EXISTENCE RESULTS FOR NEUTRAL IMPULSIVE QUASILINEAR
MIXED VOLterra-FREDHOLM TYPE INTEGRODIFFERENTIAL
SYSTEMS

NARESH KUMAR JOTHI, K. A. VENKATESAN, T. GUNASEKAR\footnote{corresponding author}
AND F. PAUL SAMUEL

\textbf{ABSTRACT.} The paper deals with the study of existence of solutions for
quasilinear neutral mixed volterra-Fredholm-type integrodifferential equa-
tions with nonlocal and impulsive conditions in Banach spaces. The re-
sults are obtained by using a fixed point technique and semigroup theory.

1. INTRODUCTION

Many evolution process are characterized by the fact that at certain mo-
ments of time they experience a change of state abruptly. These processes
are subject to short-term perturbations whose duration is negligible in
comparison with the duration of the process. Consequently, it is natu-
ral to assume that these perturbations act instantaneously, that is, in the
form of impulses. It is known, for example, that many biological phe-
nomena involving thresholds, bursting rhythm models in medicine and
biology, optimal control model in economics, pharmacokinetics and fre-
quency modulated systems, do exhibit impulsive effects. Thus differential
equations involving impulsive effects appear as a natural description of
observed evolution phenomena of several real world problems.

\footnote{corresponding author}

2010 Mathematics Subject Classification. 34A37, 34G60, 34G20.
Key words and phrases. Semigroup; mild solution; impulsive conditions, evolution
equation, fixed point.
The impulsive condition is the combination of traditional initial value problem and short-term perturbations whose duration can be negligible in comparison with the duration of process. They have advantages over traditional initial value problem because they can be used to model phenomena that cannot be modeled by traditional initial value problem. Recently, the study of the impulsive differential equations has attracted a great deal of attention. The theory of impulsive differential equations is an important branch of differential equations [6, 7, 9, 12, 14]. Several authors have studied the existence of solutions of abstract quasi-linear evolution equations in Banach space [1, 2, 3, 4, 5, 15]. Bahuguna [1], Oka [10] and Oka and Tanaka [11] discussed the existence of solutions of quasilinear integrodifferential equations in Banach spaces. Kato [8] studied the nonhomogeneous evolution equations whereas Chandra sekaran [4] proved the existence of mild solutions of the nonlocal Cauchy problem for a nonlinear integrodifferential equation. The aim of this is to prove the existence and uniqueness of mild solutions of neutral impulsive quasilinear mixed volterra-Fredholm-type integrodifferential equation of the form:

\[
\frac{d}{dt} \left[u(t) + f_1(t, u(t), \int_0^t g_1(t, s, u(s))ds, \int_0^b k_1(t, s, u(s))ds) \right] + A(t, u)u(t) = f_2(t, u(t), \int_0^t g_2(t, s, u(s))ds, \int_0^b k_2(t, s, u(s))ds),
\]

(1.1) \quad u(0) + h(u) = u_0,

(1.2) \quad \Delta u(t_i) = I_i(u(t_i)), \quad i = 1, 2, 3, \ldots, m, \quad 0 < t_1 < t_2 < \ldots, t_m < T,

where \(A(t, u) \) be the infinitesimal generator of a \(C_0 \)-semigroup in a Banach space \(X \). Let \(\mathcal{PC}([0, T]; X) \) consist of functions \(u \) from \([0, T]\) into \(X \), such that \(u(t) \) is continuous at \(t \neq t_i \) and left continuous at \(t = t_i \), and the right limit \(u(t_i^+) \) exists for \(i = 1, 2, 3, \ldots, m \). Evidently \(\mathcal{PC}([0, T], X) \) is a Banach space with the norm \(\|u\|_{\mathcal{PC}} = \sup_{t \in [0, T]} \|u(t)\| \). Let \(u_0 \in X, \; f_j : [0, T] \times X \times X \times X \to X, \; g_j : \Omega \times X \to X, \; k_j : \Omega \times X \to X, j = 1, 2, \; h : \mathcal{PC}([0, T]; X) \to X \) and \(\Delta u(t_i) = u(t_i^+) - u(t_i^-) \) constitutes an impulsive condition. Here \([0, T] = J\) and \(\Omega = \{(t, s) : 0 \leq s \leq t \leq T\} \). The results obtained in this paper are generalizations of the results given by Balachandran and Uchiyama [3] and Pazy [13].
2. Preliminaries

Let X and Y be two Banach spaces such that Y is densely and continuously embedded in X. For any Banach spaces Z the norm of Z is denoted by $\| \cdot \|$ or $\| \cdot \|_Z$. The space of all bounded linear operators from X to Y is denoted by $B(X,Y)$ and $B(X,X)$ is written as $B(X)$. We recall some definitions and known facts from Pazy [13].

