TRANSLATIONS OF INTUITIONISTIC FUZZY SUBALGEBRAS IN BF-ALGEBRAS

D. RAMESH¹, K. KONDALA RAO, R. DURGA PRASAD, N. SRIMANNARAYANA,
AND B. SATYANARAYANA

ABSTRACT. This research article explores on, the concepts of IFT to IFS in BF-
algebras. The phenomenon of IF-extensions and IF-multiplications of IFS is
proposed and several related properties are investigated. In this paper, the
interaction between IFTs and IF-extensions of IFSs are investigated.

1. INTRODUCTION AND PRELIMINARIES

Iseki et al. proposed two classes of abstract algebras BCI-algebras and BCK-
algebras [3]. It is evident that the class of BCK-algebras is a proper subclass of
the class of BCI-Algebras. H.S. Kim et al. [24] proposed a new notion known
as a B-algebras, which is a simplification of BCK-algebra. Walendziak [1] de-
defined BF-algebras. In 1965, the notion of fuzzy sets, an extraordinary idea in
mathematics, was proposed by Zadeh [25]. Saeid and Rezvani [2] proposed
BF-subalgebras based on the above concepts. Atanassov [21,22] was the first
researcher who introduced the new idea of “IF-set”, which is depicted as gen-
eralized idea of fuzzy set. Satyanarayana et al. [4,6-8]. Proposed fuzzy BF-
subalgebras and IFS. Fuzzy Translation of BCK/BCI-algebras, worked out by
many researchers such as Lee and Jun [23]. Further some more researchers

¹corresponding author

2020 Mathematics Subject Classification. 06F35, 03G25, 08A72.
Key words and phrases. Intuitionistic fuzzy sub algebra(IFS), intuitionistic fuzzy translation
(IFT), intuitionistic fuzzy-multiplication(IFM).
used the concept of fuzzy and fuzzy functions on time scales [9-20]. The aim of this article is applying the notion of the IFTs, IF-extensions and IF-multiplications of IFSs in BF-algebras are investigated.

Definition 1.1. [1] A BF-algebra is a non-empty set Y with a constant 0 and a binary operation satisfying the following axioms:

(i) $\alpha_1 \ast \alpha_1 = 0$,

(ii) $\alpha_1 \ast 0 = \alpha_1$,

(iii) $0 \ast (\alpha_1 \ast \alpha_2) = \alpha_2 \ast \alpha_1$ for all $\alpha_1, \alpha_2 \in Y$.

X is considered a BF-algebra in the following conversation.

Example 1. [6] R = The set of real numbers and $A = (R, \ast, 0)$ be an Algebra given by

$$\alpha_1 \ast \alpha_2 = \begin{cases}
\alpha, & \text{if } \alpha_2 = 0, \\
\alpha_2, & \text{if } \alpha_1 = 0, \\
0, & \text{otherwise}
\end{cases}$$

Then A will become a BF-algebra.

Example 2. [5] The set $X = \{0, p, q, s, t\}$, \ast is given by the Table: I is a BF-Algebra

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>p</th>
<th>q</th>
<th>s</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>t</td>
<td>s</td>
<td>q</td>
<td>p</td>
</tr>
<tr>
<td>p</td>
<td>p</td>
<td>0</td>
<td>t</td>
<td>s</td>
<td>q</td>
</tr>
<tr>
<td>q</td>
<td>q</td>
<td>p</td>
<td>0</td>
<td>t</td>
<td>s</td>
</tr>
<tr>
<td>s</td>
<td>s</td>
<td>q</td>
<td>p</td>
<td>0</td>
<td>t</td>
</tr>
<tr>
<td>t</td>
<td>t</td>
<td>s</td>
<td>q</td>
<td>p</td>
<td>0</td>
</tr>
</tbody>
</table>

Definition 1.2. [1] $I \subseteq Y$ is know to be subalgebra of Y, if

(i) $0 \in I$,

(ii) $y_1 \in I$ and $y_2 \in I \Rightarrow y_1 \ast y_2 \in I$.

Definition 1.3. An IF-set $A = (X, R_A, J_A)$ is supposed to be IFSs of X if

(i) $R_A(x_1 \ast x_2) \geq \min\{R_A(x_1), R_A(x_2)\}$

(ii) $J_A(x_1 \ast x_2) \leq \max\{J_A(x_1), J_A(x_2)\}$

for all $x_1, x_2 \in X$.
2. Translations of IFSs in BF-Algebras

The following discussion is on the notation of IFT on X. It evident that, X stands a BF-algebra, and for any IF-set $A = (R_A, J_A)$ of X, $T = 1 - \inf\{R_A(x_1) : x_1 \in X\} = 1 - \inf\{J_A(x_1) : x_1 \in X\}$.

