MODULAR COLORINGS OF CORONA PRODUCT OF C_m WITH C_n

N. PARAMAGURU

Abstract. For $\ell \geq 2$, a modular ℓ-coloring of a graph G without isolated vertices is a coloring of the vertices of G with the elements in \mathbb{Z}_ℓ having the property that for every two adjacent vertices of G, the sums of the colors of their neighbors are different in \mathbb{Z}_ℓ. The minimum ℓ for which G has a modular ℓ-coloring is the modular chromatic number of G. In this paper, we determine the modular chromatic number of corona product of cycles.

1. INTRODUCTION

For graph-theoretical terminology and notation, we in general follow [1]. For a vertex v of a graph G, let $N_G(v)$, the neighborhood of v, denote the set of vertices adjacent to v in G. For a graph G without isolated vertices, let $c : V(G) \to \mathbb{Z}_\ell$, $\ell \geq 2$, be a vertex coloring of G where adjacent vertices may be colored the same. The color sum $S(v) = \sum_{u \in N_G(v)} c(u)$ of a vertex v of G is the sum of the colors of the vertices in $N_G(v)$. The coloring c is called a modular ℓ-coloring of G if $S(x) \neq S(y)$ in \mathbb{Z}_ℓ for all pairs x, y of adjacent vertices in G. The modular chromatic number $Mc(G)$ of G is the minimum ℓ for which G has a modular ℓ-coloring. This concept was introduced by Zhang et. al. [2].

Okamoto, Salehi and Zhang proved, in [2], they proved that: every nontrivial connected graph G has a modular ℓ-coloring for some integer $\ell \geq 2$ and $Mc(G) \geq \chi(G)$, where $\chi(G)$ denotes the chromatic number of G; for the cycle C_n of length n, $Mc(C_n)$ is 2 if $n \equiv 0 \mod 4$ and it is 3 otherwise; every nontrivial

2010 Mathematics Subject Classification. 05C15, 05C22.

Key words and phrases. modular colorings, corona product.
tree has modular chromatic number 2 or 3; for the complete multipartite graph \(G \), \(Mc(G) = \chi(G) \); for the cartesian product \(G = K_r \square K_2 \), \(Mc(G) \) is \(r \) if \(r \equiv 2 \mod 4 \) and it is \(r+1 \) otherwise; for the wheel \(W_n = C_n \vee K_1 \), \(n \geq 3 \), \(Mc(W_n) = \chi(W_n) \), where \(\vee \) denotes the join of two graphs; for \(n \geq 3 \), \(Mc(C_n \vee K_2^r) = \chi(C_n \vee K_2^r) \), where \(G^c \) denotes the complement of \(G \); and for \(n \geq 2 \), \(Mc(P_n \vee K_2) = \chi(P_n \vee K_2) \), where \(P_n \) denotes the path of length \(n-1 \); and in [3] proved that: for \(m, n \geq 2 \), \(Mc(P_m \square P_n) = 2 \).

Paramaguru and Sampthkumar proved, in [5], that: \(Mc(C_3 \square P_2) = 4 \); except some special cases, for \(m \geq 3 \) and \(n \geq 2 \), \(Mc(C_m \square P_n) = \chi(C_m \square P_n) \); if \(m \equiv 2 \mod 4 \) and \(n \equiv 1 \mod 4 \), then \(Mc(C_m \square P_n) \leq 3 \); if \(n \equiv 1 \mod 4 \), then \(Mc(C_6 \square P_n) = 3 \). In [6], they proved that: if \(m \geq 4 \) and \(n \geq 4 \) are even integers and at least one of \(m, n \) is congruent to \(0 \mod 4 \), then \(Mc(C_m \square C_n) = \chi(C_m \square C_n) \); if \(n \geq 3 \) is an integer, then \(Mc(C_3 \square C_n) = \chi(C_3 \square C_n) \); if at least one of \(m, n \) is congruent to \(0 \mod 2 \), except some special cases, \(m \geq 4 \), \(n \geq 4 \), then \(Mc(C_m \square C_n) = \chi(C_m \square C_n) \); if \(n \equiv 2 \mod 4 \), and \(n \geq 6 \), then \(Mc(C_6 \square C_n) = 3 \), where \(\square \) denotes the Cartesian product of two graphs.

Nicholas and Sanma discussed in [4], that: the modular chromatic number of Fan, Helm graph, Friendship graph and gear graph.