Definition 2.1. Let S be a linear operator in X and let Y be a subspace of X. The operator \tilde{S} defined by $D(\tilde{S}) = \{ x \in D(S) \cap Y : Sx \in Y \}$ and $\tilde{S}x = Sx$ for $x \in D(\tilde{S})$ is called the part of S in Y.

Definition 2.2. Let B be a subset of X and for every $0 \leq t \leq T$ and $b \in B$, let $A(t,b)$ be the infinitesimal generator of a C_0 semigroup $S_{t,b}(s)$, $s \geq 0$, on X. The family of operators $\{A(t,b)\}, (t,b) \in [0, T) \times B$, is stable if there are constants $M \geq 1$ and ω such that

$$ \rho(A(t,b)) \supset (\omega, \infty) \text{ for } (t,b) \in [0, T) \times B, $$

$$ \| \prod_{j=1}^{k} R(\lambda : A(t_j, b_j)) \| \leq M(\lambda - \omega)^{-k} $$

for $\lambda > \omega$ every finite sequences $0 \leq t_1 \leq t_2 \leq \cdots \leq t_k \leq T$, $b_j \in B$, $1 \leq j \leq k$. The stability of $\{A(t,b)\}, (t,b) \in [0, T) \times B$ implies (see [13]) that

$$ \| \prod_{j=1}^{k} S_{t_j, b_j}(s_j) \| \leq M \exp \{ \omega \sum_{j=1}^{k} s_j \}, \quad s_j \geq 0 $$

and any finite sequences $0 \leq t_1 \leq t_2 \leq \cdots \leq t_k \leq T$, $b_j \in B$, $1 \leq j \leq k$. $k = 1, 2, \ldots$

Definition 2.3. Let $S_{t,b}(s), s \geq 0$ be the C_0-semigroup generated by $A(t,b)$, $(t,b) \in J \times B$. A subspace Y of X is called $A(t,b)$-admissible if Y is invariant subspace of $S_{t,b}(s)$ and the restriction of $S_{t,b}(s)$ to Y is a C_0-semigroup in Y.

Let $B \subset X$ be a subset of X such that for every $(t,b) \in [0, T] \times B$, $A(t,b)$ is the infinitesimal generator of a C_0-semigroup $S_{t,b}(s), s \geq 0$ on X. We make the following assumptions:

(A$_1$) The family $\{A(t,b)\}, (t,b) \in [0, T] \times B$ is stable.

(A$_2$) Y is $A(t,b)$-admissible for $(t,b) \in [0, T] \times B$ and the family $\{\tilde{A}(t,b)\}, (t,b) \in [0, T] \times B$ of parts $\tilde{A}(t,b)$ of $A(t,b)$ in Y, is stable in Y.
For \((t, b) \in [0, T] \times B, D(A(t, b)) \supset Y, A(t, b)\) is a bounded linear operator from \(Y\) to \(X\) and \(t \rightarrow A(t, b)\) is continuous in the \(B(Y, X)\) norm for every \(b \in B\).

There is a constant \(L > 0\) such that
\[
\|A(t, b_1) - A(t, b_2)\|_{Y \rightarrow X} \leq L\|b_1 - b_2\|_X
\]
holds for every \(b_1, b_2 \in B\) and \(0 \leq t \leq T\).

