - \mu_i) + S(r, f) + S(r, g).
\]

(3.10)

Subsubcase 1.1.1 If \(m \geq 2 \), then we deduce with help of inequalities (3.1),(3.3),(3.5) - (3.8) and (3.10) that,

\[
(\frac{n - k + 1 + p}{m})T(r, f) \leq \frac{k + 2}{m}T(r, f) + \frac{k}{m}T(r, g) + \frac{k + 2}{m}T(r, f) + pT(r, f) + \frac{2}{m}T(r, f) \\
+ \frac{1}{m}T(r, g) + T(r, f) + pT(r, f) + S(r, f) + S(r, g) \\
\leq [p + 1 + \frac{1}{m}(k + 4)]T(r, f) + [p + \frac{1}{m}(2k + 3)]T(r, g) \\
+ S(r, f) + S(r, g).
\]

(3.11)
Similarly we can show that:

\[
(n - k + 1 + p)T(r, g) \\
\leq \left[p + 1 + \frac{1}{m}(k + 4) \right] T(r, g) + \left[p + \frac{1}{m}(2k + 3) \right] T(r, f) \\
+ S(r, f) + S(r, g).
\]

(3.12)

Adding (3.11) and (3.12) we have:

\[
(n - k + 1 + p)\left[T(r, f) + T(r, g) \right] \leq \left[2p + 1 + \frac{1}{m}(3k + 7) \right] \left[T(r, f) + T(r, g) \right] + S(r, f) + S(r, g),
\]

which implies that \(n \leq p + k + \frac{1}{m}(3k + 7) \), but \(n > p + k + \frac{1}{m}(3k + 7) \), a contradiction.

Subsubcase 1.1.2 If \(m = 1 \), then using inequalities (3.1), (3.4) and (3.10), we have:

\[
(n - k + 1 + p)T(r, f) \\
\leq (k + 2)T(r, f) + kT(r, g) + (k + 2)T(r, f) + pT(r, f) + T(r, f) \\
+ T(r, g) + T(r, f) + pT(r, f) + S(r, f) + S(r, g) \\
\leq (p + k + 4)T(r, f) + (p + 2k + 3)T(r, g) + S(r, f) + S(r, g).
\]

(3.13)

Adding (3.13) and (3.14) we can deduce that \(n \leq p + 4k + 6 \) which is contradiction as \(n > p + 4k + 6 \).

Subcase 1.2 If \(l = 1 \), then, we obtain from lemma 2.5

\[
T(r, F) \leq N(r, 0; F|2) + N(r, 0; G|2) + \frac{3}{2} \overline{N}(r, \infty; F) + \overline{N}(r, \infty; G) \\
+ \overline{N}_*(r, \infty; F; G) + \frac{1}{2} \overline{N}(r, 0; F) + S(r, F) + S(r, G).
\]

(3.15)

Now using (3.2) and (3.15) we have:

\[
T(r, F^*) \\
\leq T(r, F) + N(r, 0; f) + \sum_{i=1}^{p} N(r, 0; f - \mu_i) - \sum_{i=1}^{p} N(r, 0; f - \nu_i) \\
- k \overline{N}(r, \infty; f) + S(r, f)
\]
ON UNIQUENESS OF L-SHARING OF DIFFERENTIAL... 127

\[\begin{align*}
\leq &\ N(r, 0; F|2) + N(r, 0; G|2) + \frac{3}{2} N(r, \infty; F) + N(r, \infty; G) \\
&+ \ N_s(r, \infty; F; G) + \frac{1}{2} N(r, 0; F) + N(r, 0; f) + \sum_{i=1}^{p} N(r, 0; f - \mu_i) \\
&- \sum_{i=1}^{p} N(r, 0; f - \nu_i) - kN(r, \infty; f) + S(r, f) + S(r, g) \\
\leq &\ N(r, 0; [f^nQ(f)]^{(k)}|2) + N(r, 0; [g^nQ(g)]^{(k)}|2) + \frac{3}{2} N(r, \infty; F) \\
&+ \ N(r, \infty; G) + N_s(r, \infty; F; G) + \frac{1}{2} N(r, 0; [f^nQ(f)]^{(k)}) + N(r, 0; f) \\
&+ \sum_{i=1}^{p} N(r, 0; f - \mu_i) - \sum_{i=1}^{p} N(r, 0; f - \nu_i) - kN(r, \infty; f) \\
&+ \ S(r, f) + S(r, g) \\
\leq &\ (k + 2)N(r, 0; f) + kN(r, \infty; g) + (k + 2)N(r, 0; g) \\
&+ \sum_{i=1}^{p} N(r, 0; g - \nu_i) + \frac{3}{2} N(r, \infty; f) + N(r, \infty; g) + N_s(r, \infty; f; g) \\
&+ \frac{1}{2} kN(r, \infty; f) + \frac{1}{2} (k + 1)N(r, 0; f) + \frac{1}{2} \sum_{i=1}^{p} N(r, 0; f - \nu_i) \\
&+ \ N(r, 0; f) + \sum_{i=1}^{p} N(r, 0; f - \mu_i) + S(r, f) + S(r, g),
\end{align*} \]

(3.16)

Subsubcase 1.2.1 If \(m \geq 2 \), then we deduce with help of inequalities (3.1),(3.3),(3.5) - (3.8) and (3.16) that

\[\begin{align*}
(n - k + 1 + p)T(r, f) \\
\leq &\ [\frac{3p}{2} + 1 + \frac{1}{2m}(4k + 10)]T(r, f) + [p + \frac{1}{m}(2k + 3)]T(r, g) \\
&+ \ S(r, f) + S(r, g).
\end{align*} \]

(3.17)

Similarly we can show,

\[\begin{align*}
(n - k + 1 + p)T(r, g) \\
\leq &\ [\frac{3p}{2} + 1 + \frac{1}{2m}(4k + 10)]T(r, g) + [p + \frac{1}{m}(2k + 3)]T(r, f) \\
&+ \ S(r, f) + S(r, g).
\end{align*} \]

(3.18)
Adding (3.17) and (3.18), we have \((n - k + 1 + p)[T(r, f) + T(r, g)] \leq \left[\frac{3p}{2} + 1 + \frac{1}{m}(4k + 8) \right][T(r, f) + T(r, g)] + S(r, f) + S(r, g)\), which implies that \(n \leq \frac{3p}{2} + k + \frac{1}{m}(4k + 8)\), but \(n > \frac{3p}{2} + k + \frac{1}{m}(4k + 8)\), a contradiction.

