SOME RESULTS ON CYCLIC AND NEGACYCLIC CODES OVER FORMAL POWER SERIES RINGS AND FINITE CHAIN RINGS

MRIGANKA S. DUTTA¹ AND HELEN K. SAIKIA

ABSTRACT. In this article, relationship between cyclic codes of composite length mn over formal power series ring and u–constacyclic code of length m over $R_\infty[x]_{<x^n-1>}$ has been established by constructing an isomorphism. For two odd numbers m and n, relationship between u–constacyclic code of length m over $R_\infty[x]_{<x^n-1>}$ and u–constacyclic code of length m over $R_\infty[x]_{<x^n+1>}$ has been obtained. The ideals of the rings $R_\infty[x]_{<x^n-1>}$ and $R_\infty[x]_{<x^n+1>}$ have also been determined.

1. INTRODUCTION

Due to the rich algebraic structure, cyclic codes play an important role in coding theory as seen in [1, 7]. Initially, the researchers studied the properties of Cyclic codes over the binary field \mathbb{F}_2, then they extended the study to \mathbb{F}_q with $q = p^r$ for some prime p and $r \geq 1$. The structure of cyclic codes was obtained by viewing a cyclic code C of length n over a finite field \mathbb{F}_q as an ideal of the ring $R_\infty[x]_{<x^n-1>}$. Dinh and Lopez-Permouth [2] in the year 2004 published a paper on structure of cyclic and negacyclic codes over finite chain rings. Dougherty, Liu, and Park [5] in 2011 defined a series of finite chain rings and introduced the concept of γ–adic codes over formal power series rings. In 2011 Dougherty and Liu [4] have given the concept of λ–cyclic code of length n over formal...
power series rings. They established a relation between cyclic codes and negacyclic codes over formal power series rings. They obtained a relation between cyclic codes over formal power series rings and cyclic codes over finite chain rings. Dougherty and Ling [3] in the year 2006 proved that a cyclic shift in \(\mathbb{Z}_2^{4n} \) corresponds to a \(u-\)constacyclic shift in \((\mathbb{Z}_4[u]_{u^2-1})^n\) by constructing a module isomorphism between \((\mathbb{Z}_4[u]_{u^2-1})^n\) and \(\mathbb{Z}_4^{4n}\). Dutta and Saikia [6] have introduced the concept of \(\Phi_\lambda \)-cyclic code of length \(n \) over a formal power series ring and derived some related results. Sobhani and Molakarimi [8] in the year 2013 constructed a one-to-one correspondence between cyclic codes of length \(2n \) over the ring \(R_{k-1,m} \) and cyclic codes of length \(n \) over the ring \(R_{k,m} \) for odd \(n \) and determined the number of ideals of the ring \(R_{2,m} \) and \(R_{3,m} \). Hence in [8] they have obtained the number of cyclic codes of odd length over \(R_{2,m} \) and \(R_{3,m} \) as a corollary. In this article, we have constructed an isomorphism between \(\frac{R_{\infty}[u]}{<x^n-u>} \) and \(\frac{R_{\infty}[x]}{<x^{m-1}>} \) and proved that cyclic codes of composite length \(mn \) over the formal power series ring \(R_\infty \) corresponds to \(u-\)constacyclic code of length \(m \) over \(\frac{R_{\infty}[x]}{<x^{n-1}>} \). Here, considering both \(m \) and \(n \) as odd numbers we have proved that \(u-\)constacyclic codes of length \(m \) over \(\frac{R_{\infty}[x]}{<x^{n-1}>} \) corresponds to \(u-\)constacyclic code of length \(m \) over \(\frac{R_{\infty}[x]}{<x^{n+1}>} \). Thus corresponding to every cyclic code of odd length \(mn \) over \(R_\infty \) there exists a negacyclic code of same length over \(R_\infty \). Finally, we have also determined the types of ideals of the ring \(\frac{R_{\infty}[u]}{<x^n-u>} \) as well as the ring \(\frac{R_{\infty}[u]}{<x^n-1>} \) that will give us cyclic codes over \(R_\infty \) and \(R_i \) respectively.

2. **Finite Chain Ring and Formal Power Series Ring**

In this article, we assume that all rings are commutative with identity \(1 \neq 0 \).

Definition 2.1. [4] Let \(R \) be a ring and \(I \) be an ideal of \(R \). \(I \) is called a principal ideal if it is generated by a singleton set.

Definition 2.2. [4] A finite ring is called a chain ring if all its ideals are linearly ordered by inclusion.