Let \(B\) be a subset of \(X\) and \(\{A(t, b)\}, (t, b) \in [0, T] \times B\) be a family of operators satisfying the conditions \((A_1)-(A_4)\). If \(u \in PC([0, T] : X)\) has values in \(B\) then there is a unique evolution system \(U_u(t, s), 0 \leq s \leq t \leq T\), in \(X\) satisfying, (see [13, Theorem 5.3.1 and Lemma 6.4.2, pp. 135, 201-202]

(i) \(\|U_u(t, s)\| \leq Me^{\omega(t-s)}\) for \(0 \leq s \leq t \leq T\). where \(M\) and \(\omega\) are stability constants.
(ii) \(\frac{\partial^+}{\partial t} U_u(t, s)y = A(s, u(s))U_u(t, s)y\) for \(y \in Y\), for \(0 \leq s \leq t \leq T\).
(iii) \(\frac{\partial}{\partial s} U_u(t, s)y = -U_u(t, s)A(s, u(s))y\) for \(y \in Y\), for \(0 \leq s \leq t \leq T\).

Further we assume that:

\((A_5)\) For every \(u \in PC([0, T] : X)\) satisfying \(u(t) \in B\) for \(0 \leq t \leq T\), we have
\[
U_u(t, s)Y \subset Y, \quad 0 \leq s \leq t \leq T
\]
and \(U_u(t, s)\) is strongly continuous in \(Y\) for \(0 \leq s \leq t \leq T\).

\((A_6)\) Closed bounded convex subsets of \(Y\) are closed in \(X\).

\((A_7)\) For every \((t, b) \in J \times B, f(t, b) \in Y\) and \(((t, s), b) \in \Omega \times B, g(t, s, b) \in Y\).

\((A_8)\) \(h : PC([0, T] : B) \rightarrow Y\) is Lipschitz continuous in \(X\) and bounded in \(Y\), that is, there exist constant \(H_1 > 0\) and \(H_2 > 0\) such that
\[
\|h(u) - h(v)\|_Y \leq H_1\|u - v\|_{PC}, \quad u, v \in PC([0, T]; X) \quad \text{and} \quad H_2 = \|h(0)\|.
\]

For the conditions \((A_9)\) and \((A_{10})\) let \(Z\) be taken as both \(X\) and \(Y\).
(A_9) \(g_j : \Omega \times Z \to Z \) is continuous and there exist constants \(G_j > 0 \) and \(G_j^1 > 0 \) such that
\[
\int_0^t \| g_j(t, s, u) - g_j(t, s, v) \|_Z ds \leq G_j \| u - v \|_Z, \quad u, v \in X,
\]
\[
G_j^1 = \max \left\{ \int_0^t \| g_j(t, s, 0) \|_Z ds : (t, s) \in \Omega \right\}, \quad j = 1, 2.
\]

(A_10) \(k_j : \Omega \times Z \to Z \) is continuous and there exist constants \(K_j > 0 \) and \(K_j^1 > 0 \) such that
\[
\int_0^t \| k_j(t, s, u) - k_j(t, s, v) \|_Z ds \leq K_j \| u - v \|_Z, \quad u, v \in X,
\]
\[
K_j^1 = \max \left\{ \int_0^t \| k_j(t, s, 0) \|_Z ds : (t, s) \in \Omega \right\}, \quad j = 1, 2.
\]

(A_11) \(f_j : [0, T] \times Z \times Z \times Z \to Z \) is continuous and there exist constants \(F_j > 0 \) and \(F_j^1 > 0 \) such that
\[
\| f_j(t, u_1, u_2, u_3) - f_j(t, v_1, v_2, v_3) \| \leq F_j \left[\| u_1 - v_1 \| + \| u_2 - v_2 \| + \| u_3 - v_3 \| \right],
\]
for \(u_i, v_i \in X, \quad i = 1, 2, 3. \]
\[
F_j^1 = \max_{t \in [0, T]} \| f(t, 0, 0, 0) \|_Z, \quad j = 1, 2.
\]
\[
\| A(t, u)f_1(t, u_1, u_2, u_3) - f_1(t, v_1, v_2, v_3) \| \leq F_j \left[\| u_1 - v_1 \| + \| u_2 - v_2 \| + \| u_3 - v_3 \| \right],
\]
for \(u_i, v_i \in X, \quad i = 1, 2, 3. \]
\[
F_j^1 = \max_{t \in [0, T]} \| A(t, 0)f(t, 0, 0, 0) \|_Z.
\]

Let us take \(M_0 = \max \{ \| U_u(t, s) \|_{B(Z)} : 0 \leq s \leq t \leq T, \; u \in B \} \).