Subsubcase 1.2.2 If \(m = 1\), then using inequalities (3.1), (3.4) and (3.16), we have

\[
\begin{align*}
(n - k + 1 + p)T(r, f) & \leq (k + 2)T(r, f) + kT(r, g) + (k + 2)T(r, g) + pT(r, g) + \frac{1}{2}T(r, f) \\
& + T(r, f) + T(r, g) + \frac{1}{2}kT(r, f) + \frac{1}{2}(k + 1)T(r, f) + \frac{1}{2}pT(r, f) \\
& + T(r, f) + pT(r, f) + S(r, f) + S(r, g) \\
\end{align*}
\]

\[\leq \left(\frac{3p}{2} + 2k + 5\right)T(r, f) + (p + 2k + 3)T(r, g) + S(r, f) + S(r, g).\]

(3.19)

Similarly we can show,

\[
\begin{align*}
(n - k + 1 + p)T(r, g) & \leq \left(\frac{3p}{2} + 2k + 5\right)T(r, g) + (p + 2k + 3)T(r, f) \\
& + S(r, f) + S(r, g). \\
\end{align*}
\]

(3.20)

Adding (3.19) and (3.20) we can deduce that \(n \leq \frac{3p}{2} + 5k + 7\) which is contradiction as \(n > \frac{3p}{2} + 5k + 7\).

Subcase 1.3 If \(l = 0\), then using lemma 2.6, we obtain

\[
\begin{align*}
T(r, F) & \leq N(r, 0; F|2) + N(r, 0; G|2) + 3\overline{N}(r, \infty; F) + 2\overline{N}(r, \infty; G) \\
& + \overline{N}_s(r, \infty; F; G) + 2\overline{N}(r, 0; F) + \overline{N}(r, 0; G) + S(r, F) + S(r, G). \\
\end{align*}
\]

(3.21)

Now using (3.2) and (3.21)

\[
\begin{align*}
T(r, F^*) & \leq T(r, F) + N(r, 0; f) + \sum_{i=1}^{p} N(r, 0; f - \mu_i) - \sum_{i=1}^{p} N(r, 0; f - \nu_i) \\
& - k\overline{N}(r, \infty; f) + S(r, f) \\
\end{align*}
\]
ON UNIQUENESS OF L-SHARING OF DIFFERENTIAL... 129

\[\begin{align*}
& \leq N(r, 0; F|2) + N(r, 0; G|2) + 3N(r, \infty; F) + 2N(r, \infty; G) \\
& + N_*(r, \infty; F; G) + 2N(r, 0; F) + N(r, 0; G) + N(r, 0; f) \\
& + \sum_{i=1}^{p} N(r, 0; f - \mu_i) - \sum_{i=1}^{p} N(r, 0; f - \nu_i) - kN_*(r, \infty; f) + S(r, f) + S(r, g) \\
& \leq N(r, 0; [f^n Q(f)]^{(k)}|2) + N(r, 0; [g^n Q(g)]^{(k)}|2) + 3N(r, \infty; F) \\
& + 2N(r, \infty; G) + N_*(r, \infty; F; G) + 2N(r, 0; [f^n Q(f)]^{(k)}) \\
& + N(r, 0; [g^n Q(g)]^{(k)}) + N(r, 0; f) + \sum_{i=1}^{p} N(r, 0; f - \mu_i) \\
& - \sum_{i=1}^{p} N(r, 0; f - \nu_i) - kN_*(r, \infty; f) + S(r, f) + S(r, g) \\
& \leq (k + 2)N(r, 0; f) + kN_*(r, \infty; g) + (k + 2)N(r, 0; g) + \sum_{i=1}^{p} N(r, 0; g - \nu_i) \\
& + 3N(r, \infty; f) + 2N(r, \infty; g) + N_*(r, \infty; f; g) + 2kN_*(r, \infty; f) \\
& + 2(k + 1)N(r, 0; f) + 2 \sum_{i=1}^{p} N(r, 0; f - \nu_i) + kN_*(r, \infty; g) \\
& + (k + 1)N(r, 0; g) + \sum_{i=1}^{p} N(r, 0; g - \nu_i) + N(r, 0; f)
\end{align*} \]

\[(3.22) \quad + \sum_{i=1}^{p} N(r, 0; f - \mu_i) + S(r, f) + S(r, g).\]

Subsubcase 1.3.1 If \(m \geq 2 \), then we deduce with help of inequalities (3.1), (3.3), (3.5) - (3.8) and (3.22) that

\[(n - k + 1 + p)T(r, f) \leq [3p + 1 + \frac{1}{m}(5k + 8)]T(r, f) + [2p + \frac{1}{m}(4k + 5)]T(r, g) \]

\[(3.23) \quad + S(r, f) + S(r, g).\]

Similarly we can show,

\[(n - k + 1 + p)T(r, g) \leq [3p + 1 + \frac{1}{m}(5k + 8)]T(r, g) + [2p + \frac{1}{m}(4k + 5)]T(r, f) \]

\[(3.24) \quad + S(r, f) + S(r, g).\]
Adding (3.23) and (3.24) we have, \((n - k + 1 + p)[T(r, f) + T(r, g)] \leq [5p + 1 + \frac{1}{m}(9k + 13)][T(r, f) + T(r, g)] + S(r, f) + S(r, g)\). Which implies that \(n \leq 4p + k + \frac{1}{m}(9k + 13)\), but \(n > 4p + k + \frac{1}{m}(9k + 13)\), a contradiction.

