PRIME IDEALS OF $M\Gamma$-GROUPS

SATYANARAYANA BHAVANARI, VENUGOPALA RAO PARUCHURI,
SYAM PRASAD KUNCHAM1, AND MALLIKARJUNA BHAVANARI

ABSTRACT. In this paper we consider the algebraic system $M\Gamma$-group, a generalization of the concept module over a nearring. We define prime ideal of $M\Gamma$-group and obtain some equivalent conditions for a prime ideal of an $M\Gamma$-group. Some related fundamental results and examples are also presented.

1. INTRODUCTION

In this section we provide elementary definition and examples from Satyanarayana [11,13] for the sake of completeness.

Let $(M, +)$ be a group (not necessarily Abelian) and Γ a non-empty set. Then M is said to be a Γ-nearring if there exists a mapping $M \times \Gamma \times M \rightarrow M$ (denote the image of (m_1, α_1, m_2) by $m_1\alpha_1m_2$ for $m_1, m_2 \in M$ and $\alpha_1 \in \Gamma$) satisfying the following conditions:

1. $(m_1 + m_2)\alpha_1m_3 = m_1\alpha_1m_3 + m_2\alpha_1m_3$ and
2. $(m_1\alpha_1m_2)\alpha_2m_3 = m_1\alpha_1(m_2\alpha_2m_3)$

for all $m_1, m_2, m_3 \in M$ and for all $\alpha_1, \alpha_2 \in \Gamma$.

Furthermore, M is said to be a zero-symmetric Γ-nearring if $ma0 = 0$ for all $m \in M$, $a \in \Gamma$ (where ‘0’ is the additive identity in M).

Consider an example, take $Z_8 = \{0, 1, 2, 3, \ldots, 7\}$, the group of integers modulo 8 and a set $X = \{a, b\}$. Write $M = \{f | f : X \rightarrow Z_8$ and $f(a) = 0\}$.

1corresponding author

2010 Mathematics Subject Classification. 16Y30.

Key words and phrases. Nearring, gamma nearring, ideal, prime ideal.
Then \(M = \{ f_0, f_1, f_2, \ldots, f_7 \} \) where \(f_i \) is defined by \(f_i(a) = 0 \) and \(f_i(b) = i \) for \(0 \leq i \leq 7 \). Now define two mappings \(g_0, g_1 : \mathbb{Z}_8 \rightarrow X \) by setting \(g_0(i) = a \) for all \(i \in \mathbb{Z}_8 \) and \(g_1(i) = a \) if \(i \notin \{3, 7\} \), \(g_1(i) = b \) if \(i \in \{3, 7\} \). Write \(\Gamma = \{ g_0, g_1 \} \), \(\Gamma^* = \{ g_0 \} \). Then \(M \) is a \(\Gamma \)-nearring and a \(\Gamma^* \)-nearring.

Let \(M \) be a \(\Gamma \)-nearring. An additive group \(G \) is said to be an \(M\Gamma \)-group if there exists a mapping \(G \times \Gamma \times G \rightarrow G \) (denote the image of \((m, \alpha, g) \) by \(m\alpha g \) for \(m \in M, \alpha \in \Gamma, g \in G \)) satisfying the conditions:

1. \((m_1 + m_2)\alpha_1 g = m_1\alpha_1 g + m_2\alpha_1 g \) and
2. \((m_1\alpha_1 m_2)\alpha_2 g = m_1\alpha_1 (m_2\alpha_2 g) \)

for all \(m_1, m_2 \in M, \alpha_1, \alpha_2 \in \Gamma \) and \(g \in G \).

Satyanarayana [6, 7, 12] introduced and studied the concepts like \(f \)-prime ideals and corresponding \(f \)-prime radical in \(\Gamma \)-near-rings. Further Satyanarayana [13] generalized the notion of module over nearring to module over gamma nearrings and established fundamental structure theorems. Radical of gamma nearrings also studied by Booth [1–3]. The concept of equi-prime ideal of a gamma nearring is a generalization of equi-prime ideal of a nearring which was studied in Booth and Groenewald [4]. Satyanarayana and Syam Prasad [8, 15] studied fuzzy aspects of gamma nearrings.

For standard notations, elementary definitions and results on nearrings, we refer Pilz [5], Satyanarayana and Syam Prasad [9]. Throughout, we denote \(M \) for a \(\Gamma \)-nearring and \(G \) for an \(M\Gamma \)-group.