Theorem 2.1. [4] All the ideals of a finite chain ring are principal.

Remark 2.1. Let \(R \) be a finite chain ring. As \(R \) is finite, it must have finitely many ideals. Again \(R \) is a chain ring. Thus all the ideals of \(R \) must be linearly ordered.
by inclusion. Hence every finite chain ring \(R \) has a unique maximal ideal. Let \(I \) be the unique maximal ideal of \(R \). As all the ideals of \(R \) are principal, \(I \) must have some generator. Let \(\gamma \) be a generator of \(I \).

Definition 2.3. [4] Let \(i \) be an arbitrary positive integer and \(\mathbb{F} \) be a finite field. The ring \(R_i \) is a finite chain ring and is defined as

\[
R_i = \{ a_0 + a_1 \gamma + ... + a_{i-1} \gamma^{i-1} \mid a_i \in \mathbb{F} \},
\]

where \(\gamma^{i-1} \neq 0 \), but \(\gamma^i = 0 \) in \(R_i \). The operations over \(R_i \) are defined as follows:

\[
\sum_{l=0}^{i-1} a_l \gamma^l + \sum_{l=0}^{i-1} b_l \gamma^l = \sum_{l=0}^{i-1} (a_l + b_l) \gamma^l; \quad (\sum_{l=0}^{i-1} a_l \gamma^l)(\sum_{l=0}^{i-1} b_l \gamma^l) = \sum_{s=0}^{i-1} \left(\sum_{l+l'=s} a_l b_{l'} \right) \gamma^s.
\]

Definition 2.4. [4] The ring \(R_\infty \) is called a formal power series ring which is defined as

\[
R_\infty = \mathbb{F}[[\gamma]] = \{ \sum_{l=0}^\infty a_l \gamma^l \mid a_l \in \mathbb{F} \}.
\]

Addition and multiplication over \(R_\infty \) are defined by extending the addition and multiplication of polynomials, namely, term-by-term addition

\[
\sum_{l=0}^\infty a_l \gamma^l + \sum_{l=0}^\infty b_l \gamma^l = \sum_{l=0}^\infty (a_l + b_l) \gamma^l,
\]

and the Cauchy product

\[
(\sum_{l=0}^\infty a_l \gamma^l)(\sum_{l=0}^\infty b_l \gamma^l) = \sum_{s=0}^\infty \left(\sum_{l+l'=s} a_l b_{l'} \right) \gamma^s.
\]

Lemma 2.1. [4] If \(a \) and \(b \) are any two elements of \(R_\infty \) such that both not zero, then the greatest common divisor \(\gcd(a, b) \) exists.

Corollary 2.1. [4] If \(a_1, a_2, \ldots, a_n \in R_\infty \) such that \(a_j \neq 0 \) for some \(0 \leq J \leq n \), then the greatest common divisor \(\gcd(a_1, a_2, \ldots, a_n) \) exists. If \(a_j \) is a unit for some \(j \), then, \(\gcd(a_1, a_2, \ldots, a_n) = 1 \).

Definition 2.5. [4] Let \(i, j \) be two integers with \(i \leq j \). In [4], the mapping \(\Psi_i^j \) is defined by

\[
\Psi_i^j : R_j \rightarrow R_i, \quad \sum_{l=0}^{j-1} a_l \gamma^l \mapsto \sum_{l=0}^{i-1} a_l \gamma^l.
\]
Definition 2.6. [4] Let i be any positive integer. In [4], the mapping Ψ_i is defined by
\[\Psi_i : R_\infty \to R_i, \sum_{l=0}^{\infty} a_l \gamma^l \mapsto \sum_{l=0}^{i-1} a_l \gamma^l. \]
It can be proved that Ψ_j^i and Ψ_i are homomorphisms. We can extend Ψ_j^i naturally from R_j^n to R_i^n. Similarly Ψ_i can be extended naturally from R_∞^n to R_i^n.

3. Polynomial Rings over R_∞ and R_i

The polynomial ring over R_∞ is given by
\[R_\infty[x] = \{ a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n \mid a_i \in R_\infty, \ n \geq 0 \}. \]
Since R_∞ is a domain, $R_\infty[x]$ is also a domain [4]. We shall consider a polynomial
\[f(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n \in R_\infty[x]. \]
We can define the following mapping:
\[\psi_j : R_\infty[x] \to R_j[x], \ f(x) \mapsto \psi_j(f(x)), \]
where
\[\psi_j(f(x)) = \psi_j(a_0) + \psi_j(a_1) x + \cdots + \psi_j(a_n) x^n \in R_j[x]. \]
Thus by projecting the coefficients of the elements in $R_\infty[x]$ onto the coefficients of the elements in $R_j[x]$, we got the ring of polynomials over R_j from the ring of polynomials over R_∞ [4].