Subsubcase 1.3.2 If \(m = 1\), then using inequalities (3.1), (3.4) and (3.22), we have

\[
(n - k + 1 + p)T(r, f) + 2T(r, f) + T(r, g) + 2kT(r, f) + (k + 2)T(r, f) + 2pT(r, f) + kT(r, f) + (k + 1)T(r, g) + pT(r, g) + T(r, f) + pT(r, f) + S(r, f) + S(r, g)
\]

\[
\leq (3p + 5k + 8)T(r, f) + (2p + 4k + 5)T(r, g) + S(r, f) + S(r, g).
\]

Similarly we can show,

\[
(n - k + 1 + p)T(r, g) \leq (3p + 5k + 8)T(r, f) + (2p + 4k + 5)T(r, f)
\]

Adding (3.25) and (3.26) we can deduce that \(n \leq 4p + 10k + 12\) which is contradiction as \(n > 4p + 10k + 12\).

Case 2 We assume that \(H_1 \equiv 0\). Then we can write for our functions \(F\) and \(G\),

\[
\left(\frac{F''}{F} - \frac{2F'}{F-1}\right) - \left(\frac{G''}{G} - \frac{2G'}{G-1}\right) = 0,
\]

Now after two times integration of the equation, we have

\[
\frac{1}{F-1} = \frac{C}{G-1} + D,
\]

where \(C\) and \(D\) are complex constants. Now we can say from (3.27) that \(F\) and \(G\) share 1 CM, that is \(F\) and \(G\) share 1 with weight \(l(\geq 2)\). Now we study the following subcases.

Subcase 2.1 Let \(D \neq 0\) and \(C = D\). Then from (3.27) we have

\[
\frac{1}{F-1} = \frac{DG}{G-1}.
\]

If \(D = -1\), then from (3.28), we obtain \(FG = 1\). Then by lemma 2.9, we get a contradiction. If \(D \neq -1\), we have, \(\frac{1}{G} = \frac{1}{D(F - \frac{D}{D-1})}\); and then \(\overline{N}(r, \frac{D-1}{D}; F) = \ldots\)
Now using the second fundamental theorem of Nevanlinna

\[T(r, F) \leq \overline{N}(r, 0; F) + \overline{N}(r, D^{-1}; F) + \overline{N}(r, \infty; F) + S(r, F) \]

(3.29) \[\leq \overline{N}(r, 0; F) + \overline{N}(r, 0; G) + \overline{N}(r, \infty; F) + \overline{N}(r, F) + S(r, G), \]

and using (3.3) and (3.29) we have

\[T(r, F^*) \leq T(r, F) + N(r, 0; f) + \sum_{i=1}^{p} N(r, 0; f - \mu_i) - \sum_{i=1}^{p} N(r, 0; f - \nu_i) \]

\[- k\overline{N}(r, \infty; f) + S(r, f) \]

\[\leq \overline{N}(r, 0; F) + \overline{N}(r, 0; G) + \overline{N}(r, \infty; F) + \overline{N}(r, 0; f) + \sum_{i=1}^{p} N(r, 0; f - \mu_i) \]

\[- \sum_{i=1}^{p} N(r, 0; f - \nu_i) - k\overline{N}(r, \infty; f) + S(r, f) + S(r, g) \]

\[\leq (k + 1)\overline{N}(r, 0; f) + k\overline{N}(r, \infty; g) + (k + 1)\overline{N}(r, 0; g) + \sum_{i=1}^{p} N(r, 0; g - \nu_i) \]

(3.30) \[+ \overline{N}(r, \infty; f) + N(r, 0; f) + \sum_{i=1}^{p} N(r, 0; f - \mu_i) + S(r, f) + S(r, g). \]

Subsubcase 2.1.1 If \(m \geq 2 \), then we deduce with help of inequalities (3.1),(3.3),(3.5) - (3.8) and (3.30) that

\[(n - k + 1 + p)T(r, f) \leq [p + 1 + \frac{1}{m}(k + 2)]T(r, f) \]

(3.31) \[+ [p + \frac{1}{m}(2k + 1)]T(r, g) + S(r, f) + S(r, g). \]

Similarly we can show,

\[(n - k + 1 + p)T(r, g) \leq [p + 1 + \frac{1}{m}(k + 2)]T(r, g) \]

(3.32) \[+ [p + \frac{1}{m}(2k + 1)]T(r, f) + S(r, f) + S(r, g). \]

Adding (3.31) and (3.32) we have \((n - k + 1 + p)[T(r, f) + T(r, g)] \leq [2p + 1 + \frac{1}{m}(3k + 3)][T(r, f) + T(r, g)] + S(r, f) + S(r, g)\), Which implies that \(n \leq p + k + \frac{1}{m}(3k + 3) \), but \(n > p + k + \frac{1}{m}(3k + 7) \), a contradiction.
Subsubcase 2.1.2 If $m = 1$, then using inequalities (3.1), (3.4) and (3.32), we have:

\[
(n - k + 1 + p)T(r, f) \leq (p + k + 3)T(r, f) + (p + 2k + 1)T(r, g) + S(r, f) + S(r, g).
\]
(3.33)

Similarly we can show,

\[
(n - k + 1 + p)T(r, g) \leq (p + k + 3)T(r, g) + (p + 2k + 1)T(r, f) + S(r, f) + S(r, g).
\]
(3.34)

Adding (3.33) and (3.34) we can deduce that $n \leq p + 4k + 3$ which is contradiction as $n > p + 4k + 6$.

Subcase 2.2 Let $D \neq 0$ and $C \neq D$, then from (3.27), $G = \frac{C + D + 1 - F}{p + 1 - F}$. So, $N(r, C^+D + 1; F) = N(r, 0; G)$ and proceeding similarly as case 2.1, we obtain a contradiction.