The corona of two graphs \(G \) and \(H \) is the graph \(G \circ H \) formed from one copy of \(G \) and \(|V(G)| \) copies of \(H \), where the \(i \)th vertex of \(G \) is adjacent to every vertex in the \(i \)th copy of \(H \). Such type of graph products was introduced by Frucht and Harary in 1970.

2. CORONA OF \(C_m \) WITH \(C_n \)

Define \(V(C_m) = \{u_1, u_2, u_3, \ldots, u_m\} \); \(V(C_n) = \{v_1, v_2, v_3, \ldots, v_n\} \); \(E(C_m) = \{u_1u_2, u_2u_3, u_3u_4, \ldots, u_{m-1}u_m, u_mu_1\} \); \(E(C_n) = \{v_1v_2, v_2v_3, v_3v_4, \ldots, v_{n-1}v_n, v_nv_1\} \);
\[
\begin{align*}
V(C_m \circ C_n) &= V(C_m) \cup \{v_j^i : i \in \{1, 2, 3, \ldots, m\} \text{ and } j \in \{1, 2, 3, \ldots, n\}\}; \\
E(C_m \circ C_n) &= E(C_m) \cup \{v_j^i v_{j+1}^i : i \in \{1, 2, 3, \ldots, m\} \text{ and } j \in \{1, 2, 3, \ldots, n-1\}\} \cup \{u_i v_j^i : i \in \{1, 2, 3, \ldots, m\} \text{ and } j \in \{1, 2, 3, \ldots, n\}\} \cup \{v_j^m v_1^i : i \in \{1, 2, 3, \ldots, m\}\}.
\end{align*}
\]

Theorem 2.1. For \(m \) even and \(n \) even, \(m \geq 4 \), \(n \geq 4 \), \(Mc(C_m \circ C_n) = 3 \).

Proof. Let \(c : V(C_m \circ C_n) \rightarrow \mathbb{Z}_3 \).

Case 1. \(n \equiv 4 \mod 6 \).

Define \(c \) as follows: \(c(u_i) = 0 \) if \(i \) is even; \(c(u_i) = 1 \) if \(i \) is odd; \(c(v_j^i) = 0 \) if
i \in \{1, 2, 3, \ldots, m\}, j \text{ is even}; \ c(v^i_j) = 1 \text{ if } i \in \{1, 2, 3, \ldots, m\}, j \text{ is odd}; \text{ then }
S(u_i) = 1 \text{ if } i \text{ is even}; \ S(u_i) = 2 \text{ if } i \text{ is odd}; \ S(v^i_j) = 1 \text{ if } i, j \text{ odd}; \ S(v^i_j) = 2 \text{ if } i, j \text{ even}; \ S(v^i_j) = 0 \text{ if } i \text{ is odd, } j \text{ is even}; \ S(v^i_j) = 0 \text{ if } i \text{ is even, } j \text{ is odd}.

\textbf{Case 2.} n \equiv 2 \mod 6.
Define c as follows: \ c(u_i) = 0 \text{ if } i \in \{1, 2, 3, \ldots, m\}; \ c(v^i_j) = 0 \text{ if } i \in \{1, 2, 3, \ldots, m\}, j \text{ is even}; \ c(v^i_j) = 1 \text{ if } i, j \text{ odd}; \ c(v^i_j) = 2 \text{ if } i \text{ is even, } j \text{ is odd}; \text{ then } S(u_i) = 1 \text{ if } i \text{ is even}; \ S(v^i_j) = 1 \text{ if } i \text{ is odd, } j \text{ is even}; \ S(v^i_j) = 2 \text{ if } i \text{ is odd, } j \text{ is even}; \ S(v^i_j) = 0 \text{ if } i \in \{1, 2, 3, \ldots, m\}, j \text{ is odd}.

\textbf{Case 3.} n \equiv 0 \mod 6.
Define c as follows:
\ c(u_i) = 0 \text{ if } i \text{ is odd}; \ c(u_i) = 2 \text{ if } i \text{ is even}; \ c(v^i_j) = 0 \text{ if } i \in \{1, 2, 3, \ldots, m\}, j \text{ is even}; \ c(v^i_j) = 1 \text{ if } i \in \{1, 2, 3, \ldots, m\}, j \text{ is odd}; \text{ then } S(u_i) = 1 \text{ if } i \text{ is odd}; \ S(u_i) = 0 \text{ if } i \text{ is even}; \ S(v^i_j) = 1 \text{ if } i, j \text{ even}; \ S(v^i_j) = 2 \text{ if } i \text{ is odd, } j \text{ is even}; \ S(v^i_j) = 2 \text{ if } i \text{ is even, } j \text{ is odd}; \ S(v^i_j) = 0 \text{ if } i, j \text{ odd}. \text{ Clearly, } \chi(C_m \circ C_n) = 3. \text{ Hence, } Mc(C_m \circ C_n) = 3. \text{ This completes the proof.} \quad \square

\textbf{Theorem 2.2.} \textbf{For } m \text{ even and } n \text{ odd, } m \geq 4, n \geq 3, Mc(C_m \circ C_n) = 4.