Again we shall consider
\[f(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n \in R_j[x]. \]
Now we can define a mapping as follows:
\[\psi_i^j : R_j[x] \to R_i[x], \ f(x) \mapsto \psi_i^j(f(x)), \]
where
\[\psi_i^j(f(x)) = \psi_i^j(a_0) + \psi_i^j(a_1) x + \cdots + \psi_i^j(a_n) x^n \in R_i[x]. \]

Definition 3.1. [4] If $f(x) \in R_\infty[x]$ such that $\deg(f(x)) > 0$ and $\gcd(a_1, a_2, \ldots, a_n) = 1$, then $f(x)$ is called a primitive element.
Lemma 3.1. [4] If \(f(x) \in R_\infty[x] \) such that \(\deg(f(x)) > 0 \), then \(f(x) \) is a primitive polynomial if \(f(\psi_i(f(x)) \neq 0 \forall i < \infty \).

Theorem 3.1. [4] If \(f(x) \in R_\infty[x] \) such that \(\deg(f(x)) > 0 \), then there exist a unique \(s \) and a primitive polynomial \(g(x) \), such that \(f(x) = \gamma^s g(x) \).

Definition 3.2. [4] If \(\langle f(x), g(x) \rangle + \langle x^n - \lambda \rangle = R_i[x] \), then the polynomials \(f(x), g(x) \in R_i[x] \) are called coprime, where \(i < \infty \) or equivalently, if there exists \(u(x), v(x) \in R_i[x] \) such that \(f(x)u(x) + g(x)v(x) = 1 \), then the polynomials \(f(x), g(x) \in R_i[x] \) are called coprime.

4. Linear, Cyclic and Negacyclic Codes

Definition 4.1. [4] Let \(R \) be a ring and \(R^n \) be the \(R \)-module. A \(R \)-submodule \(C \) of \(R^n \) is called a linear code of length \(n \) over \(R \).

Note that in this study all codes are linear.

Definition 4.2. [4] Let \(x, y \) be vectors in \(R^n \). The inner product of \(x \) and \(y \) is defined by
\[
[x, y] = x_1y_1 + x_2y_2 + \ldots + x_ny_n.
\]

Definition 4.3. [4] For a code \(C \) of length \(n \) over \(R \), the dual code of \(C \) is defined by
\[
C^\perp = \{ x \in R^n | [x, c] = 0, \forall c \in C \}.
\]

Remark 4.1. \(C^\perp \) is linear whether or not \(C \) is linear.

In our study \(p \) is the characteristic of the finite field \(\mathbb{F} \). Thus \(p \) is prime. We assume that \(n \) is relatively prime to \(p \).

Let \(\lambda \) be an arbitrary unit of \(R_\infty \) and let
\[
\frac{R_\infty[x]}{< x^n - \lambda >} = \{ f(x) + < x^n - \lambda > | f(x) \in R_\infty[x] \}
\]

Let
\[
f(x) + < x^n - \lambda >, g(x) + < x^n - \lambda > \in \frac{R_\infty[x]}{< x^n - \lambda >},
\]
such that \(0 \leq \deg(f(x)), \deg(g(x)) < n \), and \(f(x) + < x^n - \lambda > = g(x) + < x^n - \lambda > \). Then, we have \(f(x) - g(x) \in < x^n - \lambda > \). Which implies that \(f(x) = g(x) \) as \(R_\infty \) is a domain. Hence, for each \(f(x) + < x^n - \lambda > \in \frac{R_\infty[x]}{< x^n - \lambda >} \), there is a unique
Let us define a mapping

\[P_\lambda : R^n_\infty \rightarrow \frac{R_\infty[x]}{<x^n-\lambda>} \]

given by

\[(a_0, a_1, \ldots, a_{n-1}) \mapsto a_0 + a_1 x + \cdots + a_{n-1} x^{n-1} + <x^n-\lambda>. \]