Subcase 2.3 Let $D = 0$ and $C \neq 0$. Then $F = \frac{G + C - 1}{C}$ and $G = CF - (C - 1)$. If $C \neq 1$, then we have $N(r, C^{-1}; F) = N(r, 0; G)$ and $N(r, 1 - C; F) = N(r, 0; F)$ and proceeding similarly as case 2.1 we attain a contradiction. Thus $C = 1$, which implies $F = G$ i.e

\[
[f^nQ(f)]^{(k)} = [g^nQ(g)]^{(k)}.
\]
(3.35)

Now integrating equation (3.35) we have:

\[
[f^nQ(f)]^{(k-1)} = [g^nQ(g)]^{(k-1)} + b_{k-1},
\]

where b_{k-1} is constant. If $b_{k-1} \neq 0$, then by lemma 2.8, we have $n < p + \frac{1}{m}(3k + 3)$ which is contradiction for both the cases $m \geq 2$ or $m = 1$ as $n > p + k + \frac{1}{m}(3k + 7)$ or $n > p + k + 6$ respectively. Now repeating the process up to k-times we have

\[
[f^nQ(f)] = [g^nQ(g)].
\]
(3.37)

Now if $p = 1$, then from equation (3.37) and lemma 2.7 we have $f = g$.

Suppose $p \geq 2$ and let $h = \frac{L}{g}$. If h is constant then putting $f = hg$ in equation (3.37) we get

\[
\sum_{i=0}^{p} a_{p-i}g^{n+p-i}(h^{n+p-i} - 1) = 0,
\]
(3.38)
which implies \(h^x = 1 \), where \(\chi = \text{GCD}(n + p, n + p - 1, \ldots, n + p - i, \ldots, n + 1, n) \), \(i = 0, 1, \ldots, p \). If \(h \) is not constant, then we can show that \(f \) and \(g \) satisfy the algebraic equation \(R(f, g) = 0 \) and from (3.38), we have, \(R(f, g) = f^nQ(f) - g^nQ(g) \).

This complete the proof of theorem.

Remark 3.1. It is observed at the theorem 3.1 that the value of \(n \) is continuously decreasing for the increasing value of \(m \) when \(k \) is fixed, in any case according to \(l(\geq 0) \).

Theorem 3.2. Let \(f \) and \(g \) be two non-constant meromorphic functions whose zeros and poles are multiplicities at least \(m \), where \(m, n, p, k \) are positive integers. If \(E_l(1, f^nQ(f)f') = E_l(1, g^nQ(g)g') \) and \(f \) and \(g \) share \(\infty \) IM. Then for one of the following conditions:

i) \(l \geq 2; \) \(a) \) \(m \geq 2 \) and \(n > p + 1 + \frac{8}{m} \), \(b) \) \(m = 1 \) and \(n > p + 8 \)

ii) \(l = 1; \) \(a) \) \(m \geq 2 \) and \(n > \frac{3p}{2} + k + \frac{1}{m}(4k + 8) \), \(b) \) \(m = 1 \) and \(n > \frac{3p}{2} + 5k + 7 \)

iii) \(l = 0; \) \(a) \) \(m \geq 2 \) and \(n > 4p + k + \frac{1}{m}(9k + 13) \), \(b) \) \(m = 1 \) and \(n > 4p + 10k + 12 \)

one of the following results hold

i) \(f = tg \) for a constant \(t \) such that \(t^x = 1 \), where \(\chi = \text{GCD}(n + p, \ldots, n + p - i, \ldots, n + 1, n) \) and \(a_{p-i} \neq 0 \) for some \(i = 0, 1, \ldots, p \).

ii) \(f \) and \(g \) satisfy the algebraic equation \(R(f, g) = 0 \), where \(R(\phi, \psi) = \phi^{n+1} \sum_{i=0}^{p} \frac{a_{p-i}}{n+p+1-i} \phi^{m-i} - \psi^{n+1} \sum_{i=0}^{p} \frac{a_{p-i}}{n+p+1-i} \psi^{m-i} \).

Proof. Let \(X = f^nQ(f)f' \) and \(Y = g^nQ(g)g' \). We define two functions: \(X = \sum_{i=0}^{p} \frac{a_{p-i}}{n+p+1-i} f^{n+p+1-i} \) and \(Y = \sum_{i=0}^{p} \frac{a_{p-i}}{n+p+1-i} g^{n+p+1-i} \). From lemma 2.1, we have

\[
T(r, X) = (n + p + 1)T(r, f) + S(r, f).
\]

Since \((X')' = X \), we deduce \(m(r, \frac{1}{X}) = m(r, \frac{1}{X}) + S(r, f) \). By Nevanlinna’s first fundamental theorem, we get

\[
T(r, X) \leq N(r, \infty; X) + N(r, 0; X') - N(r, 0; X) + S(r, f)
\]

\[
\leq T(r, X) + N(r, 0; f) + \sum_{i=1}^{p} N(r, 0; f - \mu_i) - \sum_{i=1}^{p} N(r, 0; f - \mu_i)
\]

\[
T(r, X) - N(r, 0; f') + S(r, f),
\]

(3.40)
where \(\mu_i \) and \(\nu_i (i = 1, 2, ..., p) \) are roots of algebraic equations
\[
\sum_{i=1}^{p} \frac{a_{p-i}}{(n+p+1-i)} z^{p-i} = 0 \quad \text{and} \quad \sum_{i=1}^{p} a_{p-i} z^{p-i} = 0
\]
respectively. Also we use the result for \(m (\geq 2), m (= 1) \)

\[
N_*(r, \infty; f; g) \leq N(r, \infty; f), \quad (3.41)
\]

\[
N(r, \infty; f) + N(r, \infty; g) + N_*(r, \infty; f; g) \leq N(r, \infty; f) + N(r, \infty; g), \quad (3.42)
\]

respectively. As we assume that zeros and poles of \(f \) and \(g \) are of multiplicities at least \(m (\geq 2) \), then

\[
N(r, \infty; f) \leq \frac{1}{m} N(r, \infty; f) \leq \frac{1}{m} T(r, f), \quad (3.43)
\]

\[
N(r, 0; f) \leq \frac{1}{m} N(r, 0; f) \leq \frac{1}{m} T(r, f), \quad (3.44)
\]

\[
N(r, \infty; f) \leq \frac{1}{m} N(r, \infty; f) \leq \frac{1}{m} T(r, f), \quad (3.45)
\]

\[
N(r, 0; f) \leq \frac{1}{m} N(r, 0; f) \leq \frac{1}{m} T(r, f), \quad (3.46)
\]

Now \(X \) and \(Y \) are transcendental meromorphic functions that share \((1, 1)\) and \(f, g \) share \((\infty, 0)\). We discuss the following two cases separately.