Definition 2.1. $A = (R_A, J_A)$ is an IF-subset of X. Let $\alpha \in [0, T]$. An object having the form $A_\alpha = ((R_A)_\alpha^T, (J_A)_\alpha^T)$ is called IF-α-translation of A if $(R_A)_\alpha^T(x_1) = R_A(x_1) + \alpha$ and $(J_A)_\alpha^T(x_1) = J_A(x_1) - \alpha$ for all $x_1 \in X$.

Definition 2.2. Let $A = (R_A, J_A)$ be an IF-Subset of X and let $\alpha \in [0, 1]$. An object having the form $A_\alpha^m = ((R_A)_\alpha^m, (J_A)_\alpha^m)$ is called an IF-α-multiplication of A if $(R_A)_\alpha^m(x_1) = \alpha R_A(x_1)$ and $(J_A)_\alpha^m(x_1) = \alpha J_A(x_1)$ for all $x_1 \in X$. For any IF-set $A = (R_A, J_A)$ of X, an IF-0-multiplication $A_0^m = ((R_A)_0^m, (J_A)_0^m)$ of A is an IFS of X.

Example 3. Consider the BF-algebra $X = \{0, p, q, s\}$ in Example 2. Define a IF-subset $A = (R_A, J_A)$ of X by

$$R_A(r) = \begin{cases} 0.4; r \neq q \\ 0.1; r = q \end{cases} \quad \text{and} \quad J_A(r) = \begin{cases} 0.4; r \neq q \\ 0.7; r = q \end{cases},$$

then $A = (R_A, J_A)$ is IFS of X. Here $T = 1 - \sup\{R_A(r) : r \in X\} = 1 - 0.4 = 0.6 = 1 - \inf\{J_A(r) : r \in X\} = 1 - 0.4 = 0.6$. Choose $\alpha = 0.3 \in [0, T]$ and $\beta = 0.2 \in [0, 1]$. Then the mapping $(R_A)^T_{0.3} : X \to [0, 1]$ $(J_A)^T_{0.3} : X \to [0, 1]$ are defined by

$$(R_A)^T_{0.3}(r) = \begin{cases} 0.4 + 0.3 = 0.7; r \neq q \\ 0.1 + 0.3 = 0.4; r = q \end{cases}$$

and

$$(J_A)^T_{0.3}(r) = \begin{cases} 0.4 - 0.3 = 0.1; r \neq q \\ 0.7 - 0.3 = 0.4; r = q \end{cases},$$

which satisfies

$$A^T_{0.3} = ((R_A)^T_{0.3}, (J_A)^T_{0.3}) = (R_A(r) + 0.3, J_A(r) - 0.3) \text{ for all } r \in X$$

is IF-0.3-Translation.

The mappings $(R_A)^m_{0.2} : X \to [0, 1]$ and $(J_A)^m_{0.2} : X \to [0, 1]$ are defined by

$$(R_A)^m_{0.2}(r) = \begin{cases} (0.4)(0.2) = 0.08; r \neq q \\ (0.1)(0.2) = 0.02; r = q \end{cases}$$
and

\[
(J_A)^m_{0.2}(r) = \begin{cases}
(0.4)(0.2) = 0.08; & r \neq q \\
(0.7)(0.2) = 0.14; & r = q
\end{cases}
\]

which satisfies \((R_A)^m_{0.2}(r) = 0.2. R_A (J_A)^m_{0.2}(r) = 0.2. J_A\) for all is IF-0.2-multiplication.

Theorem 2.1. For all IFS \(A = (R_A, J_A)\) of \(X \land \alpha \in [0, T] the 'IF-\alpha\text{-translation}'. \(A^\alpha_T = ((R_A)^T_\alpha, (J_A)^T_\alpha)\) of A = (R_A, J_A) is a IFS of \(X\).

Proof. Let \(r, s \in X\) and \(\alpha \in [0, T]\). Then \(R_A(r * s) \geq \min\{R_A(r), R_A(s)\}\). Now,

\[
(R_A)^T_\alpha(r * s) = R_A(r * s) + \alpha \geq \min\{R_A(r), R_A(s)\} + \alpha
\]

\[
= \min\{R_A(r) + \alpha, R_A(s) + \alpha\} = \min\{(R_A)^T_\alpha(r), (R_A)^T_\alpha(s)\}
\]

and

\[
(J_A)^T_\alpha(r * s) = J_A(r * s) - \alpha \leq \max\{J_A(r), J_A(s)\} - \alpha
\]

\[
= \max\{J_A(r) - \alpha, J_A(s) - \alpha\} = \max\{(J_A)^T_\alpha(r), (J_A)^T_\alpha(s)\}.
\]

Hence the theorem follows. \(\square\)

Theorem 2.2. For all IF-subset \(A = (R_A, J_A)\) of \(X\) \land \(\alpha \in [0, T]\) if the IF-\(\alpha\) -Translation \(A^\alpha_T = ((R_A)^T_\alpha, (J_A)^T_\alpha)\) of A = (R_A, J_A) is a IFS of \(X\) then A = (R_A, J_A) is IFS of \(X\).