2. Subgroups and ideals of \(M\Gamma \)-group:

Definition 1 (Satyanarayana [11, 13]). An additive subgroup \(H \) of \(G \) is said to be \(M\Gamma \)-subgroup if \(m\alpha h \in H \) for all \(m \in M, \alpha \in \Gamma \) and \(h \in H \). Note that \((0) \) and \(G \) are the trivial \(M\Gamma \)-subgroups. A normal subgroup \(H \) of \(G \) is said to be an ideal of \(G \) if \(m\alpha (g + h) - m\alpha g \in H \) for \(m \in M, \alpha \in \Gamma, g \in G \) and \(h \in H \). Moreover, a subgroup \(A \) of \(M \) is said to be an \(M\Gamma \)-subgroup of \(M \) if \(MTA \subseteq A \).

Note 1. If \(M \) is zero-symmetric then every ideal is a \(M\Gamma \)-subgroup. However, the converse need not be true. Consider the following example.

Example 1. Let \(G = \mathbb{Z}_4 = \{0, 1, 2, 3\} \), the ring of integers modulo 4 and \(X = \{a, b\} \). Write \(M = \{g \mid g : X \rightarrow G, g(a) = 0\} = \{g_0, g_1, g_2, g_3\} \), where \(g_0(a) = 0 \), \(g_i(b) = i \) for \(0 \leq i \leq 3 \). Let \(\Gamma = \{f_1, f_2, f_3, f_4\} \) where each \(f_i : G \rightarrow X \) defined by
Let P be an ideal of G. Suppose that for any M-subgroup H of G such that $P \subset H$, we have $(P : \Gamma G) = (P : \Gamma H)$. Then for all $a \in M$ and $b \in G$, $a\Gamma[b]_M \subseteq P$ implies $a\Gamma G \subseteq P$ or $b \in P$.

Proof. Take $a \in M$, $b \in G$ such that $a\Gamma[b]_M \subseteq P$. Suppose $b \notin P$. Then we have the following cases.
Case 1: $P \not\subseteq [b]_M$. Now $a\Gamma[b]_M \subseteq P$. This implies $a \in (P : \Gamma[b]_M) = (P : \Gamma G)$ (by hypothesis) = $(P : \Gamma G)$ (we considered with respect to M). This implies $a\Gamma G \subseteq P$.

Case 2: $[b]_M \not\subseteq P$. Then there exists $x \in P$ such that $x /\not\in [b]_M$. This implies $P \not\subseteq (P + [b]_M)$. By hypothesis $(P : \Gamma M) = (P : \Gamma (P + [b]_M))$. Now $a\Gamma[b]_M \subseteq P \implies a \in (P : \Gamma[b]_M) = (P : \Gamma G)$. This implies $a\Gamma G \subseteq P$.

□

Note 2. Let G be an $M\Gamma$-group. Then a subgroup of G need not be an $M\Gamma$-group, in general.

Consider the following example:

Example 2. Take $M = \{0, a, b, c\}$, $\Gamma = \{\gamma_1, \gamma_2\}$ and $G = M$ with the following binary operations.

\[
\begin{array}{c|cccc}
+ & 0 & a & b & c \\
\hline
0 & 0 & a & b & c \\
a & a & 0 & c & b \\
b & b & c & 0 & a \\
c & c & b & a & 0 \\
\end{array}
\quad
\begin{array}{c|cccc}
\gamma_1 & 0 & a & b & c \\
\hline
0 & 0 & 0 & 0 & 0 \\
a & 0 & b & 0 & b \\
b & 0 & 0 & 0 & 0 \\
c & 0 & b & 0 & b \\
\end{array}
\quad
\begin{array}{c|cccc}
\gamma_2 & 0 & a & b & c \\
\hline
0 & 0 & 0 & 0 & 0 \\
a & 0 & a & 0 & 0 \\
b & 0 & 0 & b & 0 \\
c & 0 & 0 & 0 & c \\
\end{array}
\]

Clearly $(M, +, \Gamma)$ is a Γ-nearring, and G is an $M\Gamma$-group. Now $H = \{0, c\}$ is a subgroup of G. But it is not an $M\Gamma$-subgroup. For this, $c\gamma_1c = b \not\in \{0, c\} = H$. Therefore $M\Gamma H \not\subseteq H$. Hence H is not an $M\Gamma$-subgroup of G.

3. Prime ideals of $M\Gamma$-groups.

Definition 2. Let P be a proper ideal of G such that $M\Gamma G \not\subseteq P$. Then P is called prime if $A\Gamma B \subseteq P \implies A\Gamma G \subseteq P$ or $B \subseteq P$, for all ideals A of M, B of G.

Definition 3. An $M\Gamma$- group G is said to be 0-prime $M\Gamma$- group if $M\Gamma G \neq (0)$ and (0) is a prime ideal of G.