Case 1. We assume that \(H_1 \neq 0 \). Now we study the following subcases,

Subcase 1.1 If \(l \geq 2 \), then using lemma 2.4, we obtain

\[
T(r, X) \leq N(r, 0; X|2) + N(r, 0; Y|2) + \overline{N}(r, \infty; X) + \overline{N}(r, \infty; Y)
\]

\[
+ \overline{N}_*(r, \infty; X; Y) + S(r, X) + S(r, Y). \quad (3.47)
\]

Now from inequalities (3.40) and (3.47)and lemma 2.2 we have:

\[
T(r, X^*) \leq N(r, 0; X|2) + N(r, 0; Y|2) + \overline{N}(r, \infty; X) + \overline{N}(r, \infty; Y)
\]

\[
+ \overline{N}_*(r, \infty; X; Y) + N(r, 0; f) + \sum_{i=1}^{p} N(r, 0; f - \mu_i) - \sum_{i=1}^{p} N(r, 0; f - \nu_i)
\]

\[
- N(r, 0; f') + S(r, f) + S(r, g) \]
\[\begin{align*}
&\leq N(r, 0; |f^n Q(f) f'|) + N(r, 0; |g^n Q(g) g'|) + N(r, \infty; f) \\
&+ N(r, \infty; g) + N_*(r, \infty; f; g) + N(r, 0; f) + \sum_{i=1}^p N(r, 0; f - \mu_i) \\
&- \sum_{i=1}^p N(r, 0; f - \nu_i) - N(r, 0; f') + S(r, f) + S(r, g) \\
&\leq 2N(r, 0; f) + 2N(r, 0; g) + \sum_{i=1}^p N(r, 0; g - \nu_i) + N(r, 0; g) \\
&+ N(r, \infty; g) + N(r, \infty; f) + N_*(r, \infty; g; f) + N(r, 0; f) \\
&+ \sum_{i=1}^p N(r, 0; f - \mu_i) + S(r, f) + S(r, g). \\
\end{align*} \]

(3.48)

Subsubcase 1.1.1 If \(m \geq 2 \), then we deduce with help of inequalities (3.39), (3.41), (3.43) - (3.46) and (3.48) that

\[\begin{align*}
(n + p + 1)T(r, f) \\
\leq \left(\frac{2}{m} + \frac{2}{m} + p + 1 \right)T(r, f) + \left(\frac{2}{m} + \frac{2}{m} + p + 1 \right)T(r, g) + S(r, f) + S(r, g) \\
\leq [p + 1 + \frac{4}{m}]T(r, f) + [p + 1 + \frac{4}{m}]T(r, g) + S(r, f) + S(r, g). \\
\end{align*} \]

(3.49)

Similarly we can show that

\[\begin{align*}
(n + p + 1)T(r, g) &\leq [p + 1 + \frac{4}{m}]T(r, f) + [p + 1 + \frac{4}{m}]T(r, g) \\
&+ S(r, f) + S(r, g). \\
\end{align*} \]

(3.50)

Adding (3.49) and (3.50) we have \((n + p + 1)[T(r, f) + T(r, g)] \leq 2[p + 1 + \frac{4}{m}][T(r, f) + T(r, g)] + S(r, f) + S(r, g)\). Which implies that \(n \leq p + \frac{8}{m} + 1 \), but \(n > p + \frac{8}{m} + 1 \), a contradiction.

Subsubcase 1.1.2 If \(m = 1 \), then using inequalities (3.39), (3.42) and (3.48), we have

\[\begin{align*}
(n + p + 1)T(r, f) &\leq 2T(r, f) + 2T(r, g) + pT(r, g) + T(r, g) + T(r, g) + T(r, g) \\
&+ T(r, f) + T(r, g) + pT(r, f) + S(r, f) + S(r, g) \\
&\leq (p + 1)T(r, f) + (p + 5)T(r, g) + S(r, f) + S(r, g). \\
\end{align*} \]

(3.51)

Similarly we can show,

\[\begin{align*}
(n + p + 1)T(r, g) &\leq (p + 4)T(r, g) + (p + 5)T(r, f) + S(r, f) + S(r, g). \\
\end{align*} \]
Adding (3.51) and (3.52) we can deduce that \(n \leq p + 8 \) which is contradiction as \(n > p + 8 \).