Putting \(\lambda = 1 \) and \(\lambda = -1 \) we get \(P_1 \) and \(P_{-1} \) as follows:

\[P_1 : R^n_\infty \rightarrow \frac{R_\infty[x]}{<x^n-1>} \]

given by

\[(a_0, a_1, \ldots, a_{n-1}) \mapsto a_0 + a_1 x + \cdots + a_{n-1} x^{n-1} + <x^n-1>, \]

and

\[P_{-1} : R^n_\infty \rightarrow \frac{R_\infty[x]}{<x^n+1>} \]

given by

\[(a_0, a_1, \ldots, a_{n-1}) \mapsto a_0 + a_1 x + \cdots + a_{n-1} x^{n-1} + <x^n-1>. \]

Let \(C \) be an arbitrary subset of \(R^n_\infty \). We denote the image of \(C \) under the map \(P_\lambda \) by \(P_\lambda(C) \). We use \(a(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_{n-1} x^{n-1} \) to denote the image of \((a_0, a_1, \ldots, a_{n-1}) \) under \(P_\lambda, P_1 \) and \(P_{-1} \) respectively ([4]).

Definition 4.4. [4] Let \(C \) be a linear code of length \(n \) over \(R_\infty \). The code \(C \) is called a \(\lambda \)-cyclic code over \(R_\infty \), if

\[c = (c_0, c_1, \ldots, c_{n-1}) \in C \implies (\lambda c_{n-1}, c_0, \ldots, c_{n-2}) \in C. \]

If \(\lambda = 1 \) then \(C \) is called a cyclic code and if \(\lambda = -1 \), then \(C \) is called a negacyclic code, otherwise, it is called a constacyclic code. Thus

\[P_\lambda(C) = \{c_0 + c_1 x + \cdots + c_{n-1} x^{n-1} + <x^n-\lambda> | (c_0, c_1, \ldots, c_{n-1}) \in C\}. \]

Now the following lemma can be easily proved.

Lemma 4.1. [4] A linear code \(C \) of length \(n \) over \(R_\infty \) is a \(\lambda \)-cyclic code if \(f \) \(P_\lambda(C) \) is an ideal of \(\frac{R_\infty[x]}{<x^n-\lambda>} \).
From Lemma 4.1 we get the following corollary:

Corollary 4.1. [4] Assuming the notations given above

(i) A linear code C of length n over R_∞ is a cyclic code if $f \in P_1(C)$ is an ideal of $\frac{R_\infty[x]}{<x^n-1>}$,

(ii) A linear code C of length n over R_∞ is a negacyclic code if $f \in P_{-1}(C)$ is an ideal of $\frac{R_\infty[x]}{<x^n+1>}$.

Let us consider the following ring homomorphism:

$$
\psi_i : \frac{R_\infty[x]}{<x^n-1>} \rightarrow \frac{R_i[x]}{<x^n-1>}
$$
given by

$$
f(x) \mapsto \psi_i(f(x)).
$$

Since ψ_i is a ring homomorphism, therefore if I is an ideal of $\frac{R_\infty[x]}{<x^n-1>}$, then $\psi_i(I)$ is an ideal of $\frac{R_i[x]}{<x^n-1>}$.

Theorem 4.1. [4] If C is a cyclic code over R_∞, then, $\psi_i(C)$ is a cyclic code over R_i for all $i < \infty$.

Now we are going to establish an important result which is the central result of our present work. Let F be a finite field and p be the characteristic of F. Thus p is a prime. Let $R_\infty = F[[\gamma]] = \{ \sum_{i=0}^{\infty} a_i \gamma^i | a_i \in F \}$ be the formal power series ring over F, where γ is the indeterminate. Let λ be an arbitrary unit of R_∞. If we consider m and n to be two positive integers relatively prime to p, then we have the following result:

Theorem 4.2. Assuming the notations given above we have

$$
\frac{R_\infty[x]}{<u^n-\lambda>} \cong \frac{R_\infty[x]}{<x^{mn}-\lambda>}.
$$

Proof. Let us define a mapping $\Phi : \frac{R_\infty[x]}{<u^n-u>} \rightarrow \frac{R_\infty[x]}{<x^{mn}-\lambda>}$ given by

$$
\Phi \left(\sum_{j=0}^{m-1} \left(\sum_{i=0}^{n-1} a_{i,j} u^i \right) x^j \right) = \sum_{j=0}^{m-1} \left(\sum_{i=0}^{n-1} a_{i,j} (x^m)^i \right) x^j.
$$