(A_12) \(I_i : X \to X \) is continuous and there exist constant \(l_i > 0 \), \(i = 1, 2, 3, \ldots, m \) such that
\[
\| I_i(u) - I_i(v) \| \leq l_i \| u - v \|, \quad u, v \in X \quad \text{and} \quad l_c = \| I_i(0) \|. \]
\[(A_{13}) \text{ There exist a positive constant } r > 0 \text{ such that}
\]
\[
\begin{align*}
M_0[(1 + F_1)[|u_0|_Y + H_1r + H_2] + F_1^1 + TF_f[r(1 + G_1 + K_1) + G_1^1 + K_1^1] + F_1^1 \\
+ TF_2[r(1 + G_2 + K_2) + G_2^1 + K_2^1] + F_2^1 + \sum_{i=1}^m (l_i r + l_i) \\
+ TF_1[r(1 + G_1 + K_1) + G_1^1 + K_1^1] + F_1^1 \right\} \leq r
\end{align*}
\]

and
\[
q = \left\{ \tilde{K}T \left[\|u_0\|_Y + H_1r + H_2 + T \left[F_1 \left(r[1 + G_1 + K_1] + G_2 + K_2 + F_2 \right) \\
+ \sum_{i=1}^m (l_i r + l_i) \right] + M_0 \left[H_1 + T(F_1 + G_1 + K_1) + \sum_{i=1}^m l_i \right] \right\} < 1.
\]

Definition 2.4. \textit{A function } \(u \in \mathcal{P}C([0, T] : X) \) \textit{is a mild solution of equations (1.1)-(1.3) if it satisfies:}

\[
u(t) = U_u(t, 0)u_0 - U_u(t, 0)h(u) + U_u(t, 0)f_1(0, u(0), 0, 0) \\
- f_1(s, u(s), \int_0^s g_1(s, \tau, u(\tau))d\tau, \int_0^b k_1(s, \tau, u(\tau))d\tau) \\
+ \int_0^t A(s, u(s))U_u(t, s) \left[f_1(s, u(s), \int_0^s g_1(s, \tau, u(\tau))d\tau, \int_0^b k_1(s, \tau, u(\tau))d\tau) \right] ds \\
+ \int_0^t U_u(t, s) \left[f_2(s, u(s), \int_0^s g_2(s, \tau, u(\tau))d\tau, \int_0^b k_2(s, \tau, u(\tau))d\tau) \right] ds \\
+ \sum_{0 < t_i < t} U_u(t, t_i)I_1(u(t_i)), \quad 0 \leq t \leq T.
\]

Definition 2.5. \textit{A function } \(u \in \mathcal{P}C([0, T] : X) \) \textit{such that } \(u(t) \in D(A(t, u(t)) \text{ for } t \in (0, T], u \in C^1((0, T] \setminus \{t_1, t_2, \ldots, t_m\} : X) \text{ and satisfies (1.1)-(1.3) in } X \text{ is called a classical solution of (1.1)-(1.3) on } [0, T].}\)

Further there exists a constant \(\tilde{K} > 0 \) such that for every \(u, v \in \mathcal{P}C([0, T] : X) \) and every \(y \in Y \) we have

\[
\|U_u(t, s)y - U_v(t, s)y\| \leq \tilde{K}T \|y\|_Y \|u - v\|_{PC}.
\]
3. Existence Result

Theorem 3.1. Let $u_0 \in Y$ and let $B = \{ u \in X : \| u \|_X \leq r \}$, $r > 0$. If the assumptions $(A_1)-(A_{13})$ are satisfied, then (1.1)-(1.3) has a unique mild solution $u \in PC([0,T] : Y)$.