\textbf{Proof.} \textbf{Let } c : V(C_m \circ C_n) \to \mathbb{Z}_4.

\textbf{Case 1.} n \equiv 1 \mod 8.
Define c as follows:
\ c(u_i) = 0 \text{ if } i \text{ is even}; \ c(u_i) = 1 \text{ if } i \text{ is odd}; \ c(v^i_j) = 0 \text{ if } i \in \{1, 2, 3, \ldots, m\}, j \equiv 0, 2, 3 \mod 4; \ c(v^i_j) = c(v^i_{n-4}) = 1 \text{ if } i \text{ is odd}; \ c(v^i_n) = 1 \text{ if } i \text{ is even}; \ c(v^i_j) = 2 \text{ if } i \text{ is odd, } j \equiv 1 \mod 4; \ c(v^i_j) = 2 \text{ if } i \text{ is odd, } j \equiv 1 \mod 4, j \neq n; \text{ then } S(u_i) = 0 \text{ if } i \text{ is odd}; \ S(u_i) = 3 \text{ if } i \text{ is even}; \ S(v^i_j) = 0 \text{ if } i \text{ is even, } j \in \{3, 5, 7, \ldots, n - 2\}; \ S(v^i_j) = 1 \text{ if } i \text{ is odd, } j \in \{3, 5, 7, \ldots, n - 2\}; \ S(v^i_j) = 1 \text{ if } i \text{ is even, } j \in \{1, n - 1\}; \ S(v^i_j) = 2 \text{ if } i \text{ is odd, } j \in \{1, n - 1, n - 3, n - 5\}; \ S(v^i_j) = 2 \text{ if } i \text{ is even, } j \in \{2, 4, 6, \ldots, n - 3, n\}; \ S(v^i_j) = 3 \text{ if } i \text{ is odd, } j \in \{2, 4, 6, \ldots, n - 7, n\}.

\textbf{Case 2.} n \equiv 3 \mod 8 \text{ and } n \neq 3.
Define c as follows:
\ c(u_i) = 0 \text{ if } i \text{ is even}; \ c(u_i) = 1 \text{ if } i \text{ is odd}; \ c(v^i_j) = 0 \text{ if } i \in \{1, 2, 3, \ldots, m\}, j \equiv 0, 2, 3 \mod 4; \ c(v^i_n) = c(v^i_{n-2}) = 1 \text{ if } i \text{ is odd}; \ c(v^i_{n-2}) = 1 \text{ if } i \text{ is even}; \ c(v^i_j) = 2 \text{ if } i \text{ is odd, } j \equiv 1 \mod 4; \ c(v^i_j) = 2 \text{ if } i \text{ is odd, } j \equiv 1 \mod 4, j \neq n - 2; \text{ then } S(u_i) = 0 \text{ if } i \text{ is odd}; \ S(u_i) = 3 \text{ if } i \text{ is even}; \ S(v^i_j) = 0 \text{ if } i \text{ is even, } j \in \{1, 3, 5, \ldots, n - 2\}; \ S(v^i_j) = 1 \text{ if } i \text{ is odd, } j \in \{1, 3, 5, \ldots, n - 2\}; \ S(v^i_j) = 1 \text{ if } i \text{ is even, } j \in \{n - 1, n - 3\}; \ S(v^i_j) = 2 \text{ if } i \text{ is odd, } j \in \{n - 1, n - 3, n - 5, n - 7\}; \ S(v^i_j) = 2 \text{ if } i \text{ is even, } j \in \{2, 4, 6, \ldots, n - 5, n\};
Define \(c \) as follows: \(c(u_i) = 0 \) if \(i \in \{1, 2, 3, \ldots, m\} \); \(c(v_j^i) = 0 \) if \(j \in \{2, 4, 6, \ldots, n - 9, n\} \).

Case 3. \(n \equiv 5 \mod 8 \).