Now for

$$
a_{0,0} + a_{0,1} x + \cdots + a_{0,m-1} x^{m-1} + a_{1,0} x^m + a_{1,1} x^{m+1} + \cdots + a_{1,m-1} x^{2m-1}
$$
there exists
\[
\sum_{j=0}^{m-1} \left(\sum_{i=0}^{n-1} a_{i,j} u^i \right) x^j \in \frac{R_\infty[x]}{<x^{mn} >},
\]
such that
\[
\Phi \left(\sum_{j=0}^{m-1} \left(\sum_{i=0}^{n-1} a_{i,j} u^i \right) x^j \right) = \sum_{j=0}^{m-1} \left(\sum_{i=0}^{n-1} a_{i,j} x^m \right) x^j
\]
\[
= \sum_{j=0}^{m-1} \left(a_{0,j} x^0 + a_{1,j} x^m + \cdots + a_{n-1,j} x^{m(n-1)} \right) x^j
\]
\[
= a_{0,0} x + a_{0,1} x + \cdots + a_{0,m-1} x^{m-1} + a_{1,0} x^m + a_{1,1} x^{m+1} + \cdots + a_{1,m-1} x^{2m-1} + \cdots + a_{n-1,0} x^{m(n-1)} + \cdots + a_{n-1,m-1} x^{mn-1}
\]

Therefore the mapping \(\Phi \) is onto.

To prove \(\Phi \) is one-one, we take

\[
\Phi \left(\sum_{j=0}^{m-1} \left(\sum_{i=0}^{n-1} a_{i,j} u^i \right) x^j \right) = \Phi \left(\sum_{j=0}^{m-1} \left(\sum_{i=0}^{n-1} b_{i,j} u^i \right) x^j \right)
\]

\[
\Rightarrow \sum_{j=0}^{m-1} \left(\sum_{i=0}^{n-1} a_{i,j} x^m \right) x^j = \sum_{j=0}^{m-1} \left(\sum_{i=0}^{n-1} b_{i,j} x^m \right) x^j
\]

\[
\Rightarrow \sum_{j=0}^{m-1} \left(a_{0,j} x^0 + a_{1,j} x^m + \cdots + a_{n-1,j} x^{m(n-1)} \right) x^j
\]

\[
= \sum_{j=0}^{m-1} \left(b_{0,j} x^0 + b_{1,j} x^m + \cdots + b_{n-1,j} x^{m(n-1)} \right) x^j
\]

\[
\Rightarrow a_{0,0} + a_{0,1} x + \cdots + a_{0,m-1} x^{m-1} + a_{1,0} x^m + a_{1,1} x^{m+1} + \cdots + a_{1,m-1} x^{2m-1} + \cdots + a_{n-1,0} x^{m(n-1)} + \cdots + a_{n-1,m-1} x^{mn-1}
\]

\[
= b_{0,0} + b_{0,1} x + \cdots + b_{0,m-1} x^{m-1} + b_{1,0} x^m + b_{1,1} x^{m+1} + \cdots + b_{1,m-1} x^{2m-1} + \cdots + b_{n-1,0} x^{m(n-1)} + \cdots + b_{n-1,m-1} x^{mn-1}
\]
\[a_{0,0} = b_{0,0}, a_{0,1} = b_{0,1}, \ldots, a_{n-1,m-1} = b_{n-1,m-1} \]

\[\sum_{j=0}^{m-1} \sum_{i=0}^{n-1} a_{i,j}u^j = \sum_{j=0}^{m-1} \sum_{i=0}^{n-1} b_{i,j}u^j. \]

Thus \(\Phi \) is one-one and hence it is a bijection.

Now for

\[\sum_{j=0}^{m-1} \sum_{i=0}^{n-1} a_{i,j}u^j, \sum_{j=0}^{m-1} \sum_{i=0}^{n-1} b_{i,j}u^j \in \frac{R_{\infty}[u]}{<u^m-u>} [x] \]

\[\Phi(\sum_{j=0}^{m-1} \sum_{i=0}^{n-1} a_{i,j}u^j + \sum_{j=0}^{m-1} \sum_{i=0}^{n-1} b_{i,j}u^j) = \Phi(\sum_{j=0}^{m-1} \sum_{i=0}^{n-1} (a_{i,j} + b_{i,j})u^j) \]

\[\Rightarrow \Phi(\sum_{j=0}^{m-1} \sum_{i=0}^{n-1} a_{i,j}u^j + \sum_{j=0}^{m-1} \sum_{i=0}^{n-1} b_{i,j}u^j) = \sum_{j=0}^{m-1} \sum_{i=0}^{n-1} (a_{i,j} + b_{i,j})(x^m)^j u^j \]

\[\Rightarrow \Phi(\sum_{j=0}^{m-1} \sum_{i=0}^{n-1} a_{i,j}u^j + \sum_{j=0}^{m-1} \sum_{i=0}^{n-1} b_{i,j}u^j) = \sum_{j=0}^{m-1} \sum_{i=0}^{n-1} a_{i,j}(x^m)^j u^j \]

\[\Rightarrow \sum_{j=0}^{m-1} \sum_{i=0}^{n-1} b_{i,j}(x^m)^j u^j \]

Hence \(\Phi \) preserves addition.