Subcase 1.2 If \(l = 1 \), then we obtain from lemma 2.5

\[
T(r, X) \leq N(r, 0; X|2) + N(r, 0; Y|2) + \frac{3}{2}N(r, \infty; X) + N(r, \infty; Y)
\]

(3.53)

\[
+ \overline{N}_*(r, \infty; X; Y) + \frac{1}{2}N(r, 0; X) + S(r, X) + S(r, Y).
\]

Now using (3.40) and (3.53) and lemma 2.2

\[
T(r, X^*)
\]

\[
\leq T(r, X) + N(r, 0; f) + \sum_{i=1}^{p} N(r, 0; f - \mu_i) - \sum_{i=1}^{p} N(r, 0; f - \nu_i)
\]

\[- N(r, 0; f') + S(r, f)
\]

\[
\leq N(r, 0; X|2) + N(r, 0; Y|2) + \frac{3}{2}N(r, \infty; X) + N(r, \infty; Y)
\]

\[
+ \overline{N}_*(r, \infty; X; Y) + \frac{1}{2}N(r, 0; X) + N(r, 0; f) + \sum_{i=1}^{p} N(r, 0; f - \mu_i)
\]

\[- \sum_{i=1}^{p} N(r, 0; f - \nu_i) - N(r, 0; f') + S(r, f) + S(r, g)
\]

\[
\leq N(r, 0; [f^nQ(f)f']|2) + N(r, 0; [g^nQ(g)g']|2) + \frac{3}{2}N(r, \infty; X)
\]

\[
+ \overline{N}(r, \infty; Y) + \overline{N}_*(r, \infty; X; Y) + \frac{1}{2}N(r, 0; [f^nQ(f)f'])
\]

\[
+ N(r, 0; f) + \sum_{i=1}^{p} N(r, 0; f - \mu_i) - \sum_{i=1}^{p} N(r, 0; f - \nu_i)
\]

\[- N(r, 0; f') + S(r, f) + S(r, g)
\]

\[
\leq 2\overline{N}(r, 0; f) + 2\overline{N}(r, 0; g) + \sum_{i=1}^{p} N(r, 0; g - \nu_i) + N(r, 0; g) + \overline{N}(r, \infty; g)
\]

\[
+ \frac{3}{2}N(r, \infty; f) + \overline{N}(r, \infty; g) + \overline{N}_*(r, \infty; f; g) + \frac{1}{2}N(r, 0; f)
\]

\[
+ \frac{1}{2} \sum_{i=1}^{p} N(r, 0; f - \nu_i) + \frac{1}{2}N(r, 0; f) + \frac{1}{2}N(r, \infty; f) + N(r, 0; f)
\]
(3.54) \[+ \sum_{i=1}^{p} N(r, 0; f - \mu_i) + S(r, f) + S(r, g). \]

Subsubcase 1.2.1 If \(m \geq 2 \), then we deduce with help of inequalities (3.39), (3.41), (3.43) - (3.46) and (3.54) that

\[(n + p + 1)T(r, f) \leq \left[\frac{3p}{2} + 1 + \frac{11}{2m} + \frac{3}{2} \right] T(r, f) \]

\[+ [p + \frac{4}{m} + 1] T(r, g) + S(r, f) + S(r, g). \]

Subsubcase 1.2.2 If \(m = 1 \), then using inequalities (3.39), (3.42) and (3.54),

\[(n + p + 1)T(r, g) \leq \left[\frac{3p}{2} + 1 + \frac{11}{2m} + \frac{3}{2} \right] T(r, g) \]

\[+ [p + \frac{4}{m} + 1] T(r, f) + S(r, f) + S(r, g). \]

Adding (3.55) and (3.56) we have \((n + p + 1)[T(r, f) + T(r, g)] \leq \frac{3p}{2} + \frac{19}{2m} + \frac{5}{2} [T(r, f) + T(r, g)] + S(r, f) + S(r, g).\) Which implies that \(n \leq \frac{3p}{2} + \frac{19}{2m} + \frac{3}{2} \), but \(n > \frac{3p}{2} + \frac{19}{2m} + \frac{3}{2} \), a contradiction.

Subcase 1.3 If \(l = 0 \), then using lemma 2.6, we obtain

\[T(r, X) \leq N(r, 0; X|2) + N(r, 0; Y|2) + 3N(r, \infty; X) + 2N(r, \infty; Y) \]

\[+ N_{\ast}(r, \infty; X; Y) + 2N(r, 0; X) + N(r, 0; Y) + S(r, X) + S(r, Y). \]

Now using (3.40), (3.59) and lemma 2.2

\[T(r, X^*) \]

\[\leq T(r, X) + N(r, 0; f) + \sum_{i=1}^{p} N(r, 0; f - \mu_i) - \sum_{i=1}^{p} N(r, 0; f - \nu_i) \]

\[- N(r, 0; f') + S(r, f) \]
\[
\begin{align*}
&\leq N(r, 0; X[2] + N(r, 0; Y[2] + 3N(r, \infty; X) + 2N(r, \infty; Y) \\
&+ N_*(r, \infty; X; Y) + 2N(r, 0; X) + N(r, 0; f)) \\
&+ \sum_{i=1}^{p} N(r, 0; f - \mu_i) - \sum_{i=1}^{p} N(r, 0; f - \nu_i) - N(r, 0; f') \\
&+ S(r, f) + S(r, g) \\
&\leq N(r, 0; [f^nQ(f)f'][2] + N(r, 0; [g^nQ(g)g'][2] + 3N(r, \infty; X) \\
&+ 2N(r, \infty; Y) + N_*(r, \infty; X; Y) + 2N(r, 0; [f^nQ(f)f']) \\
&+ N(r, 0; [g^nQ(g)g']) + N(r, 0; f) + \sum_{i=1}^{p} N(r, 0; f - \mu_i) \\
&- \sum_{i=1}^{p} N(r, 0; f - \nu_i) - N(r, 0; f') + S(r, f) + S(r, g) \\
&\leq 2N(r, 0; f) + 2N(r, 0; g) + \sum_{i=1}^{p} N(r, 0; g - \nu_i) + N(r, 0; g) \\
&+ N(r, \infty; g) + 3N(r, \infty; f) + 2N(r, \infty; g) + N_*(r, \infty; f; g) \\
&+ 2N(r, 0; f) + 2\sum_{i=1}^{p} N(r, 0; f - \nu_i) + 2N(r, 0; f) + 2N(r, \infty; f) \\
&+ N(r, 0; g) + \sum_{i=1}^{p} N(r, 0; f - \nu_i) + N(r, 0; g) \\
&+ N(r, \infty; g) + N(r, 0; f) + \sum_{i=1}^{p} N(r, 0; f - \mu_i) + S(r, f) + S(r, g).
\end{align*}
\]