Define \(c \) as follows: \(c(u_i) = 0 \) if \(i \in \{1, 2, 3, \ldots, m\} \); \(c(v_j^i) = 0 \) if \(j \in \{1, 2, 3, \ldots, m\} \), \(j \equiv 0, 2, 3 \mod 4 \); \(c(v_j^i) = 1 \) if \(i \) is even; \(c(v_j^i) = 3 \) if \(i \) is odd; \(c(v_j^i) = 2 \) if \(i \) is even; \(S(v_j^i) = 0 \) if \(i \in \{1, 2, 3, \ldots, m\} \), \(j \in \{3, 5, 7, \ldots, n - 2\} \); \(S(v_j^i) = 1 \) if \(i \) is even, \(j \in \{n - 1\} \); \(S(v_j^i) = 3 \) if \(i \) is odd, \(j \in \{n - 1\} \); \(S(v_j^i) = 2 \) if \(i \in \{1, 2, 3, \ldots, m\} \), \(j \in \{2, 4, 6, \ldots, n - 3, n\} \).

Case 4. \(n \equiv 7 \mod 8 \).

Define \(c \) as follows: \(c(u_i) = 0 \) if \(i \in \{1, 2, 3, \ldots, m\} \); \(c(v_j^i) = 0 \) if \(i \in \{1, 2, 3, \ldots, m\} \), \(j \equiv 0, 2, 3 \mod 4 \); \(c(v_{n-2}^i) = 1 \) if \(i \) is even; \(c(v_{n-2}^i) = 3 \) if \(i \) is odd; \(c(v_j^i) = 2 \) if \(i \) is even; \(S(v_j^i) = 0 \) if \(i \in \{1, 2, 3, \ldots, m\} \), \(j \in \{1, 3, 5, \ldots, n - 2\} \); \(S(v_j^i) = 1 \) if \(i \) is even, \(j \in \{n - 1, n - 3\} \); \(S(v_j^i) = 3 \) if \(i \) is odd, \(j \in \{n - 1, n - 3\} \); \(S(v_j^i) = 2 \) if \(i \in \{1, 2, 3, \ldots, m\} \), \(j \in \{2, 4, 6, \ldots, n - 5, n\} \).

Case 5. \(n \equiv 3 \).

Subcase 5.1. \(m \equiv 0 \mod 4 \).

Define \(c \) as follows: \(c(u_i) = 0 \) if \(i \equiv 0, 2, 3 \mod 4 \); \(c(u_i) = 1 \) if \(i \equiv 1 \mod 4 \); \(c(v_1^i) = 0 \) if \(i \not\equiv 1 \mod 4 \); \(c(v_2^i) = 2 \) if \(i \equiv 1 \mod 4 \); \(c(v_3^i) = 3 \) if \(i \not\equiv 1 \mod 4 \); \(c(v_4^i) = 0 \) if \(i \) is even; \(c(v_4^i) = 1 \) if \(i \) is even; \(c(v_4^i) = 2 \) if \(i \) is even; \(c(v_4^i) = 1 \) if \(i \equiv 3 \mod 4 \); \(c(v_4^i) = 2 \) if \(i \equiv 3 \mod 4 \); \(c(v_4^i) = 3 \) if \(i \equiv 3 \mod 4 \); \(S(u_i) = 1 \) if \(i \equiv 1 \mod 4 \); \(S(v_1^i) = 0 \) if \(i \equiv 0, 2, \mod 4 \); \(S(u_i) = 2 \) if \(i \equiv 3 \mod 4 \); \(S(v_1^i) = 2 \) if \(i \equiv 1 \mod 4 \); \(S(v_1^i) = 3 \) if \(i \equiv 1 \mod 4 \); \(S(v_1^i) = 3 \) if \(i \equiv 3 \mod 4 \);
$S(v_i) = 1$ if $i \in \{2, 4, 6, \ldots, m-2\}$; $S(v_1^m) = 0$; $S(v_2^m) = 3$; $S(v_3^m) = 1$. Clearly, $Mc(C_m \circ C_n) \geq \chi(C_m \circ C_n) = 4$. Hence, $Mc(C_m \circ C_n) = 4$. This completes the proof. □

3. Conclusion

For some graphs G and H considered in this paper, we have seen that $Mc(G \circ H) = \chi(G \circ H)$. Except the case: For $m \geq 1, n \geq 1$, $Mc(C_{2m+1} \circ C_{2n+1})$.

Acknowledgment

The author would like to thank the referees for the valuable suggestions and careful reading of the paper.

References

Department of Mathematics
Annamalai University
Annamalai Nagar, India-608 002

Department of Mathematics
Government Arts College for Women
Krishnagiri, Tamil Nadu, India-635 002

Email address: npguru@gmail.com