Proof. Suppose that \(A^\alpha_T = ((R_A)^T_\alpha, (J_A)^T_\alpha)\) is an IFSs of \(X\) and \(\alpha \in [0, T]\). Let \(r, s \in X\), we have

\[
R_A(r * s) + \alpha = (R_A)^T_\alpha(r * s) \geq \min\{(R_A)^T_\alpha(r), (R_A)^T_\alpha(s)\}
\]

\[
\geq \min\{R_A(r) + \alpha, R_A(s) + \alpha\} = \min\{R_A(r), R_A(s)\} + \alpha
\]

and

\[
J_A(r * s) - \alpha = (J_A)^T_\alpha(r * s) \leq \max\{(J_A)^T_\alpha(r), (J_A)^T_\alpha(s)\}
\]

\[
\leq \max\{J_A(r) - \alpha, J_A(s) - \alpha\} = \max\{J_A(r) - \alpha, J_A(s) - \alpha\},
\]

which implies that \(R_A(r * s) \geq \min\{R_A(r), R_A(s)\}\) and \(J_A(r * s) \leq \max\{J_A(r), J_A(s)\}\) for all \(r, s \in X\). Hence A = (R_A, J_A) is IFS of \(X\). \(\square\)

Theorem 2.3. \((A_1)^T_\alpha\) and \((A_2)^T_\alpha\) are two IFS of \(X\) \Rightarrow \((A_1 \cap A_2)^T_\alpha\) is also a IFS of \(X\).

Proof. \((A_1)^T_\alpha\) and \((A_2)^T_\alpha\) are two IFS of \(X\). Then

\[
(R_{A_1 \cap A_2})^T_\alpha(x_1 \times x_2) = \min\{(R_{A_1})^T_\alpha(x_1 \times x_2), (R_{A_2})^T_\alpha(x_1 \times x_2)\}
\]

\[
= \min\{(R_{A_1})(x_1 \times x_2) + \alpha, (R_{A_2})(x_1 \times x_2) + \alpha\}
\]
\[\begin{align*}
\geq & \min \{ \min \{ R_A(x_1), R_A(x_2) \} + \alpha, \min \{ R_A(x_1), R_A(x_2) \} + \alpha \} \\
= & \min \{ \min \{ R_A(x_1) + \alpha, R_A(x_2) + \alpha \}, \min \{ R_A(x_1) + \alpha, R_A(x_2) + \alpha \} \} \\
= & \min \{ \min \{ (R_A)_\alpha^T(x_1), (R_A)_\alpha^T(x_2) \}, \min \{ (R_A)_\alpha^T(x_1), (R_A)_\alpha^T(x_2) \} \} \\
= & \min \{ \min \{ (R_A)_\alpha^T(x_1), (R_A)_\alpha^T(x_2) \}, \min \{ (R_A)_\alpha^T(x_2), (R_A)_\alpha^T(x_2) \} \} \\
= & \min \{ (R_A)_\alpha^T(x_1), (R_A)_\alpha^T(x_2) \} (R_A_1 \cap A_2)_\alpha^T(x_1 * x_2) \geq \min \{ (R_A_1 \cap A_2)_\alpha^T(x_1), (R_A_1 \cap A_2)_\alpha^T(x_2) \}
\end{align*} \]

\[(J_{A_1 \cap A_2})_\alpha^T(x_1 * x_2) = \max \{ (J_{A_1})_\alpha^T(x_1 * x_2), (J_{A_2})_\alpha^T(x_1 * x_2) \}
= \max \{ (J_{A_1}(x_1) - \alpha, (J_{A_2}(x_1) - \alpha \}
\leq \max \{ \max \{ J_{A_1}(x_1), J_{A_2}(x_2) \} - \alpha, \max \{ J_{A_2}(x_1), J_{A_2}(x_2) \} - \alpha \}
= \max \{ \max \{ (J_{A_1}(x_1) - \alpha, (J_{A_2}(x_2) - \alpha \}, \max \{ J_{A_2}(x_1) - \alpha, J_{A_2}(x_2) - \alpha \} \}
= \max \{ \max \{ (J_{A_1})_\alpha^T(x_1), (J_{A_2})_\alpha^T(x_2) \}, \max \{ (J_{A_2})_\alpha^T(x_1), (J_{A_2})_\alpha^T(x_2) \} \}
= \max \{ (J_{A_1})_\alpha^T(x_1), (J_{A_2})_\alpha^T(x_2) \}
\]