Let us consider

\[a_{i,j}u^j, b_{r,s}u^s x^s \in \frac{R_{\infty}[u]}{<u^m-u>} [x]. \]

Now we have

\[a_{i,j}u^j, b_{r,s}u^s x^s = a_{i,j}, b_{r,s}u^{i+r} x^{j+s} \in \frac{R_{\infty}[u]}{<u^m-u>} [x], \]

(4.1) \[\Phi(a_{i,j}u^j), \Phi(b_{r,s}u^s x^s) = a_{i,j}, b_{r,s}x^{m(i+r) + j + s} \]

(4.2) \[\Phi(a_{i,j}u^j, b_{r,s}u^s x^s) = \Phi(a_{i,j}, b_{r,s}u^{i+r} x^{j+s}) = a_{i,j}, b_{r,s}x^{m(i+r) + j + s}. \]
Hence from (4.1) and (4.2)
\[\Phi(a_{i,j}u^i x^j \cdot b_{r,s} u^r x^s) = \Phi(a_{i,j}u^i x^j) \cdot \Phi(b_{r,s} u^r x^s). \]
This implies that \(\Phi \) preserves multiplication. Thus it is proved that \(\Phi \) is an isomorphism. Therefore
\[\frac{R_\infty[u]}{<u^n - \lambda>} [x] \cong \frac{R_\infty[x]}{<x^m - \lambda>}. \]

Putting \(\lambda = 1 \) and \(\lambda = -1 \), we get the following two corollaries:

Corollary 4.2. Assuming the notations given above we have
\[\frac{R_\infty[u]}{<u^n - 1>} [x] \cong \frac{R_\infty[x]}{<x^m - 1>}. \]

Corollary 4.3. Assuming the notations given above we have
\[\frac{R_\infty[u]}{<u^n + 1>} [x] \cong \frac{R_\infty[x]}{<x^m + 1>}. \]

Thus we have established that cyclic codes of composite length \(mn \) over the formal power series ring \(R_\infty \) corresponds to \(u \)-constacyclic code of length \(m \) over \(\frac{R_\infty[u]}{<u^n - 1>} \). Similarly negacyclic codes of composite length \(mn \) over the formal power series ring \(R_\infty \) corresponds to \(u \)-constacyclic code of length \(m \) over \(\frac{R_\infty[u]}{<u^n + 1>} \).

Theorem 4.3. Assuming the notations given above we have
\[\frac{R_i[u]}{<u^n - \lambda>} [x] \cong \frac{R_i[x]}{<x^m - \lambda>}. \]

Proof. The proof of this theorem is similar to the proof of the Theorem 4.1. \(\square \)

Putting \(\lambda = 1 \) and \(\lambda = -1 \), we get the following two corollaries:

Corollary 4.4. Assuming the notations given above we have
\[\frac{R_i[u]}{<u^n - 1>} [x] \cong \frac{R_i[x]}{<x^m - 1>}. \]

Corollary 4.5. Assuming the notations given above we have
\[\frac{R_i[u]}{<u^n + 1>} [x] \cong \frac{R_i[x]}{<x^m + 1>}. \]
Theorem 4.4. Let m and n are two odd numbers and $\gcd(m, p) = 1, \gcd(n, p) = 1$. Then
\[
\frac{R_{\infty}[u]}{[x^{m-u}]^{<u^n-1>}} \cong \frac{R_{\infty}[u]}{[x^{m-u}]^{<u^n+1>}}.
\]