(3.60)

Subsubcase 1.3.1 If \(m \geq 2\), then we deduce with help of inequalities (3.39),(3.41),(3.43) - (3.46) and (3.60) that

\[
(n + p + 1)T(r, f) \leq [3p + \frac{10}{m} + 3]T(r, f) + [2p + \frac{7}{m} + 2]T(r, g) + + S(r, f) + S(r, g).
\]

(3.61)

Similarly we can show,

\[
(n + p + 1)T(r, g) \leq [3p + \frac{10}{m} + 3]T(r, g) + [2p + \frac{7}{m} + 2]T(r, f) + + S(r, f) + S(r, g).
\]

(3.62)
Adding (3.61) and (3.62) we have \((n + p + 1)[T(r, f) + T(r, g)] \leq [5p + \frac{17}{m} + 5][T(r, f) + T(r, g)] + S(r, f) + S(r, g)\). Which implies that \(n \leq 4p + \frac{17}{m} + 4\), but \(n > 4p + \frac{17}{m} + 4\), a contradiction.

Subsubcase 1.3.2 If \(m = 1\), then using inequalities (3.39),(3.42) and (3.60), we have

\[(n + p + 1)T(r, f)\]
\[\leq 2T(r, f) + 2T(r, g) + pT(r, g) + T(r, g) + T(r, g) + 2T(r, f) + T(r, g)\]
\[+ T(r, f) + T(r, g) + 2T(r, f) + 2pT(r, f) + 2T(r, f) + 2T(r, f)\]
\[+ T(r, g) + pT(r, g) + T(r, g) + T(r, g) + T(r, f) + pT(r, f)\]
\[+ S(r, f) + S(r, g)\]
(3.63) \[\leq (3p + 12)T(r, f) + (2p + 9)T(r, g) + S(r, f) + S(r, g)\].

Similarly we can show,

(3.64) \[(n + p + 1)T(r, g) \leq (3p + 12)T(r, g) + (2p + 9)T(r, f) + S(r, f) + S(r, g)\].

Adding (3.63) and (3.64) we can deduce that \(n \leq 4p + 20\) which is contradiction as \(n > 4p + 20\).

Case 2 We assume that \(H_1 \equiv 0\). Then we can write for our functions \(X\) and \(Y\),
\[(\frac{X''}{X'} - \frac{2X''}{X-1}) - (\frac{Y''}{Y'} - \frac{2Y''}{Y-1}) = 0,\]
Now after two times integration of the equation, we have

(3.65) \[\frac{1}{X-1} = \frac{C}{Y-1} + D,\]

Where \(C\) and \(D\) are complex constants. Now we can say from (3.65) that \(X\) and \(Y\) share 1 CM, that is \(X\) and \(Y\) share 1 with weight \(l(\geq 2)\). Now we study the following subcases.

Subcase 2.1 Let \(D \neq 0\) and \(C = D\). Then from (3.65) we have

(3.66) \[\frac{1}{X-1} = \frac{DY}{Y-1}.\]

If \(D = -1\), then from (3.66), we obtain \(XY = 1\). Then by lemma 2.10, we get a contradiction. If \(D \neq -1\), we have \(\frac{1}{Y} = \frac{1}{D(\frac{D-1}{D^2})}\) and then \(N(r, \frac{D-1}{D}; X) = \overline{N}(r, 0; Y)\). Using the second fundamental theorem of Nevanlinna

\[T(r, X) \leq \overline{N}(r, 0; X) + \overline{N}(r, \frac{D-1}{D}; X) + \overline{N}(r, \infty; X) + S(r, X)\]
\[\leq \overline{N}(r, 0; X) + \overline{N}(r, 0; Y) + \overline{N}(r, \infty; X) + S(r, X) + S(r, Y).\]
(3.67)
Using (3.40) and (3.67) we have
\[
T(r, X^*) \\
\leq T(r, X) + N(r, 0; f) + \sum_{i=1}^{p} N(r, 0; f - \mu_i) - \sum_{i=1}^{p} N(r, 0; f - \nu_i) \\
- N(r, 0; f') + S(r, f) \\
\leq \overline{N}(r, 0; X) + \overline{N}(r, 0; Y) + \overline{N}(r, \infty; X) + N(r, 0; f) + \sum_{i=1}^{p} N(r, 0; f - \mu_i) \\
- \sum_{i=1}^{p} N(r, 0; f - \nu_i) - N(r, 0; f') + S(r, f) + S(r, g) \\
\leq \overline{N}(r, 0; f) + \overline{N}(r, 0; g) + \sum_{i=1}^{p} N(r, 0; g - \nu_i) + N(r, 0; g') + N(r, 0; f) \\
+ \sum_{i=1}^{p} N(r, 0; f - \mu_i) + S(r, f) + S(r, g).
\]
(3.68)

Subsubcase 2.1.1 If \(m \geq 2\), then we deduce with help of inequalities (3.39),(3.41),(3.43) - (3.46) and (3.68) that
\[
(n + p + 1)T(r, f) \\
\leq [p + \frac{1}{m} + 1]T(r, f) + [p + \frac{2}{m} + 1]T(r, g) + S(r, f) + S(r, g).
\]
(3.69)

Similarly we can show,
\[
(n + p + 1)T(r, g) \\
\leq [p + \frac{1}{m} + 1]T(r, g) + [p + \frac{2}{m} + 1]T(r, f) + S(r, f) + S(r, g).
\]
(3.70)

Adding (3.69) and (3.70) we have \((n + p + 1)[T(r, f) + T(r, g)] \leq [2p + \frac{3}{m} + 2][T(r, f) + T(r, g)] + S(r, f) + S(r, g). Which implies that \(n \leq p + \frac{3}{m} + 1\), but \(n > p + \frac{8}{m} + 1\), a contradiction.