Hence \((A_1 \cap A_2)_\alpha^T\) is an IFS of \(X\). \(\square\)

Theorem 2.4. Let \(\{ A_i / i = 1, 2, 3, \ldots \}\) be a family of IFS of \(X\). Then \((\bigcap A_i)_\alpha^T\) is also an IFS of \(X\), where \((\bigcap A_i)_\alpha^T = \min \{ (A_i)_\alpha^T(x) \}\).

Theorem 2.5. For any IFS \(A = (R_A, J_A)\) of \(X\), \(\alpha\) is an element in \([0, 1]\), the IF-\(\alpha\)-multiplication \(A_A^m = (R_A)_\alpha^m, (J_A)_\alpha^m)\) of \(A = (R_A, J_A)\) is an IFS of \(X\).

Proof. Let \(r, s \in X \& \alpha \in [0, 1]\). Then \(R_A(r * s) \geq \min \{ R_A(r), R_A(s) \}\). Now
\[\begin{align*}
(R_A)_\alpha^m(r * s) &= \alpha R_A(r * s) \geq \alpha \min \{ R_A(r), R_A(s) \} \\
= & \min \{ \alpha R_A(r), \alpha R_A(s) \} = \min \{ \{ (R_A)_\alpha^m(r), (R_A)_\alpha^m(s) \}, (J_A)_\alpha^m(r * s) \} \\
= & \alpha J_A(r * s) \leq \alpha \max \{ J_A(r), J_A(s) \} = \max \{ \alpha J_A(r), \alpha J_A(s) \} \\
= & \max \{ (J_A)_\alpha^m(r), (J_A)_\alpha^m(s) \}.
\end{align*} \]

Hence the theorem follows. \(\square\)

Theorem 2.6. For any IF-subset \(A = (R_A, J_A)\) of \(X\) and \(\alpha \in [0, 1]\), if the IF-\(\alpha\)-multiplication \(A_A^m = ((R_A)_\alpha^m, (J_A)_\alpha^m)\) of \(A = (R_A, J_A)\) is an of \(X\) then \(A = (R_A, J_A)\) is IFS of \(X\).
Proof. Assume $A^m_\alpha = ((\mu A)^m_\alpha, (\lambda A)^m_\alpha)$ is an IFS of X where $\alpha \in [0, T], x_1, x_2 \in X$. One can have

$$\begin{align*}
\alpha.R_A(x_1 \ast x_2) &= (R_A^m_\alpha(x_1 \ast x_2) = \min\{\alpha.R_A(x_1), \alpha.R_A(x_2)\} \\
&= \alpha.J_A(x_1 \ast x_2)
\end{align*}$$

which implies that $R_A(x_1 \ast x_2) \geq \min\{R_A(x_1), R_A(x_2)\}$ and $J_A(x_1 \ast x_2) \leq \max\{J_A(x_1), J_A(x_2)\}$ for all $x_1, x_2 \in X$ since $\alpha \neq 0$. Hence $A = (R_A, J_A)$ is IFS of X. □

Theorem 2.7. $(A_1)^m_\alpha$ and $(A_2)^m_\alpha$ be two IFS of $X \Rightarrow (A_1 \cap A_2)^m_\alpha$ is also IFS of X.

ACKNOWLEDGMENT

The authors would like to express sincere appreciation to the reviewers for their valuable suggestions and comments helpful in improving this paper.

REFERENCES

Department of Mathematics
Konneru Lakshmiah Education Foundation
Vaddeswaram-522502 Guntur (DT) Andhra Pradesh, India
Email address: ram.fuzzy@gmail.com

Department of Mathematics
Vidyajyothi Institute of Technology
Hyderabad-500035, Telangana
Email address: khrao.kanaparthi@gmail.com

Department of Mathematics
Narasaraopet Engineering College
Narasaraopet, Guntur A.P., India
Email address: durgaprasad.fuzzy@gmail.com

Department of Mathematics
Konneru Lakshmiah Education Foundation
Vaddeswaram-522502 Guntur (DT) Andhra Pradesh, India
Email address: sriman72@gmail.com

Department of Mathematics
Acharya Nagarjuna University
Nagarjuna Nagar-522 510, Andhra Pradesh, India
Email address: drbsn63@yahoo.co.in