Proof. Since m and n both are odds, mn is also odd. Again $\gcd(m, p) = 1$ and $\gcd(n, p) = 1$. Therefore $\gcd(mn, p) = 1$. We define the map
\[
\eta : \frac{R_{\infty}[x]}{[x^{mn+1}]} \rightarrow \frac{R_{\infty}[x]}{[x^{mn-1}]}
\]
given by
\[
f(x) + [x^{mn+1}] \mapsto -f(-x) + [x^{mn-1}].
\]
Now if
\[
f(x) + [x^{mn+1}] = g(x) + [x^{mn+1}],
\]
then we have
\[
f(x) - g(x) \in [x^{mn+1}].
\]
Therefore
\[
f(x) - g(x) = (x^{mn} + 1)q(x) \text{ for some } q(x)
\]
and
\[
f(-x) - g(-x) = ((-x)^{mn} + 1)q(-x) = (-x^{mn} + 1)q(-x)
\]
\[
= (x^{mn} - 1)(-q(-x)) \in [x^{mn} - 1].
\]
This implies that
\[
\eta(f(x) + [x^{mn+1}]) = f(-x) + [x^{mn} - 1] = g(-x) + [x^{mn} - 1]
\]
\[
= \eta(g(x) + [x^{mn} + 1]).
\]
Thus, the correspondence η is a well-defined map. Now
\[
\eta((f(x) + [x^{mn} + 1]) + (g(x) + [x^{mn} + 1]))
\]
\[
= \eta((f(x) + g(x)) + [x^{mn} + 1]) = (f(-x) + g(-x)) + [x^{mn} - 1]
\]
\[
=f(-x) + [x^{mn} - 1] + g(-x) + [x^{mn} - 1]
\]
\[
= \eta(f(x) + [x^{mn} + 1]) + \eta(g(x) + [x^{mn} + 1]).
\]
Thus, η preserves addition.
Again
\[\eta((f(x) + <x^{mn} + 1>). (g(x) + <x^{mn} + 1>)) \]
\[= \eta((f(x). g(x) + <x^{mn} + 1>) = (f(-x). g(-x)) + <x^{mn} - 1>) \]
\[= \eta(f(x) + <x^{mn} + 1>). \eta(g(x) + <x^{mn} + 1>) \]

Thus \(\eta \) preserves multiplication.

For \(f(-x) + <x^{mn} - 1> \in \frac{R_\infty[x]}{<x^{mn} - 1>} \) there exists \(f(x) + <x^{mn} + 1> \in \frac{R_\infty[x]}{<x^{mn} + 1>} \) such that
\[\eta(f(x) + <x^{mn} + 1>) = f(-x) + <x^{mn} - 1> \]

Hence \(\eta \) is onto.

Let
\[\eta(f(x) + <x^{mn} + 1>) = \eta(g(x) + <x^{mn} + 1>) \]
\[\implies f(-x) + <x^{mn} - 1> = g(-x) + <x^{mn} - 1> \]
\[\implies f(x) + <x^{mn} - 1> = g(x) + <x^{mn} - 1> \]

(Replacing \(x \) by \(-x\) and since \(mn \) is odd)
\[\implies f(x) + <x^{mn} + 1> = g(x) + <x^{mn} + 1> . \]

Hence \(\eta \) is bijective. Thus it is an isomorphism. Therefore
\[\frac{R_\infty[x]}{<x^{mn} + 1>} \cong \frac{R_\infty[x]}{<x^{mn} - 1>} . \]

Because
\[\frac{R_\infty[x]}{<x^{m-u}+u-1>} \cong \frac{R_\infty[x]}{<x^{m-u}>} \text{ and } \frac{R_\infty[u]}{<u^{n+1}>} \cong \frac{R_\infty[x]}{<x^{mn}+1>} . \]

Therefore
\[\frac{R_\infty[u]}{<u^{n-1}>} \cong \frac{R_\infty[u]}{<x^{m-u}>} . \]

\[\square \]

Theorem 4.5. A linear code \(C \) of length \(mn \) over \(R_\infty \) is a \(\lambda \)-cyclic code if and only if \(\Phi^{-1}(P_{\lambda}(C)) \) is an ideal of \(\frac{R_\infty[x]}{<x^{mn}-\lambda>} \).

Proof. From Lemma 4.1 we know that, a linear code \(C \) of length \(mn \) over \(R_\infty \) is a \(\lambda \)-cyclic code, if, and only if, \(P_{\lambda}(C) \) is an ideal of \(\frac{R_\infty[x]}{<x^{mn}-\lambda>} \). Again \(\Phi \) is an isomorphism between \(\frac{R_\infty[u]}{<u^{n-1}>} \) and \(\frac{R_\infty[x]}{<x^{mn}-\lambda>} \). Thus \(\Phi^{-1} \) is an isomorphism.
So \(\Phi^{-1}(P_{\lambda}(C)) \) is an ideal of \(\frac{R_{\infty}[x]}{<x^{m}-u>} \), if, and only if, \((P_{\lambda}(C)) \) is an ideal of \(\frac{R_{\infty}[x]}{<x^{m}-\lambda>} \). Thus a linear code \(C \) of length \(mn \) over \(R_{\infty} \) is a \(\lambda \)-cyclic code if and only if \(\Phi^{-1}(P_{\lambda}(C)) \) is an ideal of \(\frac{R_{\infty}[x]}{<x^{m}-u>} \).