Subsubcase 1.3.2 If \(m = 1\), then using inequalities (3.39),(3.42) and (3.68), we have
\[
(n + p + 1)T(r, f) \\
\leq (p + 2)T(r, f) + (p + 3)T(r, g) + S(r, f) + S(r, g).
\]
(3.71)
Similarly we can show,

\[(n + p + 1)T(r, g)\]

(3.72) \[\leq (p + 2)T(r, g) + (p + 3)T(r, f) + S(r, f) + S(r, g).\]

Adding (3.71) and (3.72) we can deduce that \[n \leq p + 4\] which is contradiction as \[n > p + 8\].

Subcase 2.2 Let \(D \neq 0 \) and \(C \neq D \), then from (3.65), \(Y = \frac{C + D}{C - D} \). So,

\[N(r, \frac{C + D}{C - D}; X) = N(r, 0; Y)\]

and proceeding similarly as case 2.1, we attain a contradiction.

Subcase 2.3 Let \(D = 0 \) and \(C \neq 0 \). Then \(X = Y + C^{-1} \) and \(Y = CX - (C - 1) \). If \(C \neq 1 \), then we have \[N(r, \frac{C + 1}{C - 1}; X) = N(r, 0; Y)\] and \[N(r, 1 - C; Y) = N(r, 0; X)\]

and proceeding similarly as subcase 2.1, we attain a contradiction. Thus \(C = 1 \), which implies \(X = Y \) i.e \([f^nQ(f)f'] = [g^nQ(g)g']\). Now we can write \(X^* = Y^* + c \), where \(c \) is constant, then it follows

\[(3.73)\]

\[T(r, f) = T(r, g) + S(r, g).\]

Suppose that \(c \neq 0 \). By the second fundamental theorem and lemma 2.10 we have

\[T(r, Y^*) = N(r, 0; Y^*) + N(r, 0; Y^* + c) + N(r, \infty; Y^*) + S(r, g)\]

\[\leq N(r, 0; Y^*) + N(r, 0; X^*) + N(r, \infty; Y^*) + S(r, g)\]

\[\leq N(r, 0; g) + N(r, 0; \sum_{i=0}^{p} \frac{a_{p-i}(n + p + 1)}{a_p(n + p + 1 - i)}g^{p-i}) + N(r, 0; f)\]

\[+ \sum_{i=0}^{p} \frac{a_{p-i}(n + p + 1)}{a_p(n + p + 1 - i)}f^{p-i}) + N(r, \infty; g)\]

\[(3.74)\]

\[+ S(r, f) + S(r, g).\]

Subsubcase 2.3.1 If \(m \geq 2 \), then using (3.39), (3.43)-(3.46) and (3.74) we have

\[(3.75)\]

\[(n + p + 1)T(r, g) \leq (p + \frac{2}{m})T(r, g) + (p + \frac{1}{m})T(r, f) + S(r, f) + S(r, g).\]

Similarly we can show

\[(3.76)\]

\[(n + p + 1)T(r, f) \leq (p + \frac{2}{m})T(r, f) + (p + \frac{1}{m})T(r, g) + S(r, f) + S(r, g).\]
Adding (3.75) and (3.76) we have \((n + p + 1)(T(r, f) + T(r, g)) \leq (2p + \frac{3}{m})(T(r, f) + T(r, g)) S(r, f) + S(r, g)\). Which implies that \(n \leq p + \frac{3}{m} - 1\) which is contradiction as \(n > p + \frac{8}{m} + 1\).

Subsubcase 2.3.2 If \(m = 1\) then using (3.39) and (3.74) we can show \(n \leq p + 2\) which is contradiction as \(n > p + 8\). That is for all \(m\), we arrive at a contradiction. Now we claim that \(c = 0\). Therefore \(X^* = Y^*\), that is

\[
\sum_{i=0}^{p} a_{n+p+1-i} f^{p-i} = \sum_{i=0}^{p} a_{n+p+1-i} g^{p-i}.
\]

Let \(h = \frac{f}{g}\). If \(h\) is constant, then, substituting \(f = gh\) into (3.77), we deduce,

\[
\sum_{i=0}^{p} a_{p-i} h^{n+p+1-i} - 1 = 0,
\]

which implies \(h^\chi = 1\), where \(\chi = (n + p + 1, n + p, n + p - 1, ..., n + p - i, ..., n + 1)\) and \(a_{p-i} \neq 0\) for some \(i = 0, 1, ..., p\). Thus \(f = tg\), for a constant \(t\), such that \(t^\chi = 1\), where \(\chi\) is previously defined. If \(h\) is not constant, then by (3.78) \(f\) and \(g\) satisfy the algebraic equation \(R(f, g) = 0\), where,

\[
R(\phi, \psi) = \sum_{i=0}^{p} \frac{a_{p-i}\phi^{m-i}}{n+p+1-i} - \sum_{i=0}^{p} \frac{a_{p-i}\psi^{m-i}}{n+p+1-i}.
\]

This complete the proof of the theorem. \(\square\)

Remark 3.2. Let \(Q(f) = f^3 - 1\) and \(m = 1\) in theorem 3.2, then it will reduce to theorem 1.4.

Remark 3.3. In the theorem 3.2 for every case according to \(l(\geq 0)\), the value of \(n\) is continuously decreasing for the increasing value of \(m\).

ACKNOWLEDGMENT

The authors are grateful to referees for their careful reading and effective suggestions.

REFERENCES

ON UNIQUENESS OF L-SHARING OF DIFFERENTIAL...

DEPARTMENT OF MATHEMATICS
CHANDERNAGORE COLLEGE
CHANDERNAGORE, HOOGHLY, WEST BENGAL, INDIA-712136.
E-mail address: nintu311209@gmail.com

DEPARTMENT OF MATHEMATICS
BALAGARH HIGH SCHOOL
BALAGARH, HOOGHLY, WEST BENGAL, INDIA-712501.
E-mail address: ashaw2912@gmail.com