Example 3. Consider $M = \{0, a, b, c\}$, $\Gamma = \{\gamma_1, \gamma_2\}$, $G = M$ and the following binary operations.
Then M is a Γ-nearring, and G is an $M\Gamma$-group. Since there are no ideals A, B of G such that $A\Gamma B = \{0\}$ we have that (0) is prime ideal of G.

Definition 4. (Satyanarayana, MBV Rao, Syam Prasad [14]): A left ideal P of a nearring N is said to be a prime left ideal if A and B are left ideals of N such that $AB \subseteq P$ implies $A \subseteq P$ or $B \subseteq P$.

Example 4. Let N be a nearring and P be a prime left ideal of N. Write $M = N$ and consider M as the gamma nearring with $\Gamma = \{\cdot\}$ (here \cdot deremarks the multiplication in N). Write $G = N$. Clearly G is an $M\Gamma$-group. Then P becomes a prime ideal of the $M\Gamma$-group G.

Verification: Let A be an ideal of M and B be an ideal of G such that $A\Gamma B \subseteq P$. This implies $AB \subseteq P$ (since $\Gamma = \{\cdot\}$). Since A, B are left ideals in N, we have that $A \subseteq P$ or $B \subseteq P$. If $B \not\subseteq P$ then $A \subseteq P$. Since A is two sided ideal in N, we have $AN \subseteq A$. In the case $A \subseteq P$, we have that $A\Gamma G = AG = AN \subseteq A \subseteq P$.

Proposition 2. Let G be an $M\Gamma$-group. Suppose $M\Gamma G \neq (0)$. If (0) is a prime ideal of G then the following two conditions are equivalent.

1. $B \neq (0)$ (where B is an ideal of G), and
2. $A\Gamma B = (0) \iff A \subseteq (0 : \Gamma G)$.

Proof. (1) \implies (2) : Suppose (1) holds. That is $B \neq (0)$. To show $A\Gamma B = (0) \iff A \subseteq (0 : \Gamma G)$, suppose $A\Gamma B = (0)$. Since 0 is prime and $B \neq (0)$, we have $AG = (0)$. This implies $A \subseteq (0 : \Gamma G)$. Conversely suppose that $A \subseteq (0 : \Gamma G)$. This means $A\Gamma G = \{0\}$. Now $A\Gamma B \subseteq A\Gamma G \subseteq \{0\}$. This implies $A\Gamma B = (0)$.

(2) \implies (1) : Suppose that $A\Gamma B = (0) \iff A \subseteq (0 : \Gamma G)$ holds. In a contrary way suppose that $B = (0)$. Then $M\Gamma B = (0) \implies M \subseteq (0 : \Gamma G)$ (by converse hypothesis) $\implies M\Gamma G = (0)$, a contradiction.

Proposition 3. Let G be an $M\Gamma$-group such that $(P : \Gamma G) \neq M$. If P is a prime ideal of G then the following two conditions are equivalent.
(1) B is an ideal of G and \(B \not\subseteq P \), and
(2) \(A\Gamma B \subseteq P \iff A \subseteq (P : \Gamma G) \).

Proof. (1) \(\implies \) (2) : Suppose B is an ideal of G and \(B \not\subseteq P \). To show \(A\Gamma B \subseteq P \iff A \subseteq (P : \Gamma G) \), suppose \(A\Gamma B \subseteq P \). Since P is prime and \(B \not\subseteq P \), we have \(A\Gamma G \subseteq P \). This implies \(A \subseteq (P : \Gamma G) \). Conversely suppose that \(A \subseteq (P : \Gamma G) \). This means \(A\Gamma G \subseteq P \). Now \(A\Gamma B \subseteq A\Gamma G \subseteq P \). This implies \(A\Gamma B \subseteq P \).

(2) \(\implies \) (1) Suppose that \(A\Gamma B \subseteq P \iff A \subseteq (P : \Gamma G) \) holds. In a contrary way suppose that \(B \subseteq P \). Then \(M\Gamma B \subseteq P \iff M \subseteq (P : \Gamma G) \) (by converse hypothesis) \(\implies M\Gamma G \subseteq P \), a contradiction. \(\Box \)

Theorem 4. Let G be an \(M\Gamma \)-group, P be an ideal of G, A and B be ideals of M then the following conditions (1) and (2) are equivalent.

(1) P is 0-prime.
(2) \(< a > \Gamma < b > \subseteq P \) implies that \(< a > \Gamma G \subseteq P \) or \(b \in P \).

Moreover, if M is a zero symmetric \(\Gamma \)-nearring then conditions (1) to (4) are equivalent.