Proof. Let S be a nonempty closed subset of $PC([0,T] : X)$ defined by $S = \{ u : u \in PC([0,T] : X), \| u(t) \|_{PC} \leq r \text{ for } 0 \leq t \leq T \}$. Consider a mapping Φ on S defined by:

$$(\Phi u)(t) = U_u(t,0)u_0 - U_u(t,0)h(u) + U_u(t,0)f_1(0,u(0),0,0)$$

$$- f_1(s,u(s), \int_0^s g_1(s,\tau,u(\tau))d\tau, \int_0^b k_1(s,\tau,u(\tau))d\tau)$$

$$+ \int_0^t A(s,u(s))U_u(t,s) \left[f_1(s,u(s), \int_0^s g_1(s,\tau,u(\tau))d\tau, \int_0^b k_1(s,\tau,u(\tau))d\tau) \right] ds$$

$$+ \int_0^t U_u(t,s) \left[f_2(s,u(s), \int_0^s g_2(s,\tau,u(\tau))d\tau, \int_0^b k_2(s,\tau,u(\tau))d\tau) \right] ds$$

$$+ \sum_{0 < t_i < t} U_u(t,t_i)I_i(u(t_i)).$$

We claim that Φ maps S into S. For $u \in S$, we have

$$\|\Phi u(t)\|_Y \leq$$

$$\leq \left\{ M_0 \left[(1 + F_1)\| u_0 \|_Y + H_1 r + H_2 \right] + F_1 \left[TF[r(1 + G_1 + K_1) + G_1^1 + K_1^1] + F_1 \right]$$

$$+ TF_2[r(1 + G_2 + K_2) + G_2^1 + K_2^1] + F_2 + \sum_{i=1}^m (l_i r + l_i c) \right\}$$

$$+ \left\{ TF_1[r(1 + G_1 + K_1) + G_1^1 + K_1^1] + F_1 \right\}$$

From assumption (A_{13}), one gets $\|\Phi u(t)\|_Y \leq r$. Therefore Φ maps S into itself.
Moreover, if \(u, v \in S \), then
\[
\|\Phi u(t) - \Phi v(t)\| \leq \|U_u(t,0)u_0 - U_v(t,0)u_0\| + \|U_u(t,0)h(u) - U_v(t,0)h(v)\|
+ \|U_u(t,0)f_1(0, u(0), 0, 0) - U_v(t,0)f_1(0, v(0), 0, 0)\|
+ \left| f_1\left(s, u(s), \int_0^s g_1(s, \tau, u(\tau))d\tau, \int_0^b k_3(s, \tau, u(\tau))d\tau\right)\right|
- \left| f_1\left(s, v(s), \int_0^s g_1(s, \tau, v(\tau))d\tau, \int_0^b k_3(s, \tau, v(\tau))d\tau\right)\right|
+ \int_0^t \|U_u(t,s)A(s, u(s))\|f_1\left(s, u(s), \int_0^s g_1(s, \tau, u(\tau))d\tau, \int_0^b k_3(s, \tau, u(\tau))d\tau\|ds
+ \int_0^t \|U_u(t,s)f_2(s, u(s), \int_0^s g(s, \tau, u(\tau))d\tau, \int_0^b k(s, \tau, u(\tau))d\tau\|ds
- \int_0^t \|U_u(t,s)f_2(s, v(s), \int_0^s g(s, \tau, v(\tau))d\tau, \int_0^b k(s, \tau, v(\tau))d\tau\|ds
+ \sum_{0<t_i<t} \|U_u(t,t_i)I_i(u(t_i)) - U_v(t,t_i)I_i(v(t_i))\|
\]
function in t. Using the relation $u(t) = \Phi u(t)$, we conclude that $u(t)$ is in $\mathcal{PC}([0,T] : Y)$.

\[\square \]

4. Conclusions

In this paper, we have studied the existence of solutions of neutral quasi-linear mixed volterra-type integrodifferential equations with nonlocal and impulsive conditions in Banach spaces. Through semigroup theory and Banach fixed point principle, we have investigated the sufficient conditions for the existence of the system considered.

References

DEPARTMENT OF MATHEMATICS

VelTech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology

Chennai - 600062, Tamil Nadu, India

E-mail address: nareshsastra@yahoo.co.in

DEPARTMENT OF MATHEMATICS

VelTech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology

Chennai - 600062, Tamil Nadu, India

E-mail address: venkimaths1975@gmail.com

DEPARTMENT OF MATHEMATICS

VelTech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology

Chennai - 600062, Tamil Nadu, India

E-mail address: tguna84@gmail.com

DEPARTMENT OF MATHEMATICS

University of Eastern Africa

Baraton, Eldoret 2500 - 30100, Kenya

E-mail address: paulsamuelphd@yahoo.com