Corollary 4.6. Assuming the notations given above we have

(i) A linear code \(C \) of length \(mn \) over \(R_{\infty} \) is a cyclic code if and only if \(\Phi^{-1}(P_{1}(C)) \) is an ideal of \(\frac{R_{\infty}[x]}{<x^{m}-u>} \).

(ii) A linear code \(C \) of length \(mn \) over \(R_{\infty} \) is a negacyclic code if and only if \(\Phi^{-1}(P_{-1}(C)) \) is an ideal of \(\frac{R_{\infty}[x]}{<x^{m}-u>} \).

Theorem 4.6. If \(C \) is a cyclic code of length \(mn \) over \(R_{\infty} \), then \(\Phi^{-1}(\psi_{i}(P_{1}(C))) \) is an ideal of \(\frac{R_{i}[x]}{<x^{m}-u>} \).

Proof. From Theorem 4.1 we know that if \(C \) is a cyclic code over \(R_{\infty} \), then \(\psi_{i}(C) \) is a cyclic code over \(R_{i} \) for all \(i < \infty \). Thus if \(C \) is a cyclic code of length \(mn \) over \(R_{\infty} \) then \(\psi_{i}(P_{1}(C)) \) is an ideal of \(\frac{R_{i}[x]}{<x^{m}-1>} \). As \(\Phi \) is an isomorphism between \(\frac{R_{i}[x]}{<x^{m}-u>} \) and \(\frac{R_{i}[x]}{<x^{m}-1>} \), \(\Phi^{-1} \) is an isomorphism between \(\frac{R_{i}[x]}{<x^{m}-u>} \) and \(\frac{R_{i}[x]}{<x^{m}-1>} \). Hence \(\psi_{i}(P_{1}(C)) \) is an ideal of \(\frac{R_{i}[x]}{<x^{m}-1>} \) if and only if \(\Phi^{-1}(\psi_{i}(P_{1}(C))) \) is an ideal of \(\frac{R_{i}[x]}{<x^{m}-u>} \). Thus if \(C \) is a cyclic code of length \(mn \) over \(R_{\infty} \) then, \(\Phi^{-1}(\psi_{i}(P_{1}(C))) \) is an ideal of \(\frac{R_{i}[x]}{<x^{m}-u>} \).

5. **Conclusion**

In [4] Dougherty and Liu proved that corresponding to every cyclic code of odd length \(n \) over \(R_{\infty} \) there exists a negacyclic code of same length over \(R_{\infty} \). Here we have considered both \(m \) and \(n \) as odd numbers and proved that \(u \)-constacyclic codes of length \(m \) over \(\frac{R_{\infty}[x]}{<x^{n+1}>} \) corresponds to \(u \)-constacyclic code of length \(m \) over \(\frac{R_{\infty}[x]}{<x^{n+1}>} \). Neither a counter example have been found to disprove that \(u \)-constacyclic codes of length \(m \) over \(\frac{R_{\infty}[x]}{<x^{n+1}>} \) corresponds to \(u \)-constacyclic code of length \(m \) over \(\frac{R_{\infty}[x]}{<x^{n+1}>} \), nor any isomorphism has been constructed between \(\frac{R_{\infty}[x]}{<x^{m}-u>} \) and \(\frac{R_{\infty}[x]}{<x^{m}-u>} \) to prove that \(u \)-constacyclic codes of length \(m \) over \(\frac{R_{\infty}[x]}{<x^{n+1}>} \) corresponds to \(u \)-constacyclic codes of length \(m \) over \(\frac{R_{\infty}[x]}{<x^{n+1}>} \), when at least one of \(m \) or \(n \) is even. Hence still the problem whether
\[\frac{\mathbb{R}_\infty[u]}{\langle x^m - u \rangle} \] is isomorphic to \[\frac{\mathbb{R}_\infty[u]}{\langle x^n - u \rangle} \] or not is unsolved, when at least one of \(m \) or \(n \) is even.

REFERENCES

DEPARTMENT OF MATHEMATICS
NALBARI COLLEGE
NALBARI, PIN-781335, INDIA
Email address: dutta.mriganka82@gmail.com

DEPARTMENT OF MATHEMATICS
GAUHATI UNIVERSITY
GUWAHATI, PIN-781014, INDIA
Email address: hsaikia@yahoo.com