(3) If M is zero symmetric, \(a\Gamma < b > \subseteq P \) implies that \(a\Gamma G \subseteq P \) or \(b \in P \).
(4) \(a\Gamma B \subseteq P \) implies that \(a\Gamma G \subseteq P \) or \(B \subseteq P \).

Proof. (1) \(\implies \) (2) : Suppose \(< a > \Gamma < b > \subseteq P \). Write \(A = < a > \) and \(B = < b > \). Then \(A\Gamma B \subseteq P \). This implies \(A\Gamma G \subseteq P \) or \(B \subseteq P \) (by (1)) \(\iff < a > \Gamma G \subseteq P \) or \(b \in P \). Hence (2).

(2) \(\implies \) (1) : Suppose (2).

In contrary way suppose that (1) is not true.

Then there exists an ideal A of M, an ideal B of G such that \(A\Gamma B \subseteq P \) but \(A\Gamma G \not\subseteq P \) and \(B \not\subseteq P \). This implies \(a\gamma g \notin P \) for some \(a \in A, \gamma \in \Gamma, g \in G \) and \(b \in B \setminus P \).

Now \(< a > \Gamma < b > \subseteq A\Gamma B \subseteq P \). By (2) we have that \(< a > \Gamma G \subseteq P \) or \(b \in P \). Since \(b \notin P \) we have \(< a > \Gamma G \not\subseteq P \).

Now \(a\gamma g \in < a > \Gamma G \subseteq P \) implies \(a\gamma g \in P \), a contradiction.

(2) \(\implies \) (3): Suppose \(a\Gamma < b > \subseteq P \). This implies \(a \in (P : \Gamma < b >) \iff < a > \subseteq (P : \Gamma < b >) \) (since \(P : \Gamma < b > \) is an ideal and M is zero symmetric) \(\iff < a > \Gamma < b > \subseteq P \iff < a > \Gamma G \subseteq P \) or \(b \in P \) (by (2))
\[a \Gamma G \subseteq < a > \Gamma G \subseteq P \text{ or } b \in P. \] This proves (3).

(3) \implies (2): Suppose \(< a > \Gamma b > \subseteq P \). Then \(a \Gamma < b > \subseteq < a > \Gamma b > \subseteq P \).

This implies \(a \Gamma G \subseteq P \) or \(b \in P \) (by (3)) \implies \(a \in (P : \Gamma G) \) or \(b \in P \)
\implies \(< a > \subseteq (P : \Gamma G) \) or \(b \in P \) \implies \(< a > \Gamma G \subseteq P \).

(3) \implies (4): Suppose (3). In contrary way, suppose (4) is not true. Then \(a \Gamma B \subseteq P \), \(a \Gamma G \not\subseteq P \) and \(B \not\subseteq P \) for some \(a \in A \). So there exists \(\gamma \in \Gamma \), and \(g \in G \) such that \(a\gamma g \notin P \) and \(b \in B \setminus P \).

Now \(a \Gamma < b > \subseteq a \Gamma B \subseteq P \) \implies \(a \Gamma G \subseteq P \) or \(b \in P \) (by (3)) \implies \(a \Gamma G \subseteq P \)
(since \(b \notin B \setminus P \)) \implies \(a\gamma g \in a \Gamma G \subseteq P \).

(4) \implies (3): Suppose \(a \Gamma < b > \subseteq P \). Write \(B = < b > \). Now \(a \Gamma B \subseteq P \) \implies \(a \Gamma G \subseteq P \) or \(B \subseteq P \) (by (4)) \implies \(a\Gamma b \subseteq P \) or \(b \in < b > = B \subseteq P \). \(\square \)

Acknowledgment

The first author acknowledges Acharya Nagarjuna University, the second author acknowledges Andhra Loyola College (Autonomous) for their kind support and encouragement third author acknowledges Manipal Institute of Technology, MAHE, Manipal.

References

Department of Mathematics
Acharya Nagarjuna University
Nagarjuna Nagar-522510, India
E-mail address: bhavanari2002@yahoo.co.in

Department of Mathematics
Andhra Loyola College (Autonomous)
Vijayawada-520008, India
E-mail address: venugopalparuchuri@gmail.com

Department of Mathematics
Manipal Institute of Technology
Manipal Academy of Higher Education
Manipal-576104, India
E-mail address: kunchansyamprasad@gmail.com

Institute of Energy Engineering
Department of Mechanical Engineering
National Central University Jhongli
Taoyuan, TAIWAN-32001, R.O.C.
E-mail address: bhavanarim@yahoo.co.in